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Abstract
The minimum sum-of-squares clustering problem is a very important problem in data min-
ing and machine learning with very many applications in, e.g., medicine or social sciences.
However, it is known to be NP-hard in all relevant cases and to be notoriously hard to
be solved to global optimality in practice. In this paper, we develop and test different tai-
lored mixed-integer programming techniques to improve the performance of state-of-the-art
MINLP solvers when applied to the problem—among them are cutting planes, propagation
techniques, branching rules, or primal heuristics. Our extensive numerical study shows that
our techniques significantly improve the performance of the open-sourceMINLP solver SCIP.
Consequently, using our novel techniques, we can solve many instances that are not solvable
with SCIP without our techniques and we obtain much smaller gaps for those instances that
can still not be solved to global optimality.
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1 Introduction

Given a set of data points in a normed vector space and a number of clusters, the clustering
problem consists in deciding which data point should be assigned to which cluster. More-
over, a representative point for each cluster needs to be determined. Clustering problems
form a highly relevant sub-class of unsupervised learning in machine learning and compu-
tational statistics. Its relevance is supported by many applications, e.g., in functional data
analysis [10, 53], image processing [9], bio-informatics [12], economics [32], and social
sciences [31]. For a detailed survey of the history of clustering problems we refer to
Steinley [58]. Depending on, e.g., the way how vicinity is measured and on whether
the representative is an arbitrary point or one of the data points, different variants
of clustering problems arise. In this paper we consider the minimum sum-of-squares
clustering (MSSC) problem. Here, distance between data points is measured using the
squared Euclidean norm and any point can be chosen as the representative for each clus-
ter.

Modeling this problem leads to a nonconvex mixed-integer nonlinear optimization prob-
lem (MINLP) that is extremely hard to solve for high-dimensional real-world problems.
Moreover, the problem is known to be NP-hard even in the case of two dimensions; see,
e.g., Aloise et al. [11], Dasgupta [2], and Mahajan et al. [41]. This is why the problem is
most frequently solved using heuristics out of which the k-means clustering method is the
most prominent one; see, e.g., Lloyd [39], MacQueen [40]. However, solving such clustering
problems only heuristically may come with severe disadvantages. Since solving the MSSC
problem is an unsupervised learning problem, the outcome typically requires the interpreta-
tion of experts from the specific field of application such as medicine or social sciences. This
interpretation, however, may be completely wrong in the case that the expert is confronted
with a heuristic clustering solution of bad quality. Moreover, it is easy to imagine that such a
misleading interpretation might have some severe, e.g., medical, consequences. Thus, there
is a strong need for sophisticated optimization techniques to improve the process of solving
clustering problems to global optimality and this is exactly the contribution of this paper: We
take the MINLP solver SCIP and enhance its solution process by developing novel mixed-
integer optimization techniques that enable us to solve MSSC problems to global optimality
that cannot be solved with the plain version of SCIP.

Of course, we are not the first ones trying to solve the MSSC problem to global optimal-
ity. To the best of our knowledge, the earliest application of branch-and-bound methods is
presented by Fukunaga et al. [25], which has been refined later on by Diehr [15]. A variant
of a so-called repetitive branch-and-bound method has been devised by Brusco [7], where
the authors conclude that their method is well-suited for a small number of clusters. Another
recent branch-and-bound approach is presented by Sherali and Desai [55]. The authors use
reformulation-linearization-techniques (RLT) embedded in a branch-and-bound method to
solve the problem to global optimality. In their introduction, they also talk about a “limited
number of optimization techniques” as opposed to a rather large number of heuristics that
are used in practice. As an additional technique, the authors present further valid inequalities
to tackle the inherent symmetry of the problem. Regarding symmetry breaking for clustering
problems we also refer to Plastria [48], which is, generally speaking, a modeling tutorial
paper but which also contains a discussion of symmetry breaking constraints for the cluster-
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ing problem. Aloise and Hansen [4] also consider the MSSC problem and try to re-produce
the results of Sherali and Desai [55]. However, the re-production failed since significantly
longer running times have been observed. Consequently, the computational efficiency of the
RLT-based branch-and-bound method may be taken with some care. Another algorithmic
technique is the column generation approach presented first in Merle et al. [18] and which
has been re-considered and improved by Aloise et al. [5]. Also other classic techniques
of mixed-integer (non)linear optimization have been applied such as generalized Benders
decomposition in Floudas et al. [21], and Tan et al. [59]. Alternatively, Peng and Xia [45]
consider theMSSC problem as a concave minimization problem and adapt Tuy’s cut method,
see Horst and Tuy [34], for solving the problem. Further, Prasad and Hanasusanto [49] pro-
pose improved conic reformulations of the MSSC problem and also study some symmetry
breaking techniques. Tîrnăucă et al. [60] follow a more geometric approach that is based
on Voronoi diagrams. Finally, there is a rather large branch of literature towards the appli-
cation of techniques from semi-definite programming (SDP). Peng and Wei [46], Peng and
Xia [44] proved the equivalence between the MSSC problem and a 0-1 SDP reformulation.
Based on this 0-1 SDP model, Aloise and Hansen [3] propose a branch-and-cut algorithm
and solve instances with up to 202 data points to global optimality. More recently, Piccialli
et al. [47] consider the same mixed-integer SDP for the MSSC problem and propose another
branch-and-bound algorithm that is capable of solving real-world instances with up to 4000
data points. To the best of our knowledge, this is the most recent state-of-the-art branch-and-
bound algorithm for the MSSC problem. SDP-like models have also been used in De Rosa
and Khajavirad [13] to use Z = XX� ∈ [0, 1]n×n for encoding the clustering instead of
X ∈ {0, 1}n×k . The authors derive cutting planes and show a relation of their cutting planes
to the cut polytope; see Deza and Laurent [14] for a survey on the latter. The presented
numerical experiments show that these novel cutting planes can be strong but the authors
only solve the initial LP relaxation and do not apply a complete branch-and-bound method.
Finally, some recent ideas based on reduced-space techniques seem to be very promising,
see Hua et al. [35] and Liberti and Manca [38]. Besides that, in Liberti and Manca [38], the
authors discuss the MSSC problem with several side constraints. One of their base models
is, in particular, the convex MINLP that we present in the next section.

In our contribution, we add to the literature on solving the MSSC problem to global
optimality. To this end, we develop novel mixed-integer programming techniques that are
mainlymotivated by geometric insights and that improve the branch-and-cut solution process
of anMINLP solver. To bemore precise, we present twoMINLP formulations of the problem
(Sect. 2), develop cutting planes (Sect. 3), propagation methods (Sect. 4), as well as problem-
specific branching rules (Sect. 5) and primal heuristics (Sect. 6). We implement and test all
techniques in the open-source MINLP solver SCIP; see Gamrath et al. [26]. By doing so, we
also automatically apply state-of-the-art symmetry breaking techniques to the problem. Our
numerical results are presented and discussed in Sect. 8, where we show that our techniques
significantly improve the solution process.We close the paper with some concluding remarks
and some potential topics for future work in Sect. 9. Our code is publicly available at GitHub.1

Although our numerical results clearly show that the solution process of an MINLP solver
applied to the MSSC problem is significantly improved, we do not beat current state-of-
the-art and SDP-based techniques as studied in Piccialli et al. [47]. Nevertheless, we are
convinced that it is worth to also push MINLP-based approaches forward so that, in the end,
different techniques for various approaches can be combined to lead to an even better and
maybe hybrid solution approach.

