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Abstract In the first part of this work we formulated the decoupled sites represen-
tation for two different types of ligands and highlighted special properties of the case
of n binding sites for ligand L1 and one binding site for ligand L2. Moreover, for
this case, we identified the microstate constants as unique components all decoupled
molecules share. In the second part on hand, we investigate the cases with (n, 2) and
(n, 3) binding sites. As it is difficult to solve the system of equations occurring when a
molecule with more than one binding site for both ligands shall be decoupled, we pres-
ent applicable calculation methods which exploit the special structure of the system of
equations. Moreover, we investigate which unique properties all decoupled molecules
share and show that for two different decoupled molecules with the same binding
polynomial, not all microstate constants of a certain macrostate are permutations of
the microstate constants of the other molecule.
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1 Introduction

We regard a molecule M in solution to which another molecule L can bind reversibly
at several binding sites. If the activity (or concentration) of L is changed, the aver-
age amount of ligand L bound to the molecule M in equilibrium will change, too. In
this work the general objects of interest are titration curves as functions in the ligand
activities which describe the average binding of two different ligands to a molecule as
a whole (overall titration) or to a certain site, in equilibrium. We give a short summary
to recall the basics. A more detailed description is given in the first part of this work
[7].

In the underlying model, the equilibrium binding properties of the molecule M
are described by energies of microstates which are mapped to rational functions in
the ligand activities (the titration curves). With n = n1 + n2 denoting the number of
binding sites for both ligands Li , a microstate k is an n-tuple illustrating the binding
state of an individual molecule:

k = (xk
1 , . . . , xk

n ) xk
i ∈ {0, 1} ∀i ∈ {1, . . . , n}

and

xk
i = 1 ⇐⇒ in microstate k, a ligand is bound to site i .

K denotes the set of all microstates k. We use a simplified model in which the micro-
state energies are sums of binding energies (energy difference if a certain site is
(un)occupied) and pairwise interaction energies describing whether an occupation of
a certain site influences the binding probability of a ligand to another site. This model
is simplified as, in an extended model, additional summands of interaction energy
resulting from interaction of three or more binding sites would be incorporated. Here,
in this simplified model, we profit from a relieved notation and the main results carry
over to the more general setup. Thus, the binding properties of ligands L1 and L2 to the
molecule M can be characterized by an n(n+1)

2 -tuple of binding (gi ) and interaction
constants (wi, j )

M = (gM
1 , . . . , gM

n , wM
1,2, . . . , w

M
n−1,n) ∈ C

∗m, (1)

where C
∗ = C \ {0}. Its entries are called “binding constants” and “interaction con-

stants”, which are given by

gM
i := e−βG M

i

and

wM
i, j := e−βW M

i, j

where G M
i denotes the binding energy of site i, W M

i, j the interaction energy of sites i
and j , and β a constant depending on the temperature (which is assumed constant).
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The constant g(k) of a microstate k is given by

g(k) :=
⎛
⎝

n∏
i=1

⎛
⎝g

xk
i

i

n∏
j=i+1

w
xk

i xk
j

i, j

⎞
⎠

⎞
⎠ (2)

in the model with only pairwise interaction. The binding polynomial in the ligand
activities � and κ of a molecule M with n1 binding sites for ligand L1 and n2 binding
sites for ligand L2, which is the denominator of all titration curves, writes

PM (�, κ) =
∑
k∈K

g(k)�l1(k)κ l2(k) (3)

with l1(k) := ∑n1
i=1 xk

i and l2(k) := ∑n1+n2
i=n1+1 xk

i denoting the number of bound
ligands of both types and g(k) again the microstate constant of state k. The average
amount of bound ligand to site r in equilibrium is given by

〈xr 〉 =
∑

{k∈K |xk
r =1} g(k)�l1(k)κ l2(k)

∑
k∈K g(k)�l1(k)κ l2(k)

=: Zr
M (�, κ)

PM (�, κ)
. (4)

With 1, . . . , n1 denoting the binding sites for ligand L1 and A1, . . . , An2 those for L2,
Eq. (4) leads to the following overall titration curves for ligands L1 and L2:

〈X1〉 =
∑n1

r=1 Zr
M (�, κ)

PM (�, κ)
(5)

〈X2〉 =
∑An2

r=A1
Zr

M (�, κ)

PM (�, κ)
(6)

The situation with only one type of ligand L1(n2 = 0) has been investigated for a
long time [1–6,12] and it is well described. An important feature within the theory
of ligand binding if only one ligand is present is the decoupled sites representation
(DSR) which states that for any overall titration curve, a hypothetical molecule with
non-interacting binding sites exhibiting this overall titration behavior exists [8–10].
In the first part of this work, we formulated the DSR for molecules with two differ-
ent types of ligands as conjecture and highlighted the case of n1 to one binding sites
for the two different ligands [7]. In this part we will treat the cases (n, 2) and (n, 3)

exemplarily to generate an intuition for the situation of (n1, n2) ligand binding sites,
for which certain statements are difficult to prove. Moreover, we present numerical
methods for the calculation of corresponding decoupled systems.

