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Abstract
Drain vortices are among the most common vortices observed in everyday life, yet 
their physics is complex due to the competition of vorticity’s transport and diffu-
sion, and the presence of viscous layers and a free surface. Recently, it has become 
possible to study experimentally drain vortices in liquid helium II, a quantum fluid 
whose physics is characterised by the absence of viscosity and the quantisation of 
the circulation in the superfluid component. Using the Gross–Pitaevskii equation, 
we make a simple model of the problem which captures the essential physics ingre-
dients, showing that the drain vortex of a pure superfluid consists of a bundle of vor-
tex lines which, in the presence of a radial drain, twist, thus strengthening the axial 
flow into the drain.

1 Introduction

Quantised vorticity is a distinguishing property of superfluids, indeed hundreds of 
papers have been written on this subject since Vinen’s detection of single quanta of 
circulation in superfluid helium [1]. It is therefore remarkable that, until recently, 
very little attention has been dedicated in the superfluid context to drain vortices 
(also called suction vortices or bathtub vortices). Combining azimuthal motion 
around an axis with radial/axial inflow into a hole, drain vortices are familiar to eve-
rybody because they can be easily created in a kitchen or bathroom sink filled with 
water. Familiarity is not the same as physical understanding, however: boundaries 
and a free surface create subtle Ekman layers, drainpipe axial flows and upwellings 
which, even for water drain vortices, have been studied only recently [2, 3].
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We consider liquid helium ( 4He) at temperature T < Tλ where Tλ = 2.17 K is the 
critical temperature at saturated vapour pressure. In this low temperature regime, 
liquid helium consists of two inter-penetrating fluid components, an inviscid super-
fluid and a viscous normal fluid, whose proportions strongly depend on T. The nor-
mal fluid fraction tends to one for T → Tλ and to zero for T → 0 ; vice versa, the 
superfluid fraction tends to zero for T → Tλ and to one for T → 0 . (In practice, at 
T = 1 K the superfluid fraction is already more than 99%.)

As mentioned, the key property of the superfluid component is that any vorticity 
is concentrated in thin vortex lines of fixed circulation � = h∕m where h is Planck’s 
constant and m is the mass of one helium atom. Therefore we expect that, in the 
configuration of a drain vortex, the flow pattern of the normal fluid should be (in 
the first approximation) similar to that of water, including viscous layers and a con-
tinuous vorticity field which fills the system, whereas the vorticity of the superfluid 
should be confined to a central cluster of vortex lines. However, since the vortex 
lines scatter the thermal excitations (phonons and rotons) which make up the normal 
fluid, there should also be a mutual friction force between normal fluid and super-
fluid components, whose precise effects are difficult to guess. (The friction depends 
on the density of the vortex lines and their velocity difference with respect to the 
normal fluid.) We also expect that the flow pattern should depend on whether the 
drain vortex is created mechanically (e.g., using a propeller) or thermally (e.g., 
using a heater), as the induced superfluid and normal fluid velocities will be paral-
lel or antiparallel, respectively. Finally, unless the container is very large, details of 
any fluid reinjection into the system will be important. In summary, the superfluid 
drain vortex problem contains many physical ingredients which may combine in a 
nontrivial way, even before considering the presence of a free surface, which may 
deepen creating a funnelling drainpipe.

Experimentally, the problem has been tackled recently by Yano and collabora-
tors [4–6]. Using a rotor, they created a drain vortex in helium at T = 1.6 K (cor-
responding to a superfluid fraction of 83% ). By measuring the attenuation of second 
sound, they showed that the drain vortex consists of a cluster of approximately 104 
quantised vortex lines which accumulate in a narrow central region near the axis 
of symmetry above the drain hole. The experiment was followed up by numerical 
simulations [7] based on the vortex filament model (VFM). These simulations deter-
mined the evolution of seeding vortex lines at nonzero temperatures in the presence 
of a prescribed normal fluid in the shape of a Rankine vortex with a superimposed 
constant axial flow into the drain hole.