1 https://github.com/christopherhojny/globally-solving-MSSC.
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2 MINLPmodels for theMSSC problem

We nowmodel the minimum-sum-of-squares clustering (MSSC) problem as a mixed-integer
nonlinear optimization problem (MINLP). To this end, we are given a set of data points
p ∈ P ⊆ Rd and a positive integer 2 ≤ k ≤ |P|, which is the number of clusters of
the problem. The task is then to assign every data point p ∈ P to a cluster (indexed by
j ∈ [k]:={1, . . . , k}) so that the sum of the squared Euclidean distances between the data
points and the corresponding centroids c j is minimal. This problem is modeled via the
following MINLP:

min
x,c

∑

p∈P

∑

j∈[k]
xpj‖p − c j‖2 (1a)

s. t.
∑

j∈[k]
xpj = 1, p ∈ P, (1b)

xpj ∈ {0, 1}, p ∈ P, j ∈ [k], (1c)

c j ∈ B, j ∈ [k]. (1d)

The binary variables xpj are the assignment variables that model whether the data point p is
assigned to cluster j (xpj = 1) or not (xpj = 0). Moreover, B ⊆ Rd is a set that contains
all points in P . This can, e.g., be the bounding box of P . That is, if for each i ∈ [d],
�i = min{pi : p ∈ P} and ui = max{pi : p ∈ P}, then B = {c ∈ Rd : �i ≤ ci ≤
ui , i ∈ [d]} is a valid choice. Note that (1d) is not necessary for the correctness of Model (1).
Nevertheless, we include it in our implementation, becauseModel (1) is a nonconvexMINLP,
for which bounds on variables are usually beneficial. The objective function measures the
sum of the squared Euclidean distances between the data points and the centroids of the
clusters to which they belong. Finally, Constraint (1b) ensures that every point is assigned to
exactly one cluster.

Note that this model is cubic since the objective function uses multiplications of the
assignment variables x with the norms that depend on the centroids c, which are variables
of the problem as well. In particular, Model (1) is a nonconvex MINLP. However, it can also
be re-written as a convex MINLP in a lifted space by using its epigraph formulation. To this
end, we model each term in the objective function using a separate variable and bound it in
a newly introduced constraint. The resulting problem then reads

min
x,c,η

∑

p∈P

∑

j∈[k]
ηpj (2a)

s. t. ηpj ≥ ‖p − c j‖2 − Mp(1 − xpj ), p ∈ P, j ∈ [k], (2b)
∑

j∈[k]
xpj = 1, p ∈ P, (2c)

xpj ∈ {0, 1}, p ∈ P, j ∈ [k], (2d)

c j ∈ B, j ∈ [k], (2e)

ηpj ≥ 0, p ∈ P, j ∈ [k], (2f)

where Mp are sufficiently large numbers. The objective function is linear now and we obtain
the additional quadratic and convex constraints in (2b).
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For every p ∈ P , Mp can be chosen to be the maximum distance of p to any other point
p̃ ∈ P . An overestimation can be easily computed via

Mp = M = (u1 − �1)
2 + · · · + (ud − �d)

2,

where �i and ui are the componentwise bounds of the bounding box given above. Moreover,
for a given cluster assignment x , an optimal choice for the cluster centroids is immediate, an
observation that we will exploit frequently.

Observation 2.1 For a given assignment of x-variables adhering to (1b) or (2c), respectively,
the optimal choice for c j , j ∈ [k], is

∑
p∈P p xpj∑
p∈P xpj

,

i.e., the barycenter of all points assigned to cluster j .

3 Cutting planes

Without doubt, cutting planes are among themost powerful techniques to enhance the solution
process for mixed-integer problems. Modern MI(N)LP solvers have many general-purpose
cutting planes built-in. However, it is very often beneficial to derive problem-specific cutting
planes. This is particularly important for the MSSC problem, since it is well-known that one
of the most challenging issues for developing an efficient branch-and-bound algorithm for
the MSSC problem is the computation of good lower bounds in a reasonable amount of time.
In this section, we state two tailored cutting planes. The first one is applicable to Model (1)
and (2) whereas the second one is only applicable to Model (2).

3.1 Cardinality cuts

We first briefly discuss cardinality cuts, which are already mentioned in Aloise et al. [5] as
well as Sherali and Desai [55]. Consider an optimal solution of Model (1). In this optimal
solution, there cannot be any empty cluster, because otherwise the corresponding objective
value can be decreased by assigning a point that is not a centroid to that empty cluster. On
the other extreme, a cluster contains |P| − k + 1 data points if every other cluster consists of
only a single data point. Thus, to tighten the formulation (1), the following cardinality cuts
can be added to Model (1):

1 ≤
∑

p∈P

xpj ≤ |P| − k + 1, j ∈ [k].

Obviously, the same cuts are also valid for Model (2). Moreover, note that the upper
bound is implied by the model’s constraints and the lower bound of the previous inequal-
ities as

∑
p∈P

∑k
j=1 xpj = |P| implies for a fixed j ∈ [k] that

∑
p∈P xpj = |P| −∑

p∈P
∑

j ′∈[k]\{ j} xpj ′ ≤ |P| − (k − 1).
The idea of cardinality cuts can also be localized, i.e., the cardinality bounds can be adapted

to take local variable bounds at a node of the branch-and-bound tree into account. To this
end, we introduce, for each j ∈ [k] the integral variable κ j with range {k − 1, . . . , |P| − 1}
and link it with the x-variables via the linear constraint κ j + ∑

p∈P xpj = |P|, j ∈ [k].
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That is, κ j describes the number of data points that are not assigned to cluster j . If a lower
bound κ j and an upper bound κ̄ j on κ j is given, this equation implies the inequalities

1 ≤ |P| − κ̄ j ≤
∑

p∈P

xpj ≤ |P| − κ j ≤ |P| − k + 1, j ∈ [k].

That is, they describe localized versions of cardinality cuts that get stronger if x-variables
get fixed. Another side effect of the auxiliary variables κ j is that a solver might decide to
branch on these variables. In doing so, it imposes bounds on the size of cluster j ∈ [k].

3.2 Outer approximation cuts

We now focus on Model (2). The only nonlinear constraints (2b) in this problem are convex.
Thus, their first-order Taylor approximations are global underestimators at any point (η̄, c̄, x̄)
and thus provide valid inequalities that are linear in (η, c, x):

d∑

i=1

(
2c̄ ji c

j
i − 2pi c

j
i + (pi )

2 − (c̄ ji )
2
)

− ηpj − Mp(1 − xpj ) ≤ 0, p ∈ P, j ∈ [k]. (3)

This allows to solve Model (2) in an outer approximation or LP/NLP-based branch-
and-bound fashion; see Duran and Grossmann [17], Fletcher and Leyffer [20] or Quesada
and Grossmann [50], respectively. We start by relaxing the constraint set (2b). Next, we
assume that (η̄, c̄, x̄) is a solution of this relaxation, i.e., it particularly fulfills the binary
conditions (2d). If the relaxation’s solution is feasible for the nonlinear constraints (2b), it is
also a solution for Model (2). If not, we can compute a feasible point (η̂, ĉ, x̄) of Model (2).
In the original outer approximation method, this is done by fixing the binary variables x̄ in
Model (2) and solving the resulting convexNLP subproblem; seeDuran andGrossmann [17].
The benefit in our specific application is that solving the subproblem boils down to a simple
computation of the barycenters ĉ, see Observation 2.1, followed by an evaluation of the
distances η̂ according to Constraints (2b) and (2f).