2 n to two binding sites

We prove the DSR for the case of two binding sites for both ligands and present an iter-
ative approach to calculate decoupled systems with (n, 2) bindings sites. Exemplarily,
this is used subsequently to decouple a molecule with (4, 2) binding sites.
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2.1 Two to two binding sites

We formulate the DSR as proposition for the case n1 = n2 = 2.

Proposition 1 Let

M =
(

gM
1 , gM

2 , gM
A , gM

B , wM
1,2, w

M
1,A, wM

1,B, wM
2,A, wM

2,B, wM
A,B

)

be a molecule with two binding sites for each type of ligand. Then a molecule

N = (g1, g2, gA, gB, 1, w1,A, w1,B, w2,A, w2,B, 1)

exists, with

PM = PN .

Proof We will use the special structure of the algebraic equations we are dealing with
to prove Proposition 1. Let

M = (gM
1 , gM

2 , gM
A , gM

B , wM
1,2, w

M
1,A, wM

1,B, wM
2,A, wM

2,B, wM
A,B)

be a molecule with bp

PM = a2,2�
2κ2 + a2,1�

2κ + a2,0�
2

+a1,2�κ2 + a1,1�κ + a1,0� + a0,1κ
2 + a0,1κ + 1.

We seek for a molecule N = (g1, g2, gA, gB, 1, w1,A, w1,B, w2,A, w2,B, 1) with the
same binding polynomial. The bp gives a system of eight equations corresponding to
its coefficients

a2,2 = g1g2gAgBw1,Aw1,Bw2,Aw2,B

a2,1 = g1g2gAw1,Aw2,A + g1g2gBw1,Bw2,B

a2,0 = g1g2
a1,2 = g1gAgBw1,Aw1,B + g2gAgBw2,Aw2,B

a1,1 = g1gAw1,A + g1gBw1,B + g2gAw2,A + g2gBw2,B

a1,0 = g1 + g2
a0,2 = gAgB

a0,1 = gA + gB

(7)

The binding energies gi can be calculated using the equations given by the coeffi-
cients with only one type of ligand. According to Vieta’s formulas (for more details
see Corollary 1, [7]):

(g1, g2) =
(

− 1

�z1

,− 1

�z2

)
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with �zi denoting the roots of

a2,0�
2 + a1,0� + 1.

Analogously, (gA, gB) can be calculated using a0,2, a0,1. Thus, in general for any
choice of (n1, n2), the subsystem of equations given by the coefficients ai,0 and a0, j ,
is enough to calculate (gi )i=1,...,n1+n2 . With the same argument Eqs. a2,2 and a2,1 give
the products gAw1,Aw2,A and gBw1,Bw2,B by calculating the roots of

a2,2

g1g2
�2 + a2,1

g1g2
� + 1. (8)

Analogously, a2,2 and a1,2 give g1w1,Aw1,B and g2w2,Aw2,B . This means we have
already found (gi ) solving the subsystem {a0, j , a j,0}, and products (giwi,Awi,B)i=1,2,

(g jw1, jw2, j ) j=A,B such that all equations, except for a1,1 are solved. The remaining
question is whether the products can be factorized such that all required conditions
are fulfilled. As we know the binding constants we can rewrite the conditions on the
products to

w1,Aw1,B = b1

w2,Aw2,B = b2

w1,Aw2,A = bA (9)

w1,Bw2,B = bB

g1gAw1,A + g2gBw2,B + g1gBw1,B + g2gAw2,A = a1,1

If there exist (wi, j ) solving system (9) then the whole system (7) will have a solution.
Rearranging the first four equations of system (9) shows that we can solve them simul-
taneously for any choice of w1,A if and only if bAbB

b2b1
= 1. However, this is true as the

bi s are derived from the roots of polynomials and fulfill in particular

a2,2 = w1,Aw1,Bw2,Aw2,B

B∏
i=1

gi = b1b2

B∏
i=1

gi = bAbB

B∏
i=1

gi .

Consequently, we can solve the first four equations to receive expressions depending
on w1,A, only, and plug them into the last equation which gives a polynomial of degree
two with at least one root non-zero. 	


A generalization of this procedure might be adequate to prove the DSR without
fixing n1 and n2.