In this paper we do not try to model Yano’s experiments precisely: rather, we try 
to isolate the essential physics ingredients, leaving aside finite-temperature effects. 
We consider the superfluid drain vortex problem in its simplest form: a vortex clus-
ter in the presence of a drain flow in a pure superfluid at T = 0 , in the absence of a 
free surface. We model the problem using the Gross–Pitaevskii Equation (GPE) for 
a weakly-interacting gas of bosons [9, 10]. The GPE is idealized for helium (which 
is a liquid, not a dilute gas), and, since its numerical solution requires the resolution 
of length scales smaller than the vortex core, our calculation is necessarily limited 
to small-scale vortex configurations. Still, our model captures the essential physical 
ingredients, namely the dynamics of vortex lines in a nontrivial three-dimensional 
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geometry which includes a draining superflow and the presence of boundaries, 
ingredients which were not accounted in the VFM approach [7].

This paper is articulated as follows: Sect. 2 describes our model and the numeri-
cal methods employed and Sect. 3 presents our results.

2  Model

2.1  Governing Equations

It is convenient to write the GPE in dimensionless form. We use the healing length 
� = ℏ∕

√
gmn0 and the speed of sound c =

√
n0g∕m as units of length and speed, 

respectively, � = �∕c as unit of time, the density of a uniform condensate, n0 , as the 
unit of density, and express the trapping potential in units of the chemical potential 
gn0 , g being the interaction parameter, m the mass of one atom, and ℏ = h∕(2�) the 
reduced Planck’s constant. The resulting dimensionless GPE is

where �(�, t) , n(�, t) = |�(�, t)|2 , V(�) , � and t are the dimensionless wavefunction, 
density, trapping potential, position and time, respectively. (Hereafter all quantities 
are meant to be dimensionless.) During the evolution, Eq.  (1) conserves the total 
number of atoms, N, in the volume V of the system, and the energy, E, given, respec-
tively, by

We solve the three-dimensional GPE numerically in the computational domain 
xmin ≤ x ≤ xmax , ymin ≤ y ≤ ymax , zmin ≤ z ≤ zmax using the 4th order Runge–Kutta 
method in time and centred differences in space; the spatial discretization consists 
of Nx , Ny and Nz discretization points in the x, y and z directions, respectively. Con-
vergence is checked by monitoring the conservation laws; for typical time evolu-
tions described in the next section, N and E are conserved with relative errors 
(N − N0)∕N0 ≈ 10−5 % and (E − E0)∕E0 ≈ 0.05% where N0 and E0 are the initial 
values.

2.2  Geometry of the System

For a system whose geometry is described in Fig.  1, we set V(�) = Vtrap(�) in 
Eq.  (1), where the trapping potential Vtrap(�) is equal to zero inside the following 
three regions: (i) a cylinder of radius rad extending from z1 to z2 which represents 

(1)i
��

�t
= −

1

2
∇2� + |�|2� + V� ,

(2)N =∫
V

n d3�,

(3)E =∫
V

(
1

2
|∇�|2 + 1

2
|�|4 + V|�|2

)
d3�.
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the experimental cell; (ii) a drain hole in the shape of a truncated cone with top 
radius r′

sink
 and bottom radius rsink extending from zmin to z1 ; (iii) an injection annulus 

of inner radius rad and outer radius rin extending from z3 to z4 . Outside these three 
regions, we set Vtrap(�) = 10 (in units of the chemical potential). This value corre-
sponds to a high potential barrier imposing � = 0 outside the regions (i) - (iii). In 
the experiment of Yano and collaborators [4] the injection annulus is at the bottom 
of the experimental cell, so here we present the results for z3 = z1 (i.e., the injection 
annulus is at the bottom of the cylinder).