From the theory of outer approximation, it is well-known that when adding the inequali-
ties (3) at the solution (η̂, ĉ, x̄) of the subproblem, it holds

∑

p∈P

∑

j∈[k]
ηpj ≥

∑

p∈P

∑

j∈[k]
η̂pj

for all feasible points (η, c, x̄) of the updated relaxation. In other words, adding the outer-
approximation cuts bounds the optimal objective value of the relaxation with fixed binaries
x = x̄ from below by

∑
p∈P

∑
j∈[k] η̂pj . Consequently, the updated relaxation yields a solu-

tion with a new, previously unseen, cluster assignment x or the optimality gap is closed. Thus,
iterating this process terminates after a finite number of steps; see Duran and Grossmann [17]
or Duran and Grossmann [20] for more details. We note that the number of inequalities (3)
does not depend on the dimension d , which might be beneficial for problems with higher
dimensions.

Instead of implementing an LP/NLP-based branch-and-bound from scratch, we can use
solvers such as SCIP to solve Model (2). In this setting, we can separate and add cuts (3) to
tighten the LP relaxations. Since for larger |P| and k, adding all inequalities (3) might be
impracticable, we may also add only a certain amount of cuts. In particular, in our imple-
mentation in SCIP, we add only 10 cuts per separation round.
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4 Propagation

Suppose we are at a node of the branch-and-bound tree. Due to branching decisions and
further reductions, some variables might have been fixed or their bounds have been tightened
in comparison to the original problem formulation. The aim of propagation is to find further
variable fixings or bound tightenings that are valid at the current node. That is, one tries to
apply further reductions based on local variable bound information. According to Obser-
vation 2.1, every assignment of x-variables that satisfies (1b) or (2c) can be extended to a
feasible solution of (1) or (2), respectively. Thus, it is crucial to derive propagation mecha-
nisms that exclude assignments of x-variables that cannot be optimal. Moreover, we develop
algorithms to strengthen bounds of the c-variables and the objective variables. Before we
discuss our propagation algorithms, we fix the following notation and terminology.

For every j ∈ [k], we denote by Pj ⊆ P the set of all data points p ∈ P whose
corresponding variable xpj has been fixed to 1 at the current node of the branch-and-bound
tree. That is, we have already decided to assign p to cluster j .Moreover,we denote by P ′

j ⊆ P
all data points p such that xpj has not been fixed to 0 yet, i.e., p is already or can still
be assigned to cluster j . Note that Pj ⊆ P ′

j . For a continuous variable z, i.e., for the c-
and η-variables, we denote by z and z̄ the lower and upper bound on z at the current node,
respectively.

4.1 Barycenter propagation

Given a non-empty set of data points Q ⊆ P defining a cluster, the optimal choice for its
centroid is the barycenter

C(Q):= 1

|Q|
∑

p∈Q
p

of all data points in Q. The respective sum of all squared distances thus is D(Q) =∑
p∈Q ‖p−C(Q)‖2. The idea of the barycenter propagation is to use this observation to find

lower bounds on the objective and to strengthen the bounds for the c-variables.

4.1.1 Bound tightening for the objective function values

To find a lower bound on the objective in Model (1), note that for sets Q ⊆ Q′ ⊆ P ,
we have D(Q) ≤ D(Q′). Consequently, a lower bound on the objective is given
by

∑
j∈[k] D(Pj ). The barycenter propagator uses this value to possibly tighten the lower

bound on the objective at the current node of the branch-and-bound tree. Computing this
lower bound for all clusters can be done in O(kd|P|) time and it has also been used by
Brusco [7], see also Guns et al. [30], in a repetitive branch-and-bound framework.

For Model (2), no immediate lower bound on the objective can be enforced because the
objective is decoupled via the η-variables. Nevertheless, for each (p, j) ∈ P × [k], the
following steps can be done. We can prune a node of the branch-and-bound tree if p /∈ P ′

j
and ηpj > 0, because an optimal solution has ηpj = 0 as data points not assigned to a cluster
do not contribute to D(Pj ). Otherwise, if p /∈ P ′

j and ηpj = 0, we can fix ηpj to 0. The first
step is thus a pruning operation based on sub-optimal bounds in the subproblem, whereas
the second step is a bound tightening operation.
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4.1.2 Bound tightening for the centroids

Recall that [k] = {1, . . . , k}. Besides strengthening bounds on the objective, barycenter
information can also be used to tighten bounds on centroid variables c ji with (i, j) ∈ [d]×[k].
Suppose P ′

j\Pj = {p1, . . . , ps} such that p1i ≤ p2i ≤ · · · ≤ psi . For each r ∈ [s]0:=[s]∪{0},
we compute γ j,r = C(Pj ∪ {p1, . . . , pr }), i.e., the barycenter of the data points contained
in Pj and the data points with the r smallest i th coordinates that are not contained in Pj . As
we show next, the i th coordinates of these barycenters can be used to compute a lower bound
on c ji .

Lemma 4.1 A valid lower bound on c ji is given by minr∈[s]0 γ
j,r
i .

Proof Let Q ⊆ P ′
j \ Pj and assume |Q| = r . Then, C(Pj ∪ Q)i ≥ C(Pj ∪ {p1, . . . , pr })i ,

because the points p1, . . . , pr are points with the r smallest i th coordinates. Consequently,
to find a lower bound on the centroids, it is sufficient to consider C(Pj ∪ {p1, . . . , pr }) for
each r ∈ [s]0. 
�

Analogously, an upper bound is given by maxr∈[s]0 C(Pj ∪ {ps−r , . . . , ps})i . Since com-
puting an iterative sequence of barycenters can be done using the formula

γ j,r+1 = (|Pj | + r)γ j,r + pr+1

|Pj | + r + 1
,

we can compute the minimum and maximum values for all coordinates and clusters
in O(kd|P|) time.

4.2 Convexity and cone propagation

Based on optimality arguments, we can also derive rules to assign data points p ∈ P ′
j \ Pj to

cluster j ∈ [k]. The key idea of the convexity propagator is the following simple observation.

Lemma 4.2 There exists an optimal solution of MSSC with clusters P1, . . . , Pk such that, for
each j ∈ [k], we have conv(Pj ) ∩ P = Pj .

Proof Given an optimal allocation of the k centroids, the Voronoi cells

C j = {x ∈ Rd : ‖x − c j‖ ≤ ‖x − c j
′ ‖, j ′ ∈ [k]}

for j ∈ [k] cover the entireRd and only intersect at their boundaries. Since Voronoi cells are
full-dimensional polyhedra, we can use the following mechanism to prove the assertion. We
start with cluster 1 and observe that P1 ⊆ C1 in any optimal solution. If there exist p ∈ P \P1
that are contained in C1, they are necessarily contained in the boundary of C1. Hence, if we
change the assignment of these points to P1, this does not change the objective of MSSC.
The assertion thus holds for P1, and we can use the same arguments iteratively to conclude
the proof. 
�

As a consequence, the convexity propagator computes conv(Pj ) for each j ∈ [k]. If there
exists p ∈ P ∩ conv(Pj ) it performs the following steps: If p /∈ P ′

j holds, then we can prune
the current node of the branch-and-bound tree, because the local variable bounds cannot lead
to an optimal solution adhering to Lemma 4.2. Otherwise, xpj can be fixed to 1.

Besides pruning nodes and fixing variables to 1, Lemma 4.2 has another consequence that
allows us to fix some variables to 0, which is illustrated in Fig. 1.
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q

Fig. 1 Illustration of cone-based propagation. If q is not contained in the red cluster, none of the black points
can be contained in the red cluster. Assigning the white points to the red cluster is still possible

Lemma 4.3 Let P1∪· · ·∪Pk be a partition of a finite set P ⊆ Rd . Suppose conv(Pj )∩P = Pj

for each j ∈ [k]. Then, for every q ∈ P\Pj ,

q + cone{−(p − q) : p ∈ Pj } ⊇ P \ Pj .