2.2 Decoupling a molecule with four and two binding sites for different ligands

Here, we illustrate the decoupling of a hypothetical molecule with four binding sites
for electrons (ligand L1) and two binding sites for protons (ligand L2). Let the sites
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for electrons be denoted by 1, . . . , 4 and the proton binding sites be called A, B. Even
though the hypothetical molecule has only six binding sites decoupling is challenging.
To find a decoupled molecule for a system with four and two binding sites we have
to solve system (10) (below) consisting of 14 polynomial equations (one equation
per coefficient) with 14 variables given by the binding constants and the interaction
constants. To facilitate identifying the structure of the system, which is required to
understand how we find solutions, we use the following substitutions:

ξi : = giwi,Awi,B

a j
4,1 : = g1g2g3g4g jw1, jw2, jw3, jw4, j

a j
3,1 : = g1g2g3g jw1, jw2, jw3, j + g1g2g4g jw1, jw2, jw4, j

+ g1g3g4g jw1, jw3, jw4, j + g2g3g4g jw2, jw3, jw4, j

a j
2,1 : = g1g2g jw1, jw2, j + g1g3g jw1, jw3, j + g1g4g jw1, jw4, j

+ g2g3g jw2, jw3, j + g2g4g jw2, jw4, j + g3g4g jw3, jw4, j

a j
1,1 = g1g jw1, j + g2g jw2, j + g3g jw3, j + g4g jw4, j

with i ∈ {1, 2, 3, 4} and j ∈ {A, B}. A look at system (10) reveals that it consists of
three systems of the type described in Corollary 1 of [7] and a system which is a sum
of two systems of the same structure ({ai,1}i=1,2,3,4).

a4,2

gAgB
= ξ1ξ2ξ3ξ4

a3,2

gAgB
= ξ1ξ2ξ3 + ξ1ξ2ξ4 + ξ1ξ3ξ4 + ξ2ξ3ξ4

a2,2

gAgB
= ξ1ξ2 + ξ1ξ3 + ξ1ξ4 + ξ2ξ3 + ξ2ξ4 + ξ3ξ4

a1,2

gAgB
= ξ1 + ξ2 + ξ3 + ξ4

a4,1 = a A
4,1 + aB

4,1

a3,1 = a A
3,1 + aB

3,1

a2,1 = a A
2,1 + aB

2,1

a1,1 = a A
1,1 + aB

1,1

a0,2 = gAgB

a0,1 = gA + gB

a4,0 = g1g2g3g4

a3,0 = g1g2g3 + g1g2g4 + g1g3g4 + g2g3g4

(10)
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a2,0 = g1g2 + g1g3 + g1g4 + g2g3 + g2g4 + g3g4

a1,0 = g1 + g2 + g3 + g4

To find a decoupled system for Example 1, we tried to use the standard com-
mand “algsys” of the computer algebra system Maxima to solve the system. How-
ever, it was too complicated to be solved directly by this general approach. Instead
we used the special structure of the system to deduce an iterative procedure with
decoupled systems as fixed point: Regarding the system of polynomial equations
we see that the equations given by a4,0, a3,0, a2,0, a1,0 do neither contain any
interaction constant as variable, nor the binding constants gA, gB . Thus, we have
four equations with the four variables g1, g2, g3, g4. This subsystem can be solved
using the well known procedure: gi = − 1

zi
where zi denote the roots of the

polynomial

P1(x) = a4,0x4 + a3,0x3 + a2,0x2 + a1,0x + 1.

Analogously, coefficients a0,2, a0,1 immediately give a solution for (gA, gB). Hence,
the binding energies are unique, except for permutations. We chose any permutation
which means we fix the binding constants. The products ξi = giwi,Awi,B can be
calculated using equations a4,2, a3,2, a2,2, a1,2: Again, these products are the negative
inverses of the roots of the polynomial

P2(x) = a4,2

gAgB
x4 + a3,2

gAgB
x3 + a2,2

gAgB
x2 + a1,2

gAgB
x + 1.

Note, that this is the major step which distinguishes between the different decou-
pled molecules: We have fixed an order of the binding constants previously, and have
to relate the roots of P2 and the products giwi,Awi,B . In general, we will receive
different decoupled molecules for different permutations of the roots of P2 (if they
do not coincide due to identical binding constants, etc.). As we know the bind-
ing constants gi , these solutions give conditions on wi,Awi,B . Regarding equations
a4,1, a3,1, a2,1, a1,1 we see that the system is the sum of two “ordinary” systems
which could be solved by the well known procedure previously described, if we knew
{a A

i,1}i=1,2,3,4. As this is not the case we use the iterative approach described in Prop-
osition 2.