2.3  Drain and Injection

To model the drain hole, we add a negative imaginary part to the potential V(�) in 
region (ii) (the truncated cone below the cylinder), setting

Fig. 1  The geometry of our 
numerical experiments. Top: 
schematic cross section on 
the y = 0 plane. The yellow 
and pink regions are the drain 
hole and the injection annulus, 
respectively. Bottom: schematic 
three-dimensional view for 
z3 = z1
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where Vsink(�) is equal to a positive constant V0 in the drain hole and zero elsewhere. 
Between t and t + Δt , this negative imaginary potential removes ΔN(t) atoms from 
the drain hole, depleting the density in that region. To see this, we derive [9] from 
Eq. (1) the modified Euler equation

and the modified continuity equation

where

is the pressure, v = j∕n is the velocity, and the current j is defined as

The last term of Eq. (5) is called the quantum pressure term. By integrating Eq. (8) 
over the whole volume, we obtain that the rate of loss of particles into the system 
due to drain potential is given by −dN

dt
= 2V0Nsink(t) , where Nsink(t) is the number of 

atoms in the drain hole. The number of atoms ΔN(t) removed from the drain hole in 
time Δt is hence, in the first approximation, given by ΔN(t) ≈ 2V0Nsink(t)Δt . As the 
quantum fluid described by Eqs.  (5) and (6) is barotropic, see Eq.  (7), the density 
difference arising from the atoms removal in the drain creates a pressure difference 
which drives a flow towards the drain (see Sect. 3). In order to conserve the total 
number of atoms of the system, we add into the injection annulus the same number 
of atoms ΔN(t) that we have removed from the drain hole. After time-stepping the 
wavefunction from �(�, t) to �(�, t + Δt) , the naive approach would be to change the 
density in the injection annulus from n(�, t + Δt) to 
n�(�, t + Δt) = n(�, t + Δt) + ΔN∕Vin , where Vin is the volume of the injection annu-
lus. However, we have found that the resulting unphysical small radial discontinuity 
of the density at the edge of the injection annulus ( r = rad ) tends to destabilize the 
solution even at small values of the drain parameter V0 . A more stable injection is 
obtained if the injected density profile is continuous. Therefore we set 
n�(�, t + Δt) = n(�, t + Δt) + f (r)ΔN(t) , where the distribution function f(r) is not a 
step-function but vanishes at r = rad and r = rin , and its volume integral is normal-
ized to one. For simplicity we choose

(4)V(�) = Vtrap(�) − iVsink(�) ,

(5)n
�
�v

�t
+ (v ⋅ ∇)v

�
= −∇p − n∇Vtrap +

n

2
∇

�
∇2

√
n

√
n

�
,

(6)
�n

�t
+ ∇ ⋅ (nv) = −2nVsink ,

(7)p =
n2

2
,

(8)� = n� =
i

2
(�∇�∗ − �∗∇�) .
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where

Other choices of distribution function which guarantee a continuous density profile 
at the edge of the annulus give a similar drain flow.

Our particle re-injection protocol can physically be interpreted as the inclusion of 
a source term �in in the continuity equation Eq. (6), i.e.,

where the production term, �in(�, t) , is nonzero only inside the injection annulus. 
Since Vsink(�) is equal to a constant, V0 , inside the drain hole and vanishes outside 
it, in order that the number of atoms in the system remains the same, �in(�, t) must 
satisfy

3  Results

3.1  Ground State

To find the ground state of the system, we start from the Thomas-Fermi approxima-
tion, imposing that �TF(�) =

√
1 − Vtrap(�) if Vtrap(�) < 1 and zero otherwise. With-

out any drain flow or injection, we integrate Eq. (1) in imaginary time, replacing t 
with −it and we enforce at every time step the condition that the total number of 
atoms in the system does not change. After few time steps, boundary layers of thick-
ness of the order of the healing length (which is unity in our dimensionless formula-
tion) develop near the boundaries, where the density drops from its bulk value in the 
interior to zero, and the wavefunction settles down to the desired time-independent 
state which minimizes the energy.

3.2  Steady Drain Flow

We solve the GPE using the ground state as initial condition, imposing drain 
flow and injection as described in Sect. 2.3. After an initial transient, we obtain 
a steady drain flow into the drain hole which is exactly compensated by the 

(9)f (r) =
sin [�(r − rad)∕(rin − rad)]

2(z4 − z3)(r
2
in
− r2

ad
)

,

(10)∫
2�

0

d� ∫
z4

z3

dz∫
rin

rad

dr rf (r) = 1 .