Proof Note that q + cone{p − q : p ∈ Pj } is the smallest cone with apex q that con-
tains conv(Pj ), because q /∈ Pj and we shoot rays from q through each of the finitely many
points in Pj . Hence, negating these rays leads to a cone that cannot contain any point from Pj

as it does not contain conv(Pj ). 
�
We can use this observation as follows. If there is q ∈ P\P ′

j , i.e., xq j is fixed to 0, then
all points in q + cone{−(p − q) : p ∈ Pj } can be fixed to 0 as well.

In arbitrary dimensions, the convexity propagator cannot be implemented efficiently,
because conv(Pj ) might have �(2d) many facets. In small dimensions, computing con-
vex hulls can be done rather quickly and, as our numerical results will indicate, have a very
positive impact on the time needed to solve MSSC.

4.3 Distance propagation

The distance propagator provides another set of rules to fix variables xpj , (p, j) ∈ P × [k],
to 0. To this end, it defines for each j ∈ [k] the bounding box Bj = {y ∈ Rd : c ji ≤
yi ≤ c̄ ji , i ∈ [d]} for the centroids. That is, the smallest box that contains the centroid for
cluster j based on local variable bound information. Afterward, for each p ∈ P and j ∈ [k],
it computes the minimum and maximum distances Dmin

j,p and Dmax
j,p to the bounding box Bj ,

i.e.,
Dmin

j,p = min
{‖p − x‖: x ∈ Bj

}
, Dmax

j,p = max
{‖p − x‖: x ∈ Bj

}
.

Since a data point is assigned to a centroid of minimum distance in an optimal solution, p
cannot be assigned to cluster j ∈ [k] if there is j ′ ∈ [k] with Dmax

j ′,p < Dmin
j,p . Consequently,

xpj can be fixed to 0 in this case.
Finding Bj and computing the minimum and maximum distance of a point to a box can

be done in O(d) time. Hence, the distance propagator runs in O(kd|P|) time.

5 Branching rules

After a node of the branch-and-bound tree has been processed (adding cutting planes, propa-
gation), branching rules split the current subproblem into further subproblems to, e.g., tighten
the problem formulation or enforce integrality of variables. The decision on how to split the
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current subproblem is typically guided by the solution of the subproblem’s LP relaxation. To
enforce integrality of variables (in the notation of the MSSC problem), one typically selects
a variable xpj whose value in the LP solution is non-integral. Then, two subproblems are
created that fix xpj to 0 and 1, respectively. Despite the existence of many branching rules
that perform well for generic problems, see Achterberg et al. [1], there also exist branching
rules tailored to a specific problem. This becomes relevant, because they might allow to
derive further reductions based on problem structure or further components of a solver such
as propagation mechanisms.

For integer programs, Gilpin and Sandholm [27] proposed four families of branching rules
motivated from an information-theoretic perspective. The common ground of all their rules is
to interpret the values xpj as the probability that a point p ∈ P is assigned to cluster j ∈ [k].
Using their rules, they aim at reducing the assignment uncertainty in the current subtree. The
first and second rule use a look-ahead approach, similar to strong branching. For the MSSC
problem with a large number of clusters or points, look-ahead branching rules may become
computationally prohibitive when applied to the full problem. Hence, we do not use them.
The third family is called entropic look-ahead-free variable selection and the fourth is its
extension for a multi-variable branching version. Since we think that the third family might
be helpful for the MSSC problem, we describe it in the following. Afterward, two novel
branching rules for the MSSC problem will be presented.

5.1 Entropy branching

Suppose that the optimal LP solution of the current subproblem does not satisfy the integrality
constraints, which means that the relaxed solution x̄ is non-integral. Let X̄ be the set of all
branching candidates that are non-integral in this LP solution, i.e.,

X̄ := {
x̄ pj : x̄ pj ∈ (0, 1), p ∈ P, j ∈ [k]} .

Since each of these x̄ pj is non-integral, the cluster assignment of point p is not fixed. For
the assignment to be fixed, x̄ pj has to be one. Due to Constraints (1b) or (2c), x̄ pj can be
seen as a kind of posterior probability of point p to belong to cluster j [61]. A good strategy
for branching would be to select the point p for which the probabilities for each cluster
assignment are almost the same.

The most unclear situation is where x̄ pj = 1/k holds for all j ∈ [k]. Here, each cluster
assignment is equally probable for point p. This can be seen as a homogeneous information
setting. The level of homogeneity can be measured via the Shannon entropy of point p [54].
More precisely, for each variable x̄ pj ∈ X̄ the entropy of point p with probabilities x̄ pj ,
j ∈ [k], is

Hp = −
∑

j∈[k]
x̄ pj log2(x̄ pj ).

The maximum entropy (Hp = log2 k) occurs in the above mentioned extreme case. That
is, the current LP solution does not provide any information on the best (or most probable)
cluster assignment of point p. The minimum entropy is obtained when there is a clear cluster
assignment. In this situation, let the point p be already assigned to a cluster, e.g., to cluster
j = 1 and hence x̄ p1 = 1. Due to (1b) (or (2c)), x̄ pj ′ = 0 for j ′ ∈ [k] \ {1}. The entropy of p
is then

Hp = −1 log2 1 − 0 log2 0 − · · · − 0 log2 0 = 0,

where 0 log2 0 is taken to be zero.
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We are interested in finding the point corresponding to the fractional variable x̄ p∗ j∗ ∈ X̄
such that the entropy of point p∗ is the maximal over all points with fractional variables, i.e.,
we search for the most uncertain assignment. The point is formally given by

p∗ ∈ argmax
{p∈P : x̄ pj∈X̄ , j∈[k]}

Hp.

For this point p∗, we select the cluster index j to branch on arbitrarily, i.e., we create two
subproblems by adding either x̄ p∗ j = 1 or x̄ p∗ j = 0.

5.2 Distance branching

Next, we describe three branching rules with a geometric motivation. The first one, called
distance branching, is based on the intuition that clusters should be rather compact (opposed
to being spread out). Given the current LP solution with its suggestion for the centroids c j ,
j ∈ [k], the variable xpj ∈ X̄ selected for branching is the one corresponding to the data
point p and cluster j that are most apart from each other, i.e., we find

(p∗, j∗) ∈ argmax
{(p, j)∈P×[k] : x̄ pj∈X̄}

‖p − c j‖.

Then, we branch on the fractional variable x̄ p∗ j∗ , creating two subproblems by adding
either x̄ p∗ j∗ = 1 or x̄ p∗ j∗ = 0. If an optimal cluster is indeed compact, then the 0-subproblem
contains an optimal solution. Otherwise, the convexity propagator has the potential to also
fix additional variables that lie between p∗ and the remaining points of cluster j∗ in the 1-
subproblem.

5.3 Centrality branching

Since the distance branching rule is tailored towards the extremes of compact vs. far spread-
out clusters, the centrality branching rule takes a more balanced approach by selecting a point
whose distance to a cluster is not too big. Given the current LP solution with its suggestion
for the centroids c j , j ∈ [k], we would like to branch on the non-integral variable xpj
corresponding to the data point p and cluster j that is lying in the center of the cloud of
unassigned data points. To obtain a cheap evaluation, we take the point p∗ that is in the
center of all centroids, i.e.,

p∗ ∈ argmin
{p∈P : x̄ pj∈X̄ , j∈[k]}

∑

j∈[k]
‖p − c j‖.

From this point p∗, we select an arbitrary variable x̄ p∗ j∗ , creating two subproblems by adding
either x̄ p∗ j∗ = 1 or x̄ p∗ j∗ = 0. If the distance of p∗ to cluster j∗ is not too small, then there is
a chance that the convexity propagator can fix further data points to be contained in cluster j∗
in the 1-subproblem. Opposed to the distance branching rule, however, also the 0-subproblem
becomes relevant for the convexity propagator as it might fix some variables to 0 based on
its cone propagation.