Proposition 2 Let the algebraic system (10) be given. Let (gi )i=1,...,4 be a solution to
the subsystem {a4,0, a3,0, a2,0, a1,0}, (gA, gB) be a solution to {a0,2, a0,1}. Further-
more, let the products (wi,Awi,B)i=1,...,4 be a solution to {a4,2, a3,2, a2,2, a1,2} for the
given binding constants (gi )i=1,2,3,4,A,B and let σ n be a sequence of permutations of
{1, . . . , 4}. We consider the following algorithm:
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a A,0
i,1 := ai,1, i ∈ {1, 2, 3, 4}

Pn(x) := a A,n
4,1
gA

x4 + a A,n
3,1
gA

x3 + a A,n
2,1
gA

x2 + a A,n
1,1
gA

x + 1
(zn

1, zn
2, zn

3, zn
4) := the roots Pn

wn
i,A := − 1

zn
σn (i)gi

wn
i,B := wi,Awi,B

wn
i,A

Calculate aB,n
i,1 using equations {ai,1}i=1,2,3,4 and restart with

a A,n+1
i,1 := ai,1 − aB,n

i,1

Then, x = (w1,A, w1,B, w2,A, w2,B, w3,A, w3,B, w4,A, w4,B) is a solution to the
subsystem {ai,n}i,n �=0 which satisfies the conditions on the products (wi,Awi,B)i=1,...,4
if and only if there exists a permutation σ ∈ S4 such that x is a fixed point of the
algorithm with σ n = σ .

Proof Let x be a solution to the subsystem, satisfying the conditions on the products
(wi,Awi,B)i=1,...,4. Then

wn
i,A = wi,A ⇒ wn

i,B = wi,Awi,B

wi,A
= wi,B ⇒ aB,n

i,1 = aB
i,1 ⇒ a A,n+1

i,1 = a A
i,1

which gives

wn+1
i,A = wi,A = wn

i,A

if the correct permutation of the roots is used.
Conversely, let x be a fixed point and, without loss of generality, let σ be identity.

Then wn
i,A = wn+1

i,A = wi,A. This means that the roots of Pn coincide with the roots of
Pn+1. As both polynomials have the same roots and the same constant term, this shows
that all coefficients are equal, which implies a A,n

i,1 + aB,n
i,1 = ai,1, and that equations

ai,1 are satisfied. Consequently, x solves the system. 	


Example 1 Let the molecule be described by M = (G, W ) with

G = (g1, g2, g3, g4, gA, gB) = (4 × 103, 10, 2 × 103, 500, 103, 10)

W = (wi, j )i, j=1,2,3,4,A,B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0.1 0.1 0.05 10 1
0.1 1 0.5 0.5 103 2 × 103

0.1 0.5 1 0.05 102 10
0.05 0.5 0.05 1 102 20
10 103 102 102 1 0.1
1 2 × 103 10 20 0.1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

For the sake of a clear view, we use a matrix notation for W which repeats information
but underlines which pairwise interaction is described. The binding polynomial of the
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molecule is given by

PM (�, κ) = 1022�4κ2 + 2.5001 × 1016�4κ + 250000�4

+5.1002 × 1020�3κ2 + 1.800602 × 1015�3κ + 1575000�3

+3.0190 × 1016�2κ2 + 2.69328 × 1012�2κ + 966500�2

+2.3040 × 1010�κ2 + 3.0054 × 108�κ + 6510�

+1000κ2 + 1010κ + 1

The binding to the individual sites is illustrated in Fig. 1.
We used the iterative approach described in Proposition 2 to calculate 24 different

decoupled molecules, which correspond to the different permutations of the roots of
P2. The titration curves of the individual binding sites of two different decoupled
molecules N and K are illustrated in Fig. 1. The binding constants of the decoupled
molecules are always coinciding and given by (rounded):

G De = (6358.026, 150.328, 1.468, 0.178, 1009.009, 0.991).

The interaction constants of two chosen decoupled molecules N , K are (rounded)

WN =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 45.323 75.119
1 1 1 1 56.358 162.473
1 1 1 1 487.352 23.900
1 1 1 1 79.618 1.384

45.323 56.358 487.352 79.618 1 1
75.119 162.473 23.900 1.384 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

WK =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 45.336 6.810 × 10−05

1 1 1 1 56.464 2550.214
1 1 1 1 486.320 23.950
1 1 1 1 79.613 97028.384

45.336 56.464 486.320 79.613 1 1
6.810 × 10−5 2550.214 23.950 97028.384 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Remark 1 (a) The fixed point algorithm described in Proposition 2 can easily be
generalized to a situation of (n, 2) binding sites. Only the degree of the polyno-
mial whose roots have to be calculated increases.

(b) We note that it is not clear whether this procedure will always be attracted by its
fixed point. However, our numerical test suggest that it converges quickly.

