Skip to main content
Log in

A Large-Diameter Cryogenic Rotation Stage for Half-Wave Plate Polarization Modulation on the POLARBEAR-2 Experiment

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe the design of a cryogenic rotation stage (CRS) for use with the cryogenic half-wave plate (CHWP) polarization modulator on the POLARBEAR-2b and POLARBEAR-2c (PB2b/c) cosmic microwave background (CMB) experiments, the second and third installments of the Simons Array. Rapid modulation of the CMB polarization signal using a CHWP suppresses 1/f contamination due to atmospheric turbulence and allows a single polarimeter to measure both polarization states, mitigating systematic effects that arise when differencing orthogonal detectors. To modulate the full detector array while avoiding excess photon loading due to thermal emission, the CHWP must have a clear-aperture diameter of > 450 mm and be cooled to < 100 K. We have designed a 454 mm clear-aperture, < 65 K CRS using a superconducting magnetic bearing driven by a synchronous magnetic motor. We present the specifications for the CRS, its interfacing to the PB2b/c receiver cryostat, its performance in a stand-alone test, and plans for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.atz-gmbh.com/.

  2. https://huntvac.com/.

References

  1. U. Seljak, M. Zaldarriaga, Direct signature of evolving gravitational potential from cosmic microwave background. Phys. Rev. D 60, 043504 (1999)

    Article  ADS  Google Scholar 

  2. M. Zaldarriaga, U. Seljak, Reconstructing projected matter density from cosmic microwave background. Phys. Rev. D 59, 123507 (1999)

    Article  ADS  Google Scholar 

  3. U. Seljak, M. Zaldarriaga, Signature of gravity waves in polarization of the microwave background. Phys. Rev. Lett. 78, 2054–2057 (1997)

    Article  ADS  Google Scholar 

  4. M. Zaldarriaga, U. Seljak, An all-sky analysis of polarization in the microwave background. Phys. Rev. D 55, 1830–1840 (1997)

    Article  ADS  Google Scholar 

  5. M. Kamionkowski, A. Kosowsky, A. Stebbins, A probe of primordial gravity waves and vorticity. Phys. Rev. Lett. 78, 2058–2061 (1997)

    Article  ADS  Google Scholar 

  6. S. Takakura et al., Performance of a continuously rotating half-wave plate on the POLARBEAR telescope. J. Cosmol. Astropart. Phys. 05, 008 (2017)

    Article  ADS  Google Scholar 

  7. B.R. Johnson et al., MAXIPOL: cosmic microwave background polarimetry using a rotating half-wave plate. Astrophys. J. 665, 42–54 (2007)

    Article  ADS  Google Scholar 

  8. A. Kusaka, T. Essinger-Hileman et al., Modulation of CMB polarization with a warm rapidly-rotating half-wave plate on the Atacama B-Mode Search (ABS) instrument. Rev. Sci. Instrum. 85, 024501 (2014)

    Article  ADS  Google Scholar 

  9. K. MacDermid et al., The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX). Proc. SPIE 9153, 915311 (2014)

    Article  Google Scholar 

  10. S.W. Henderson et al., Advanced ACTPol cryogenic detector arrays and readout. J. Low Temp. Phys. 184, 772–779 (2015)

    Article  ADS  Google Scholar 

  11. C.A. Hill, S. Beckman et al., Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment. Proc. SPIE 9914, 99142U-1 (2016)

    Article  Google Scholar 

  12. T. Matsumura et al., Design and performance of a prototype polarization modulator rotation system for use in space using a superconducting magnetic bearing. IEEE Trans. Appl. Supercond. 26(3), 1–4 (2016)

    Article  Google Scholar 

  13. T. Essinger-Hileman, A. Kusaka et al., Systematic effects from an ambient-temperature, continuously-rotating half-wave plate. Rev. Sci. Instrum. 87, 094503 (2016)

    Article  ADS  Google Scholar 

  14. S. Bryan et al., A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider Instrument. Rev. Sci. Instrum. 87(014501), 10 (2016)

    Google Scholar 

  15. Z. Kermish et al., The POLARBEAR experiment. Proc. SPIE 8452, 84521C (2012)

    Article  Google Scholar 

  16. Y. Inoue et al., POLARBEAR-2: an instrument for CMB polarization measurements. Proc. SPIE 9914, 99141I (2016). https://doi.org/10.1117/12.2231961

    Article  Google Scholar 

  17. K. Coughlin, J. McMahon, Metamaterial Acrhomatic Half-Wave Plates for Cosmic Microwave Background Observation. Poster presented at: Low Temp. Det. 17, Poster no. PD-1 (2017)

  18. T. Matsumura et al., Development of a half-wave plate based polarization modulator unit for LiteBIRD. J. Low Temp. Phys. (this special issue) (2017)

  19. B.R. Johnson, F. Columbro et al., A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry. Rev. Sci. Instrum. 88, 105102 (2017)

    Article  ADS  Google Scholar 

  20. B. Westbrook et al., The POLARBEAR-2 and Simons array focal plane fabrication status. J. Low Temp. Phys (this special issue) (2017)

  21. N. Stebor et al., The Simons array CMB polarization experiment. Proc. SPIE 9914, 99141H (2016). https://doi.org/10.1117/12.2233103

    Article  Google Scholar 

  22. J.R. Hull, Effect of permanent-magnet irregularities in levitation force measurements. Supercond. Sci. Technol. 13, 854–856 (2000)

    Article  ADS  Google Scholar 

  23. C.P. Bean, Magnetization of high-field superconductors. Rev. Mod. Phys. 36(1), 31–40 (1964)

    Article  ADS  Google Scholar 

  24. M. Zeisberger, W. Gawalek, Losses in magnetic bearings. Mater. Sci. Eng. 53(1–2), 193–197 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support for PB2b/c CRS development from the National Science Foundation through MSIP Grant #1440338 as well as the Laboratory Directed Research and Development Program at Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Hill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, C.A., Kusaka, A., Barton, P. et al. A Large-Diameter Cryogenic Rotation Stage for Half-Wave Plate Polarization Modulation on the POLARBEAR-2 Experiment. J Low Temp Phys 193, 851–859 (2018). https://doi.org/10.1007/s10909-018-1980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1980-6

Keywords

Navigation