5.4 Pairs-in-the-middle-of-pairs branching

The next branching rule is a variation of the last one, but now we branch on more general
linear inequalities. Given the current LP solution with its suggestion for the centroids c j ,
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j ∈ [k], we would like to branch on the sum of a pair of non-integral variables corresponding
to the two data points located in the middle of a pair of clusters.

First assume that there are only two clusters with corresponding centroids c1 and c2.
We want to find the points that are nearest to the point lying half way from centroid c1 to
centroid c2. Any point p ∈ P that lies on the line segment between c1 and c2, minimizes the
sum ‖p− c1‖+‖p− c2‖ by the triangle inequality of the Euclidean distance. With the same
reasoning, the smaller this sum is, the nearer is point p to the line segment between the two
clusters. However, there can bemultiple points pwith the same value for ‖p−c1‖+‖p−c2‖.
We are interested in the ones that are nearest to themiddle. Thus, we penalize longer distances
by minimizing the sum ‖p − c1‖2 + ‖p − c2‖2 of squares instead.

Now assume that there are more than two clusters which have pairwise the exact same
distance of centroids to each other. Then, still looking for the two points p ∈ P that mini-
mize ‖p − c j‖2 + ‖p − c j

′ ‖2 for j, j ′ ∈ [k] with j �= j ′ gives us the desired points. Let p
and q be the selected points and j and j ′ be the selected clusters. We then compute the sums
in the current LP solution, x̄ pj + x̄q j and x̄ pj ′ + x̄q j ′ , and select the sum that is most fractional
or least fractional. Both versions are tested in our numerical experiments. Suppose that the
first sum is selected, which means that the selected cluster is j . Then, we branch on

x̄ pj + x̄q j ≤ �x̄ pj + x̄q j�

and
x̄ pj + x̄q j ≥ �x̄ pj + x̄q j�.

6 Primal heuristics

Primal heuristics try tofind feasible solutions of goodquality in a short amount of time.Having
good feasible solutions at hand early in the solving process is crucial. Feasible solutions help
to prune branch-and-bound nodes based on bounding as well as to perform further fixings
and reductions. Moreover, a user may already be satisfied with the quality of the heuristic
solution, such that the solving process can be stopped at an early stage. In this section we
present three primal heuristics for the MSSC problem.

6.1 A root-node heuristic

To obtain a first feasible point, i.e., a point for warm-starting, we use the k-means algorithm,
which is the most popular heuristic for finding a feasible solution for the MSSC problem;
see, e.g., Lloyd [39] and MacQueen [40]. It consists of two main steps. First, given an initial
guess for the location of the centroids, each data point is assigned to the nearest centroid.
Afterward, each centroid is updated by calculating themean of the data points assigned to this
centroid. This process is repeated until the centroids no longer change. To obtain an initial
guess for the location of the centroids, we use the “furthest point heuristic”, also known
as “Maxmin” [28]. The idea is to select the first centroid randomly within the respective
bounding box and then obtain new centroids one by one. In each iteration, the next centroid
is the point that is the furthest (max) from its nearest (min) existing centroid. Here, we choose
the first data point as the first centroid. For a comparison of several initialization heuristics,
see, e.g., Fränti and Sieranoja [23].
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6.2 A rounding heuristic

Feasible solutions can be obtained at each node by applying a rounding scheme to the LP
solution.Weuse the rounding heuristic proposed bySherali andDesai [55]. For completeness,
we also describe it here.

Given a non-integral LP solution (x̃, c̃), or (x̃, c̃, η̃) for Model (2), at a node of the branch-
and-bound tree, we round the non-integral x̃-solution to the closest feasible binary solution x̄ ,
while respecting the decisions that have already been made, i.e., if a data point is already
assigned to a cluster it will remain in that cluster. First, we ensure that there are no empty
clusters by finding, for each j ∈ [k] with Pj = ∅, the point p̄ ∈ P\ ∪ j∈[k] Pj such that
p̄ ∈ argmax

{
x̃ pj : p ∈ P\ ∪ j∈[k] Pj

}
, and setting x̄ p̄ j = 1. To break a tie, the point with

smallest index is chosen.Now, to ensure that the point p̄ is only in one cluster, we set x̄ p̄ j ′ = 0,

for all j
′ ∈ [k] \ { j}.

Furthermore, for each data point p ∈ P such that x̃ pj , j ∈ [k], is not yet rounded, we
find a cluster j∗ such that x̃ pj∗ = max

{
x̃ pj : j ∈ [k]}. Again, we break ties by selecting the

cluster with the smallest index. Then, we set x̄ pj∗ = 1 and x̄ pj = 0 for all j ∈ [k]\{ j∗}.
With x̄ at hand, we can then compute the centroids for each cluster, see Observation 2.1, and
obtain a feasible solution for the MSSC problem.

6.3 An improvement heuristic

Given a feasible solution (x̄, c̄) of Model (1) or (x̄, c̄, η̄) of Model (2), we try to improve this
solution by evaluating the loss function (i.e., the intra-variance) within each cluster. For that,
consider the weighted value of the loss function restricted to cluster C j as

Fj = 1

|C j |
∑

p∈C j

‖p − c̄ j‖2.

It may happen that some clusters have a large loss function value, while some other clusters
may have a very small one. Thus, we may find a better solution—regarding the sum of all
losses—by splitting a cluster into two smaller clusters and joining two other clusters. This
heuristic has been proposed in Burgard et al. [8], where the motivation for its development
is explained in more details.

The procedure is described as follows. For each pair of clusters (C j1 ,C j2), we compute
their joint centroid and the corresponding total loss via

c j1 j2 = 1

|C j1 | + |C j2 |
∑

p∈C j1∪C j2

p

and

Fj1 j2 = 1

|C j1 | + |C j2 |
∑

p∈C j1∪C j2

‖p − c j1 j2‖2.

Now, consider the set
�:= {

(C j1 ,C j2 ,C j3) : Fj1 j2 < Fj3

}
,

which is the set of all possible combinations of three clusters such that the total loss within
two joined clusters is smaller than the total loss within a third cluster. Note that the set � can
be empty. If so, this means that we cannot obtain a better solution by joining two clusters and
splitting another one. On the other hand, i.e., if there exists (C j1 ,C j2 ,C j3) ∈ �, then the
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total loss of the joined clusters C j1 and C j2 is smaller than the total loss within cluster C j3 .
Thus, we obtain a better solution by joining C j1 and C j2 and by splitting cluster C j3 into
two smaller clusters. To this end, we update the centroids in such a way that the clusters C j1
and C j2 are now one cluster with centroid c j1 j2 , cluster C j3 receives two new centroids, and
the other centroids remain the same, i.e.,

ĉ j1 ← c j1 j2 , ĉ j2 ← c̃, ĉ j3 ← c̃′,
ĉ j ← c̄ j for all j /∈ { j1, j2, j3},

where c̃ and c̃′ are obtained as follows. First we find the two furthest points in C j3 to be the
initial guesses for the location of the centroids, i.e.,

(c̃, c̃′) ∈ argmax
p,p′ ∈C j3

{‖p − p′‖2} .

Next, each point in C j3 is assigned to the closest centroid, either c̃ or c̃
′. Then, the centroids c̃

and c̃′ are updated based on this assignment. Now, the update of the assignments and centroids
is repeated until they do not change anymore. This way we obtain the new centroids c̃ and c̃′
that give us the desired splitting of cluster C j3 .

Finally, if the set � has more than one element, then we repeat the process starting
with the element (C j1 ,C j2 ,C j3) that gives the minimum ratio Fj1 j2/Fj3 . Each time an ele-
ment (C j1 ,C j2 ,C j3) is used, we exclude all the elements that contain C j1 , C j2 , or C j3 ,
because these clusters have already been modified.