(c) The algorithm described in Proposition 2 can also be used with site B as ref-
erence site (aB,0

i,1 := ai,1, etc . . .). In all examples we calculated, this altered
procedure led to another molecule with different sites A and B. However, the
titration curves of sites 1, . . . , 4 only depend on the chosen permutation of the
products wi,Awi,B , and not on the choice of the reference site. In particular, this
shows that our iterative approach has at least two (which equals n2!) fixed points
for any permutation of the products (wi,Awi,B)i=1,...,4. Switching the reference
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Fig. 2 Ligand binding to site 1 of the decoupled molecule K of Example 1, dependent on the electron
activity in chemical potential μ(e) for fixed pH = 3 = −μ(H)

site and calculating the decoupled molecules with our iterative procedure and
all possible permutations of the roots gives additional 24 decoupled molecules
sharing the same titration curves for protons. Moreover, not only the reference
site, but also the starting point can be changed (e.g. a A,0

i,1 := 1
2 ai,1). Yet, we

do not know how the choice of the starting point and reference site determines
which fixed point will be reached. It might be the case that the choice of the
reference site implies that a certain fixed point is attractive and the other one
repulsive.

(d) Our implementation is based on the R function “polyroot” [11] and we regarded
the permutation which was returned by this function as id ∈ S4.

(e) Due to our numerical results we conjecture that the maximal number of decou-
pled systems of a molecule M with (n1, n2) sites is n1!n2!.

Regarding the titration curve of site 1 of the decoupled molecule K at pH = 3 (Fig. 2)
we can see an extreme form of secondary interaction, which we have already described
in the first part of this work [7]: Even though none of the electron binding sites interact
directly, for fixed pH value, their 1-dimensional titration curves are not of classical
Henderson–Hasselbalch shape. Secondary interaction between the electron binding
sites is a result of the interaction with the protons: As site 1 of the decoupled mol-
ecules has a high binding constant (compared to the other binding sites), it will be
occupied at a comparatively low activity. With an increase of electron activity, more
electrons will bind to the other sites which will enhance the binding of the protons, in
particular to site B. However, this decreases the affinity of electrons to site 1, due to
the small interaction constant w1,B of molecule K .

Analogously to our observation in [7] we see here once more that for decoupled
molecules the area of transition from 0.1 to 0.9 occupation probability is small, com-
pared to the original molecule (sites 1, 3).

3 Unique features shared by all decoupled molecules

Fig. 1 creates the suspicion that the binding curves of the individual sites for ligand
one of the decoupled system N in Example 1 are similar to those of the decoupled
molecule K in a certain way: The titration curve of site 1 of molecule K seems to
share the “right part” with site 4 of molecule N and its “left part” seems to be iden-
tical to the “left part” of site 1 of molecule N . We have described this observation
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already for the case of (n1, 1) binding sites [7]. Analogously, to the first part of this
work we want to identify unique features all decoupled molecules share. We will have
a look on the microstate constants of the different molecules first. Table 1 lists the
non-trivial microstate constants of the molecules M, N and K of Example 1. Micro-
states constants which are not listed are identical for the molecules N and K (when
the permutation of the binding constants is fixed). We see here, that the microstate
constants of macrostate (1, 1) of molecules N and K are not permutations of each
other. However, for all macrostates in which the binding sites for one type of ligand
are fully occupied, the corresponding microstate constants are permutations. We can
prove this statement in general.

Proposition 3 Let

M =
(

gM
1 , . . . , gM

n1
, gM

A1
, . . . , gM

An2
, wM

1,2, . . . , w
M
An2−1 ,An2

)

be a molecule with n1 binding sites for ligand L1 and n2 binding sites for ligand L2.
Moreover, let the order of the sites in the decoupled molecules be fixed to the same
permutations. Then the following statements hold:

(a) For any microstate k with only one type of ligand bound, all decoupled molecules
share the same microstate constant g(k).

(b) For every macrostate (i, n2), there exist
(n1

i

)
numbers such that for any decou-

pled molecule the tuple of its constants of microstates belonging to this macro-
state is a permutation of these numbers. Analogously, this statements holds for
macrostates (n1, j).

(c) The permutation of microstate constants of macrostate (1, n2) fixes the permu-
tations of the microstate constants of all other macrostates (i, n2). Analogously,
for macrostate (n1, 1) and (n1, j).

Proof (a) As the permutation of the binding sites is fixed, and since the constants
g(k) are the product of the binding constants they are identical for all decoupled
molecules.

(b) Let k be a microstate of macrostate (1, n2). Its constant is given by

g(k) = gi gA1 gA2 . . . gAn2
wi,A1 . . . wi,An .