(11)
�n

�t
+ ∇ ⋅ (n�) = −2nVsink(�) + �in(�, t),

(12)∫
Vin

�in(�, t) d
3� = 2Nsink(t)V0 .
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injection of atoms in the annular region, so that the number of atoms in the sys-
tem remains constantly equal to the initial atom number.

It is interesting to relate V0 (the amplitude of the imaginary potential in Eq. (4) 
generating the drain flow) to the quantity which is controlled in the experiment: 
the flow rate from the injection annulus into the drain hole, Qinj . To do this, we 
integrate Eq. (11) over the volume Vs of the drain hole, and define

the flow rate out of Vs , where Σs is the surface which encloses Vs . Because of the 
box-trap boundary conditions, the only flow in and out of Vs is across the top surface 
Σs of the truncated cone, i.e., Qsink = ∫Σs

n� ⋅ d� . We find

In the steady state Qinj = −Qsink , hence

The steady number of atoms in the drain hole N0
sink

 is not constant but depends on 
the potential V0 , implying that the relation between Qinj and V0 , Eq. (15), is not lin-
ear. The dependence of N0

sink
 on V0 can be, at least qualitatively, understood employ-

ing the Bernoulli equation which can be derived [9] from Eq.  (1) neglecting the 
quantum pressure effects:

where vs , ps and vc , pc are velocities and pressures, respectively, in the centre of the 
drain hole just below the cylinder (where the velocity is � = −vsẑ , ẑ being the unit 
vector in the z-direction and vs > 0 ) and in the cylinder far away from the drain hole 
(where |�| = vc ≈ 0 ). Employing the Bernoulli equation Eq. (16), we obtain

where the density in the drain hole is approximately ns = N0
sink

∕Vs . In the first 
approximation, the flux across the top surface Σs of the drain hole is Qinj = nsvsAs , 
where As is the area of Σs . Using this last relation, the continuity equation Eq. (15) 
and the Bernoulli relation Eq. (17), we obtain the following expression for N0

sink
:

leading to

(13)Qsink = ∮Σs

n� ⋅ d�,

(14)
dNsink

dt
+ Qsink = −2V0Nsink,

(15)Qinj = 2N0
sink

V0.

(16)
1

2
v2
s
+ ns =

1

2
v2
c
+ nc ,

(17)vs =

√
2
(
nc − ns

)
,

(18)N0
sink

= ncVs −
2V2

0
V
3
s

A2
s

,
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This non-linear relation between Qinj and V0 can be indeed observed in Fig. 2a (solid 
black line), where we also plot Eq. (19) (solid yellow line) and its linear approxima-
tion (red dashed line) at small V0 : the agreement at small values of V0 is very good. 
It is clear that our assumptions in deriving Eq. (19) are valid when V0 is not too large 
compared to the chemical potential.

This nonlinear effect is also visible in Fig. 2b where we plot the dependence 
on the potential V0 of the averaged radial and axial components of the current, jr 
and jz , respectively, flowing into the drain hole, averaged over a horizontal disk 
of radius r′

sink
 at z = (z3 + z4)∕2.

Figure 3 shows the steady drain flow pattern in a larger geometry plotted on 
the xz plane (a) and on the xy plane (b). It is apparent that the radial and axial 
flows into the drain hole are confined to the bottom of the cylinder, the radial 
component being stronger than the axial one. This flow pattern is very different 
from the flow pattern of a viscous drain hole described in Ref. [2], which suf-
fers viscous friction near all boundaries; our drain flow is instead irrotational and 

(19)Qinj = 2V0Vs

(
nc −

2V2
0
V
2
s

A2
s

)
.

Fig. 2  Top a: Steady-state flow 
rate out of the injection annulus 
into the cylinder, Qinj , as a 
function of the amplitude of 
the complex trapping potential 
V0 which generates the drain 
flow (solid black line). The 
solid yellow line corresponds to 
Eq. (19), while the dashed red 
line shows its linear approxima-
tion at small values of V0 where 
it agrees very well with the 
numerical simulation. Bottom b: 
Steady-state averaged radial and 
axial current, jr  (solid red line) 
and jz (solid black line), respec-
tively, as a function of V0 . The 
parameters are: Nx = Ny = 140 , 
Nz = 120 , xmin = ymin = −35 , 
xmax = ymax = 35 , zmin = −30 , 
zmax = 30 , z1 = −28 , z2 = 29 , 
z3 = −28 , z4 = −24 , rad = 31 , 
rin = 34 , rsink = 3 , r�

sink
= 12
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without viscosity. The plot of the pressure distribution (see Fig. 4) confirms that 
the flow is driven by pressure gradients, as expected.