With ĉ at hand, we can easily compute x̂ and, thus, a new feasible solution (x̂, ĉ) is
obtained. If the objective function value is better at this new solution, then we have found an
improved solution out of (x̄, c̄).

7 Symmetry breaking

Note that both Model (1) and (2) are symmetric with respect to cluster assignments. That
is, once a feasible solution has been found, one can generate equivalent (symmetric) solu-
tions by exchanging the labels of the clusters. Such symmetries are known to deteriorate the
performance of search-based approaches like branch-and-bound, because symmetric sub-
problems are created repeatedly without providing the solver with new information. Such
cluster symmetries can be handled in both models by imposing additional restrictions on
the x-variables. If we interpret x as a binary matrix whose columns are labeled by clusters,
then we can handle symmetries by enforcing that the columns of x need to be sorted lexico-
graphically non-increasing. Since each row of matrix x has exactly one 1-entry due to (1b)
and (2c), the lexicographic sorting can be imposed by orbitopal fixing, see Kaibel et al. [37],
and separating the symmetry handling inequalities developed by Kaibel and Pfetsch [36].

8 Numerical experiments

In this section, we report extensive computational results that show the benefits of the tech-
niques proposed in Sects. 3–6. To this end, we have incorporated all these techniques into the
state-of-the-art solver SCIP; see Gamrath et al. [26]. As a reference for comparison, we use
plain SCIP for both problem formulations (1) and (2). That is, we solve the two formulations
without our problem-specific enhancements but with enabled symmetry handling.
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To conduct the experiments, we use different test sets from the literature, which contain
both real-world as well as synthetic instances. The test sets and the general computational
setup are described inSects. 8.1 and8.2, respectively.Then, inSect. 8.3,we start the discussion
of the numerical results for the case k = 2. We evaluate the benefits of each particular
technique and indicatewhich setting performsbest.Next, in Sect. 8.4,we repeat the discussion
but for the case k = 3. Finally, in Sect. 8.5, we present results on a larger test set in order to
draw solid and comprehensive conclusions about the performance of the novel techniques.

8.1 Test sets

We evaluate the impact of the presented algorithmic ideas for solving the MSSC problem
using both synthetic and real-world test sets. To be able to drawconclusions on a reliable basis,
we have collected all publicly available instances that have been used in the related literature
for solving the MSSC problem to global optimality. Thus, to the best of our knowledge, our
results are based on the largest publicly available test set for the MSSC problem consisting
of realistic instances. Specifically, we use the instances that have been used in Aloise and
Hansen [4], Sherali and Desai [55], as well as in Aloise et al. [5]. Since these instances come
from different sources, we provide the source for every instance in Table 1. The synthetic
test set has been proposed in Fränti and Sieranoja [22]. The authors show that these synthetic
instances cover a wide range of classic MSSC instances. In particular, the test set contains
instances with different degrees of overlap, density, and sparsity of data points.

Note that some of the synthetic instances contain data points with very large coordinate
values. In preliminary experiments, we have observed that this leads to very large big-M
values in Model (2), which in turn causes numerical instabilities. To avoid numerical issues,
we therefore re-scale these instances as follows. First, for each coordinate, we shift the data
points such that their coordinate-wise minimum and maximum value is the same to have a
“symmetric” distribution. Then,we re-scale the data points if they do not fit into [−103, 103]d .
More precisely, for each dimension i ∈ [d], we compute the maximum and minimum coor-
dinate value obtaining v̄i and vi , respectively. Then, we take ui = 0.5(v̄i +vi ) and shift each
data point p obtaining p̂i = pi − ui for all i ∈ [d]. If we do this for all data points, they get
centered around the origin. Now, if wi = vi − ui < −103 or w̄i = v̄i − ui > 103 holds,
we re-scale the data. The desired new bounds then are zi = −103 and z̄i = 103. Thus, the
re-scaled data point p̃ is

p̃i = p̂i − wi

w̄i − wi
· (z̄i − zi ) + zi , i ∈ [d].

The corresponding instances that needed to be re-scaled are s1, s2, s3, s4, and unbalance.

8.2 Computational setup

To conduct our experiments, we use SCIP 7.0.3 as a branch-and-bound framework. All LP
relaxations are solved using CPLEX 12.8. Our novel techniques discussed in Sects. 3–6 are
implemented as SCIP plugins written in C/C++ and our code is publicly available at GitHub2

(git hash 19003a37). To handle symmetries, we use the orbitope constraint handler plugin of
SCIP,which implements orbitopal fixing and the symmetry handling inequalities asmentioned
in Sect. 7. To compute convex hulls and cones in the convexity propagator proposed in

2 https://github.com/christopherhojny/globally-solving-MSSC.
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Table 1 Information about the test sets

ID Instance Reference n d

1 Fisher150iris Dua and Graff [16] and Fisher [19] 150 4

2 German22 Späth [57] 22 2

3 German59 Späth [57] 59 2

4 body-measurements Heinz et al. [33] 507 5

5 cities-coord-202 Grötschel [29] 202 2

6 cities-coord-666 Grötschel [29] 666 2

7 concrete-compressive Dua and Graff [16] 1030 8

8 glass-identification Dua and Graff [16] 214 9

9 image-segmentation Dua and Graff [16] 2310 19

10 padberg-rinaldi-hole-dri Padberg and Rinaldi [42] 2392 2

11 reinelt-hole-drilling Reinelt [51] 1060 2

12 ruspini Ruspini [52] 75 2

13 telugu-indian-vowel Pal and Majumder [43] 871 3

14 a1 Fränti and Sieranoja [22] 3000 2

15 a2 Fränti and Sieranoja [22] 5250 2

16 a3 Fränti and Sieranoja [22] 7500 2

17 dim Fränti and Sieranoja [22] 1024 32

18 g2-2-30 Fränti and Sieranoja [22] 2048 2

19 g2-2-50 Fränti and Sieranoja [22] 2048 2

20 g2-2-70 Fränti and Sieranoja [22] 2048 2

21 s1 Fränti and Sieranoja [22] 5000 2

22 s2 Fränti and Sieranoja [22] 5000 2

23 s3 Fränti and Sieranoja [22] 5000 2

24 s4 Fränti and Sieranoja [22] 5000 2

25 unbalance Fränti and Sieranoja [22] 6500 2

The first part corresponds to real-world test sets whose instances come from different sources. The second
part corresponds to the synthetic test set

Sect. 4.2, we use the Qhull3 C++ interface proposed by Barber et al. [6]. We have also
conducted experiments using the CDD library [24] for computing convex hulls and cones, but
due to numerical instabilities therein, we decided to use Qhull. Moreover, since we observed
that many of SCIP’s internal heuristics require a lot of running time without generating a
feasible solution, we disabled these heuristics. A list of disabled heuristics can be found
in “Appendix A”. All computations were performed on a computer with two Intel Xeon
CPU E5-2699 v4 at 2.20 GHz (2 × 44 threads) and 756 GB RAM. The time limit of all
computations is 1h per instance.