The coefficients an1,n2 , an1−1,n2 , . . . , a1,n2 are enough to calculate these con-
stants which correspond to the roots of a polynomial. Thus, for any decoupled
molecule the constants correspond to a permutation of these roots as the decou-
pled molecule has to fulfill the equations given by an1,n2 , an1−1,n2 , . . . , a1,n2 in
particular. Let k1 be a microstate of macrostate (i, n2). Then its constant is the
product of i microstate constants belonging to macrostate (1, n2) divided by

⎛
⎝

n2∏
j=1

gA j

⎞
⎠

i−1

.
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Table 1 Microstate constants of molecules M and the two corresponding decoupled molecules N and K
of Example 1

Macrostate Microstate M N K

(1, 1) (1, 0, 0, 0, 1, 0) 4 × 107 290,757,860 290,757,860

(0, 1, 0, 0, 1, 0) 107 8,548,419 8,564,541

(0, 0, 1, 0, 1, 0) 2 × 108 721,821.7 720,293.5

(0, 0, 0, 1, 1, 0) 5 × 107 14,315.07 14,314.21

(1, 0, 0, 0, 0, 1) 4 × 104 473,343.6 0.4291216

(0, 1, 0, 0, 0, 1) 2 × 105 24,206.05 379,944.48

(0, 0, 1, 0, 0, 1) 2 × 105 34.76863 34.84239

(0, 0, 0, 1, 0, 1) 105 0.2443494 17,135.27

(2, 1) (1, 1, 0, 0, 1, 0) 4 × 1010 2.463328 × 1012 2.468703 × 1012

(1, 0, 1, 0, 1, 0) 8 × 1011 208,001,453,616 207,622,407,458

(1, 0, 0, 1, 1, 0) 1011 4,125,056,936 4,126,026,921

(0, 1, 1, 0, 1, 0) 1012 6.115341 × 109 6.113904 × 109

(0, 1, 0, 1, 1, 0) 2.5 × 1011 121,278,630 121,500,042

(0, 0, 1, 1, 1, 0) 5 × 1011 10,240,671 10,218,376

(1, 1, 0, 0, 0, 1) 8 × 107 1.156100 × 1010 1.645112 × 105

(1, 0, 1, 0, 0, 1) 8 × 107 1.660577 × 107 15.08632

(1, 0, 0, 1, 0, 1) 2 × 107 116,703.229 7,419.357

(0, 1, 1, 0, 0, 1) 2 × 109 849,193.2 13,357,436.4

(0, 1, 0, 1, 0, 1) 109 5.968020 × 103 6.569103 × 109

(0, 0, 1, 1, 0, 1) 108 8.572232 6.024124 × 105

(3, 1) (1, 1, 1, 0, 1, 0) 4 × 1014 1.762208 × 1015 1.762314 × 1015

(1, 1, 0, 1, 1, 0) 5 × 1013 3.494787 × 1013 3.502202 × 1013

(1, 0, 1, 1, 1, 0) 1014 2.950970 × 1012 2.945415 × 1012

(0, 1, 1, 1, 1, 0) 1.25 × 1015 8.675993 × 1010 8.673431 × 1010

(1, 1, 1, 0, 0, 1) 8 × 1010 405,581,389,998 5,783,603

(1, 1, 0, 1, 0, 1) 2 × 1010 2,850,373,606 2,844,339,211

(1, 0, 1, 1, 0, 1) 2 × 109 4,094,166 260,837

(0, 1, 1, 1, 0, 1) 5 × 1011 2.093692 × 105 2.309452 × 1011

(4, 1) (1, 1, 1, 1, 1, 0) 2.5 × 1016 2.50009 × 1016 2.50009 × 1016

(1, 1, 1, 1, 0, 1) 1012 9.99964 × 1010 9.99964 × 1010

(1, 2) (1, 0, 0, 0, 1, 1) 4 × 107 2.164640 × 1010 1.962988 × 104

(0, 1, 0, 0, 1, 1) 2 × 1010 1.376484×109 2.164640×1010

(0, 0, 1, 0, 1, 1) 2 × 109 17,097,219 17,097,219

(0, 0, 0, 1, 1, 1) 109 1.962988 × 104 1.376484 × 109
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Table 1 continued

Macrostate Microstate M N K

(2, 2) (1, 1, 0, 0, 1, 1) 8 × 1013 2.979592 × 1016 4.249163 × 1011

(1, 0, 1, 0, 1, 1) 8 × 1012 3.700932 × 1014 3.356164 × 108

(1, 0, 0, 1, 1, 1) 2 × 1012 4.249163 × 1011 2.702022 × 1010

(0, 1, 1, 0, 1, 1) 2 × 1016 2.353405 × 1013 3.700932 × 1014

(0, 1, 0, 1, 1, 1) 1016 2.702022 × 1010 2.979592 × 1016

(0, 0, 1, 1, 1, 1) 1014 3.356164 × 108 2.353405 × 1013

(3, 2) (1, 1, 1, 0, 1, 1) 8 × 1018 5.094274 × 1020 7.264887 × 1015

(1, 1, 0, 1, 1, 1) 2 × 1018 5.848904 × 1017 5.848904 × 1017

(1, 0, 1, 1, 1, 1) 2 × 1016 7.264887 × 1015 4.619706 × 1014

(0, 1, 1, 1, 1, 1) 5 × 1020 4.619706 × 1014 5.094274 × 1020

The constants of microstates which are not listed are identical for molecules N and K

This proves b) and c).
	