3.3  Drain Vortex Flow

In the next numerical experiment, we compute the time evolution of a lattice of 
vortex lines in the presence of a drain flow. We add Nv = 10 parallel vortex lines 

Fig. 3  Top a Steady drain flow 
pattern (in the absence of vortex 
lines) plotted on the xz plane 
for y = 0 . The arrows indicate 
the direction of the current 
and the colours represent the 
current’s magnitude. For clarity, 
only the flow in the cylinder 
is plotted, ignoring the drain 
hole and the injection annulus. 
Bottom b Steady drain flow 
pattern similarly plotted on the 
xy plane at z = (z3 + z4)∕2 . The 
parameters are: Nx = Ny = 180 , 
Nz = 440 , xmin = yrmmin = −45 , 
xrmmax = yrmmax = 45 , 
zrmmin − 110 , zrmmax = 110 , 
z1 = −107 , z2 = 109 , z3 = z1 , 
z4 = z1 + 7 , rrmad = 31 , 
rrmin = 42 , rrmsink = 5 , 
r�
rmsink

= 30 and V0
rmsink

= 0.1

Fig. 4  Steady drain flow pat-
tern plotted on the xy plane at 
z = (z3 + z4)∕2 . The arrows 
indicate the direction of the cur-
rent and the colours correspond 
to pressure values. Parameters 
as in Fig. 3
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aligned along the z-direction which form a small lattice (bundle) of initial radius 
rb = 25 . This vortex imprinting is done in a standard way by multiplying the ground 
state wavefunction with the approximate wavefunction of a vortex in a homogeneous 
condensate and let the system then relax in imaginary time.

By integrating in time the GPE, we follow the evolution of the vortex bundle, 
which is shown in Fig. 5. We find that, since vortex lines are advected by the super-
flow (Helmholtz’s theorem) and since near the bottom of the cylinder the inward 
radial flow is much stronger than near the top, the lower part of the bundle is sucked 
radially inwards, towards the centre of the drain hole, while the top part is basically 
unaffected (this effect is also apparent in Fig. 6a which displays the bundle’s radius 
at two different heights). The quantisation of the superfluid’s angular momentum [9, 

Fig. 5  Snapshots of the vortex configurations at times t = 0, 320, 640, 960, 1280, 1600 . The parameters 
are as in Fig. 3

Fig. 6  Left a: temporal evolution of the top (blue) and bottom (red) average radius of the vortex bundle 
rb ; Right b: temporal evolution of the total length Λ of the vortex bundle (blue) and its orthogonal projec-
tion Λ

⟂
 on a plane perpendicular to the cylinder’s axis (yellow). The parameters are as in Fig. 3
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11] implies that the angular velocity Ω(z, t) of the bundle at height z and time t is 
given by the relation Ω(z, t) = Nv�∕[2�r

2
b
(z, t)] . This implies that the bottom parts of 

the vortex lines which are near the drain hole rotate at larger angular velocity Ω (as 
rb is smaller), moving hence ”ahead” with respect to the top parts of the vortex lines 
close to the top of the cylinder: the vortex bundle becomes more and more twisted, 
as shown in Fig. 5b. As this twist develops, the projection of the total vortex length 
on a plane orthogonal to the cylinder axis, Λ

⟂
 , increases, leading to an increase of 

the total length, Λ , as shown in Fig. 6b. It takes a finite time for this initial twist 
to propagate upwards (see Fig. (5)) carried by Kelvin waves on vortices. Once the 
Kelvin waves reach the top of the cylinder, the bundle’s radius, rb , starts decreasing 
near the top as well, decreasing Λ

⟂
 . However, given the enduring asymmetry of the 

radial flow (stronger close to the drain hole, negligible near the top of the cylinder), 
Kelvin waves persist on the vortices, leading Λ

⟂
 to settle to a finite, non-zero value. 