In the following, we discuss the impact of our techniques on solving the MSSC problem
for k = 2 and k = 3 clusters. We only report on aggregated results in the discussion and refer
the reader to “Appendix B” for results per instance. The tables that we present show for both
the quadratic and epigraph formulation the mean number of nodes in the branch-and-bound
tree (column #nodes), the mean running time per instance in seconds (time), and the number
of solved instances (#solved). Instances that cannot be solved within the time limit contribute

3 http://www.qhull.org.
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Table 2 Comparison of mean number of nodes, mean running time per instance (in seconds), and number of
solved instances using different heuristics for 2 clusters

Setting Quadratic model Epigraph model
round impr init #nodes time #solved #nodes time #solved

0 0 0 14,218.4 3406.45 1 23,275.1 2959.08 1

1 1 1 17,106.6 3273.37 1 19,884.9 2945.94 1

3600s to the mean time value. Moreover, we report on the used setting, where each of the
following subsections describes how the settings are encoded in the tables. All mean numbers
of measurements t1, . . . , tn are provided as shifted geometric means

∏n
i=1(ti + s)1/n − s to

reduce the impact of outliers. For time we use a shift of s = 10 and for nodes a shift
of s = 100.

8.3 Discussion of the numerical results for 2 clusters

We start with the discussion of the numerical results for the case when there are 2 clusters.
First, we apply plain SCIP to all the 25 instances presented in Table 1. Afterward, we gradually
enable our techniques in SCIP and evaluate the benefits of each particular technique as well
as the benefits of different combinations of techniques. To allow for a concise encoding, we
abbreviate the different techniques as described below.Whether a technique is enabled (resp.
disabled) is encoded by 1 (resp. 0) in the corresponding tables.

8.3.1 Primal heuristics

We start by evaluating the impact of primal heuristics. A summary of the obtained results
is presented in Table 2, where “round.”, “impr.”, and “init”, serve as abbreviations for the
rounding, improvement, and root-node heuristic, respectively. Recall that the improvement
heuristic is only active for k > 2, i.e., it has no effect in the experiments discussed next.
The first row shows the results obtained by plain SCIP. It can be directly seen that the MSSC
problem is extremely hard to solve. Note that SCIP is able to solve only 1 instance to global
optimality, regardless of which model is used. Enabling all primal heuristics still does not
allow to solve more instances. However, we can see that the mean running time decreases in
both models, where the impact is larger for the quadratic model. That is, the single instance
that can be solved is solved in approximately 3.9% faster using heuristics.

Let us stress that, based on preliminary experiments, the main difficulty of solving the
MSSC problem to global optimality is to obtain good dual bounds in a reasonable amount of
time. For this reason, the impact of heuristics on the solving process is expected to be minor
in comparison to the impact of techniques that improve the dual bound. However, since we
needed to disable many of SCIP’s internal heuristics as described above, we enable all our
heuristics in the following experiments as their running time is low and they produce good
solutions.

8.3.2 Propagators

The results of our experiments regarding propagators are summarized in Table 3, where
“bary.”, “conv.”, “cone”, and “dist.” abbreviate the barycenter, convexity, cone, and distance
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Table 3 Comparison of mean number of nodes, mean running time per instance (in seconds), and number of
solved instances using different propagators for 2 clusters

Setting Quadratic model Epigraph model
bary conv cone dist #nodes time #solved #nodes time #solved

0 0 0 0 17,106.6 3273.37 1 19,884.9 2945.94 1

1 0 0 0 91,401.7 2853.27 1 18,868.4 2863.78 2

0 1 0 0 3607.3 1735.34 4 10,478.6 1902.80 4

0 1 1 0 3029.8 1565.24 5 7448.3 1529.15 6

1 1 1 0 5996.1 835.39 8 6784.9 1527.04 5

propagator, respectively. However, we do not include the results using the distance propagator
here, since in preliminary numerical experiments we observed that this propagator is not able
to derive many reductions if used alone. In later experiments, we will enable it again to
investigate whether it is able to improve the solution process if also other components are
enabled.

The first row of results in Table 3 corresponds to the setting where only primal heuristics
are enabled. It can be directly seen that as more propagators are enabled, more instances
are solved. Without propagators only 1 instance is solved to global optimality. Using all our
propagators, we are able to solve 8 instances with the quadratic model. Thus, the geometric
ideas incorporated into the propagators are an important component to solve the MSSC
problem effectively. In particular, plain SCIP is not able to make use of the simple geometric
observations on its own. In the following,we discuss the benefits of each particular propagator
in more detail.

8.3.3 Barycenter propagator

By using the barycenter propagator and the quadratic model, much more nodes can be pro-
cessed if compared with the previous setting and, more importantly, in significantly less time.
The reason for this is that the barycenter propagator is able to performmany reductions, which
in turn simplifies the LP relaxations. As a consequence, the dual bounds obtained with the
quadratic model drastically improve by using the barycenter propagator. This can be clearly
seen in Fig. 2, where we plot the instances vs. the corresponding gap between the primal and
dual bounds.

This already demonstrates the great benefit that the barycenter propagator adds to the
solution process. As discussed in Sect. 4.1.1, the barycenter propagator is less powerful for
the epigraph model as it is for the quadratic model, which is also reflected in the results.
Nevertheless, it allows 1 more instance to be solved to global optimality and it slightly
reduces the running times. Looking at Fig. 2 again, we also see that for many instances the
gaps improve.

8.3.4 Convexity+Cone propagator

The convexity propagator is based on geometric ideas and is extremely powerful. Using only
this propagator alone and heuristics, we can already solve 3 more instances if the quadratic
model is used, and 2 more instances if the epigraph model is used. Without the convexity
propagator, these instances cannot be solved. This technique drastically helps in the solution
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Fig. 2 Instance ID vs. gap (in percentage and log-scale) for 2 clusters. Since the y-axis is in log-scale, if a
particular instance is solved to global optimality by a particular method, then the gap is zero and hence it does
not appear in the plot. Whereas, if the gap is equal or larger than 104, then it assumes the gap limit of 104 in
the plot

process of the MSSC problem. Besides allowing more instances to be solved, it also requires
half of the time that was needed before. Moreover, the number of nodes that need to be
processed to solve the instances also reduces significantly.

Using the cone propagation in combination with the convexity propagator, this effect is
even more pronounced. It allows 1 more instance to be solved if the quadratic model is used,
and 2 more instances if the epigraph model is used and results in much lower mean running
times.

8.3.5 Barycenter+Convexity+Cone propagators

Although the barycenter and convexity-cone propagators alone already significantly
improved SCIP’s performance, their combination allows to solve three further instances in the
quadraticmodel. This results in a significant reduction of running timeby approximately 46%.
Interestingly, themean number of nodes in the combined setting is roughly twice as large as if
just the convexity-cone propagator is used. This again shows that the reductions found by the
propagators simplify the structure of relaxations drastically, e.g., because fixed x-variables
remove non-convex expressions from the quadratic model. These reductions allow SCIP to
process more nodes, which in turn allows to solve more instances. In the epigraph model, the
combination of the three propagators does not qualitatively change the results. Although 1
less instance can be solved, for many instances the gaps improved; see Fig. 3.

We conclude that, for both the quadratic and epigraph model, our propagation algorithms
are an important component to solve the MSSC problem to global optimality. In particular,
using combinations of these propagators creates synergies that allow to solve more instances
in comparison with just using a single propagator, where the effect is more prominent for the
quadratic model.

8.3.6 Cutting planes

Next, we evaluate the impact of cutting planes on SCIP. As before, we also enable all heuris-
tics and, due to the positive effect of propagators, also the convexity-cone and barycenter
propagator. Preliminary numerical results showed that by localizing the cardinality cuts, no
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Fig. 3 Comparison of gaps using different propagators for 2 clusters

Table 4 Comparison of mean
number of nodes, mean running
time per instance (in seconds),
and number of solved instances
using or not the OA cuts for 2
clusters

Setting Epigraph model
#nodes time #solved

w/o OA cuts 6784.9 1527.04 5

w/ OA cuts 1526.8 1552.97 5

positive impact on the solution process can be achieved in general. Therefore, we focus only
on the outer-approximation (OA) cuts. Since these cuts are only applicable for the epigraph
model, we concentrate only on the epigraph model in the following discussion. Table 4
summarizes our results.