Remark 2 We have already conjectured that the maximal number of decoupled mole-
cules is n1!n2!. This number corresponds to the different permutations of the microstate
constants of the macrostates (1, n2) and (n1, 1). However, to prove our conjecture we
would have to show, that for a fixed choice of these microstate constants, the remaining
equations have a unique simultaneous solution. This equals proving the DSR for two
types of ligands generally.

4 Decoupling a molecule with (3,3) binding sites

Finally, we show how the algorithm of Proposition 2 can be extended to more than
two binding sites for both ligands by presenting an iterative procedure for the case of
(3, 3). Let

PM (�, κ) = a3,3�
3κ3 + a3,2�

3κ2 + a3,1�
3κ + a3,0�

3

+a2,3�
2κ3 + a2,2�

2κ2 + a2,1�
2κ + a2,0�

2

+a1,3�κ3 + a1,2�κ2 + a1,1�κ + a1,0�

+a0,3κ
3 + a0,2κ

2 + a0,1κ + 1

be a binding polynomial. We look for a corresponding decoupled molecule N . Let
the sites for ligand L1 be denoted by 1, 2, 3 and for ligand L2 by A, B, C . The coef-
ficients (ai,0)i=1,2,3 and (a0, j ) j=A,B,C give the binding constants. Let a permutation
be chosen, that is, the order of the sites be fixed. Then the roots of the polynomial

P1(x) = a3,3

gAgB gC
x3 + a2,3

gAgB gC
x2 + a1,3

gAgB gC
x + 1
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give the products (giwi,Awi,Bwi,C )i=1,2,3. Analogously to the case of (4, 2) binding
sites the choice of the permutation is an important step to distinguish between dif-
ferent solutions. Having solved this subsystem, system (12) is left to be solved. We
use analogous substitutions to the case of (4, 2) binding sites to facilitate understand-
ing the structure of the system (a AB

1,2 denotes the part of coefficient a1,2 derived from
microstates with sites A and B occupied):

ξ
jk

i := giwi, jwi,k

a jk
3,2 := g j gkξ

jk
1 ξ

jk
2 ξ

jk
3

a jk
2,2 := g j gk(ξ

jk
1 ξ

jk
2 + ξ

jk
1 ξ

jk
3 + ξ

jk
2 ξ

jk
3 )

a jk
1,2 := g j gk(ξ

jk
1 + ξ

jk
2 + ξ

jk
3 )

a j
3,1 := g j g1w1, j g2w2, j g3w3, j

a j
2,1 := g j g1w1, j g2w2, j + g j g1w1, j g3w3, j + g j g2w2, j g3w3, j

a j
1,1 := g j g1w1, j + g j g2w2, j + g j g3w3, j

with i ∈ {1, 2, 3} and j, k ∈ {A, B, C}, j �= k

(11)

Thus, the systems consisting of equations a jk
3,2, a jk

2,2, a jk
1,2 and a j

3,1, a j
2,1, a j

1,1 are of well
known form and we see that the remaining equations given by the bp are the sum of
the three systems:

a3,2 = a AB
3,2 + a AC

3,2 + aBC
3,2

a2,2 = a AB
2,2 + a AC

2,2 + aBC
2,2

a1,2 = a AB
1,2 + a AC

1,2 + aBC
1,2

a3,1 = a A
3,1 + aB

3,1 + aC
3,1

a2,1 = a A
2,1 + aB

2,1 + aC
2,1

a1,1 = a A
1,1 + aB

1,1 + aC
1,1

(12)

To solve this system of equations we used the iterative procedure described in Propo-
sition 4 which is an extension of the algorithm of Proposition 2.
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Proposition 4 Let the algebraic system (12) be given. Moreover, let (gi )i=1,...,3,A,..,C

and (wi,Awi,Bwi,C )i=1,...,3 be known (fixed permutations are chosen). We consider
the following algorithm:

a AB,0
i,2 := ai,2, i ∈ {1, 2, 3}

Pn(x) := a AB,n
3,2

gAgB
x3 + a AB,n

2,2
gAgB

x2 + a AB,n
1,2

gAgB
x + 1

(zn
1, zn

2, zn
3) := the roots of Pn

wn
i,Awn

i,B := − 1
zn
σn (i)gi

wn
i,C := wi,Awi,Bwi,C

wn
i,Awn

i,B

Calculate aC,n
i,1 using equations {aC

i,1}i=1,2,3 of (11) and wn
i,C .