The dynamics of this rotating, twisted bundle is characterised by vortex reconnec-
tions which occasionally scramble the vortex lines, leading to a moderately disor-
dered vortex configuration ( Λ

⟂
∕Λ ≈ 0.23 at the end of the simulation) which is still 

strongly polarised in the z direction.
An important consequence of the twisted nature of vortex lines is that it 

induces a downwards axial superflow into the drain hole, stronger than the axial 
superflow caused by the drain hole without vortex lines. Figure 7a and b shows 
the current on the xz and xy planes, respectively. The presence of the strong axial 

Fig. 7  Top a: Steady drain flow 
pattern in the presence of vortex 
lines plotted on the xz plane 
for y = 0 . The arrows indicate 
the direction of the current 
and the colours represent the 
current’s magnitude. For clarity, 
only the flow in the cylinder 
is plotted, ignoring the drain 
hole and the injection annulus. 
Bottom b: Steady drain flow 
pattern plotted on the xy plane at 
z = (z3 + z4)∕2 . The parameters 
are as in Fig. 3
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flow towards the drain hole which is induced by the vortices is evident, especially 
when compared to the axial flow when vortices are absent: compare Figs.  3a 
and   7a. The azimuthal flow induced by vortices can be observed in Fig.  (7)b. 
As the twist is transported along the z direction by Kelvin waves, it increases the 
downward axial flow in the upper part of the bundle. Probably this is the mecha-
nism which is responsible for the formation of a central drainpipe funnel when 
the helium has a top free surface, as observed by Yano and collaborators in their 
experiments [4]. Further numerical simulations with Nv = 25 vortices confirm the 
scenario which we have described.

4  Discussion and Conclusion

We have used the Gross–Pitaevskii equation to model the superfluid drain vortex 
in its simplest form: at T = 0 (i.e., without any normal fluid and associated viscous 
effects) and without complications arising from a free surface. We have found that 
the superfluid drain vortex consists of a moderately disordered twisted bundle of 
quantised vortex lines (the twist being quantified by the ratio Λ

⟂
∕Λ ). The twist is 

generated by the radial inflow into the drain, which is stronger near the drain which 
brings the vortex lines closer to each other. We have also found that the twist of the 
vortex lines induces a strong central axial flow into the drain; in the presence of a 
free surface at the top, this axial flow is probably the origin of the dimple, or funnel 
or drainpipe, which has been observed [4].

Clearly the normal fluid must play an important role in the experiments, and we 
can speculate that our results shed partial light into it. At small velocities (compared 
to the speed of sound) and at length scales larger than the healing length, the GPE 
effectively describes the dynamics of a classical fluid, in particular of the normal 
fluid, provided we leave aside viscous and friction effects. We can argue therefore 
that if we start with a normal fluid Rankine vortex at the centre of a cylindrical con-
tainer and then switch on a drain flow at the bottom of the cylinder, the evolution of 
the Rankine vortex will be similar the evolution of vortex lines showed in Fig. 5. At 
the bottom, the radius of the Rankine core will decrease, as fluid moves radially into 
the drain, leading to faster angular velocity compared to the top which will twist the 
Rankine core, hence induce an axial current inside it. Of course viscous and friction 
effects will damp the twist depending on temperature, and to estimate this damping 
an approach like that used in Ref. [7] is necessary.

The twisted vortex bundle which we report is similar to other twisted vortex 
states which have been observed in superconductors [12], and, more relevantly, in 
rotating 3 He [13] and large-scale 4 He vortex rings [14–16].

Finally, by combining order (the strong axial polarization) with a controlled 
amount of disorder (induced by the radial drain flow), our results show that this 
bathtub vortex flow is a promising configuration to develop theoretical tools based 
on the HVBK equations and Vinen equation [17, 18] to model problems of rotating 
quantum turbulence [19], ranging from liquid helium counterflow [20, 21] to neu-
tron star glitches [22, 23] to atomic gases [24].
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