Use the procedure of Proposition 2 with a sequence of permutations σ n
2

and the condition on the products wn
i,Awn

i,B to calculate wn
i,A and wn

i,B

from ai,1 − aC,n
i,1 = a A,n

i,1 + aB,n
i,1 .

Use wn
i,A, wn

i,B, wn
i,C to calculate a AC,n

i,2 and aBC,n
i,2 .

Restart with a AB,n+1
i,2 := ai,2 − a AC,n

i,2 − aBC,n
i,2 .

Then x = (w1,A, w1,B, w1,C , w2,A, w2,B, w2,C , w3,A, w3,B, w3,C ) is a solution to
system (12) which satisfies the conditions on the products (wi,Awi,Bwi,C )i=1,...,3 if
and only if there exist permutations σ1, σ2 ∈ S3 such that x is a fixed point of the
algorithm with σ n = σ1 and σ n

2 = σ2.

Proof Let x = (w1,A, w1,B, w1,C , w2,A, w2,B, w2,C , w3,A, w3,B, w3,C ) be a solution
to system (12) which satisfies the conditions on the products (wi,Awi,Bwi,C )i=1,...,3.

Let wn
i,A = wi,A, wn

i,B = wi,B and wn
i,C = wi,C . As x solves the system, a AC,n

i,2 =
a AC

i,2 and aBC,n
i,2 = aBC

i,2 and consequently a AB,n+1
i,2 = a AB

i,2 . The roots of the polynomial

give exact solutions wn+1
i,A wn+1

i,B and thus exact solutions wn+1
i,C = wi,C , if the appro-

priate permutation σ1 is used. This means aC,n+1
i,1 = aC

i,1. As wn+1
i,A wn+1

i,B = wi,Awi,B ,
if an appropriate permutation σ2 is used in the procedure of Proposition 2, wi,A and
wi,B will be fixed. Consequently,

a AB,n+1
i,2 = a AB,n

i,2 = a AB
i,2 and Pn = Pn+1.

Conversely, let x = (w1,A, w1,B, w1,C , w2,A, w2,B, w2,C , w3,A, w3,B, w3,C ) be a
fixed point and σ1, σ2 be identity (without loss of generality). Then:
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wn
i,Awn

i,B = wn+1
i,A wn+1

i,B ⇒ Pn = Pn+1 ⇒ a AB,n
i,2 = a AB,n+1

i,2 . This means x satis-
fies all equations given by ai,2. Since x is a fixed point (wi,A, wi,B)i=1,2,3 has to be a
fixed point of the iterative procedure described in Proposition 2. Since aC,n

i,1 = aC,n+1
i,1 ,

this means (wi,A, wi,B)i=1,2,3 also solve a A,n
i,1 + aB,n

i,1 + aC,n
i,1 = ai,1 which shows that

x solves the system. 	

We implemented the iterative procedure described in Proposition 4 to give an exam-

ple with (3, 3) binding sites.

Example 2 Let the molecule be described by M = (G, W ) with

G = (g1, g2, g3, gA, gB, gC ) = (4 × 103, 10, 2 × 103, 500, 103, 10)

W = (wi, j )i, j=1,2,3,A,B,C =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0.001 0.01 10 10 1000
0.001 1 0.05 100 1000 2000
0.01 0.05 1 100 100 1000
10 100 100 1 0.001 0.01
10 1000 100 0.001 1 0.05

1000 2000 1000 0.01 0.05 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Then two decoupled molecules are given by N = (Gde, WN ) and K = (Gde, WK )

with

Gde = (g1, g2, g3, gA, gB, gC ) = (5996.485, 13.51409, 4.936015

×104, 1509.304, 0.6932945, 2.389161 × 10−3)

WN =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 46.94515 514.7757 153.93242
1 1 1 180.15859 395.1010 96.96765
1 1 1 1645.26622 341.0639 13.88127

46.94515 180.15859 1645.26622 1 1 1
514.7757 395.1010 341.0639 1 1 1

153.93242 96.9676 13.88127 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

WK =

⎛
⎜⎜⎜⎜⎝

1 1 1 46.94539 514.6135 2.654036 × 10−5

1 1 1 180.15843 395.1741 23184.93
1 1 1 1645.25945 341.1083 336723.6

46.94539 180.15843 1645.25945 1 1 1
514.6135 395.1741 341.1083 1 1 1

2.654036 × 10−5 23184.93 336723.6 1 1 1

⎞
⎟⎟⎟⎟⎠

The titration curves of all individual sites of molecules M, N , K are illustraed in
Fig. 3.
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5 Summary and outlook

We investigated the titration curves of molecules binding more than one binding sites
for two different ligands, and showed that all decoupled molecules share a certain
set of microstate constants. Moreover, we presented numerical calculation methods to
find decoupled molecules. Future work might investigate how decoupled molecules
can highlight properties of the corresponding original molecule.
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