At first glance, it seems that OA cuts only have a minor impact on SCIP’s performance as
the number of solved instances does not change. Comparing the gaps with and without OA
cuts, however, reveals a clear impact; see Fig. 4. For 8 instances, we observe a change in the
gap if cuts are enabled. In three cases, the gaps slightly degrade when OA cuts are enabled.
For the remaining five instances, however, OA cuts either reduce or drastically reduce the
gap. Thus, although no clear trend is visible, we may conclude that OA cuts are helpful when
solving MSSC problems. The effect of OA cuts is less pronounced compared to the effect of
propagators, which might be explained by the fact that OA cuts do not exploit the specific
problem structure of MSSC. In contrast to this, our novel propagator techniques are tailored
to the MSSC problem and thus allow stronger reductions.

8.3.7 Distance propagator

As reported above, the distance propagator alone is not able to significantly improve SCIP’s
performance. For this reason, we test its effect if also further components are enabled. From
Table 5, we can see that using the distance propagator together with our other techniques has
a slightly positive effect. Therefore, it is also enabled in the experiments discussed next.

123



Journal of Global Optimization (2023) 87:133–189 153

Fig. 4 Comparison of gaps using propagators with the OA cuts enabled or not for 2 clusters

Table 5 Comparison of mean number of nodes, mean running time per instance (in seconds), and number of
solved instances using or not distance propagator for 2 clusters

Setting Quadratic model Epigraph model
#nodes time #solved #nodes time #solved

w/o dist. propagator 5996.1 835.39 8 1526.8 1552.97 5

w/ dist. propagator 5976.4 813.00 8 1809.9 1497.49 6

8.3.8 Branching rules

The last components to be tested are branching rules. We have implemented all branching
rules described in Sect. 5. Preliminary numerical experiments, however, revealed that only
the entropy and distance branching rules may be beneficial for some instances. In contrast,
the centrality and pairs-in-the-middle-of-pairs harm the solution process leading to a less
well-performing code. Therefore, we focus only on the branching rules that have a positive
impact on some instances in the following discussion. We present the summary results in
Table 6. By “standard” we refer to SCIP’s default branching rule.

Our experiments show that no branching rule dominates the others. On the one hand, by
using the distance branching rule and the quadraticmodel, 1 additional instance can be solved.
On the other hand, the number of nodes and the time required increases. If the epigraphmodel
is used, then the entropy branching rule is performing best: The number of solved instances
remains the same but the running times are slightly lower. The overall impact of branching
rules, however, seems to heavily depend on the underlying instance to solve, which does not
allow us to provide a clear winner.
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Table 6 Comparison of mean number of nodes, mean running time per instance (in seconds), and number of
solved instances using different branching rules for 2 clusters

Setting Quadratic model Epigraph model
#nodes time #solved #nodes time #solved

Standard 5976.4 813.00 8 1809.9 1497.49 6

Entropy 6613.7 863.79 8 2541.1 1446.77 6

Distance 6942.0 845.73 9 1878.8 1488.07 6

Fig. 5 Running times and gaps comparison between plain SCIP and SCIP enabled with the best setting for 2
clusters

8.3.9 Best setting

To conclude the discussion of the numerical results for k = 2, we show a comparison of plain
SCIPwith the best combination of the techniques proposed in this paper. The latter comprises
primal heuristics, propagators, OA cuts (for the epigraph model), and the standard branching
rules of SCIP, since our branching rules and standard branching rules are performing equally
good on average. This comparison in shown in Fig. 5.

Regarding the performance of plain SCIP, we emphasize that the dual bounds found by
SCIP in the quadratic model are very weak which leads to very large gaps. In contrast to this,
if the epigraph formulation is used, better dual bounds can be obtained by using plain SCIP.
Despite their simplicity, the plots show that our novel geometric ideas drastically improve

123



Journal of Global Optimization (2023) 87:133–189 155

Table 7 Comparison of mean number of nodes, mean running time per instance (in seconds), and number of
solved instances using different heuristics for 3 clusters

Setting Quadratic model Epigraph model
round impr init #nodes time #solved #nodes time #solved

0 0 0 7365.1 3600.00 0 5756.0 3094.27 1

1 1 1 8400.1 3600.00 0 6998.6 3113.39 1

on the performance of SCIP, thus adding powerful methods to the toolbox for solving the
MSSC problem to global optimality if k = 2.

These methods work particularly well for instances with 2-dimensional data and the num-
ber of data points not exceeding 2048 as almost all such instances from our test set, see
Table 1, can be solved to global optimality within the time limit by the quadratic model. The
only exception is instance 11, which terminates after one hour with a gap of 19.02%. For
more detailed results of the best setting we refer the reader to Table 21 in the “Appendix B”.

8.4 Discussion of the numerical results for 3 clusters

We now turn our attention to the experiments for k = 3. The MSSC problem is much harder
to solve to global optimality in this setting. We proceed as in the last section.

8.4.1 Primal heuristics

The summary results of plain SCIP and SCIP enabled with our primal heuristics are presented
in Table 7.

By using plain SCIP and the epigraph model, we can solve only 1 instance to global
optimality. Enabling heuristics does not change the number of solved instances. This is in
line with the observations made above: the main difficulty in solving the MSSC problem to
global optimality is to provide tight dual bounds, which are not provided by primal heuristics.
However, we observe that by enabling the heuristics in the epigraph model, the primal-dual
gap improves formany instances substantially; see Fig. 6. For this reason,we enable heuristics
in the following experiments.

8.4.2 Propagators

Next, we evaluate the impact of our propagation techniques for k = 3. In Table 8, we show the
summarized results obtained by activating our primal heuristics and the propagators. Taking
a general look at the results and comparing the first row (SCIP + heuristics) with the last row,
we can see that 2 more instances can be solved to global optimality, using either the quadratic
or the epigraph model. Thus, although the MSSC problem for k = 3 is much harder to solve
than for k = 2, the propagation techniques are still helpful; see also Fig. 7 where we compare
the gaps obtained by using propagators. Therefore, in what follows, we discuss the benefits
of the separate propagators in turn.
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Fig. 6 Comparison of gaps using or not the heuristics for 3 clusters

Table 8 Comparison of mean number of nodes, mean running time per instance (in seconds), and number of
solved instances using different propagators for 3 clusters

Setting Quadratic model Epigraph model
bary conv cone dist #nodes time #solved #nodes time #solved

0 0 0 0 7365.1 3600.00 0 5756.0 3094.27 1

1 0 0 0 20,902.8 2983.99 1 7409.5 2977.89 1

0 1 0 0 8066.6 3250.65 1 9169.4 2939.98 1

0 1 1 0 11,815.9 3385.49 1 7196.0 2743.45 3

1 1 1 0 26,530.7 2856.07 2 6057.0 2760.58 3

Fig. 7 Comparison of gaps using different propagators for 3 clusters
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8.4.3 Barycenter propagator

By enabling only the barycenter propagator, we see that more nodes can be explored in the
branch-and-bound tree. Particularly, when the quadratic model is used, there is a huge dif-
ference in the number of nodes when comparing the first two rows of Table 8. Moreover,
the barycenter propagator allows one more instance to be solved, which could not be solved
before by the quadraticmodel, resulting in amuch lowermean running time. Finally, although
the number of solved instances increases only slightly, we can see that the barycenter prop-
agator has also a very positive effect on the other instances: the primal-dual gap improves
significantly, in particular, for the quadratic model; see Fig. 7.

Besides the improvement in the gaps for the epigraphmodel, the barycenter propagator also
allows more nodes to be explored while reducing the running times considerably. Therefore,
also for k = 3, the barycenter propagator allows to simplify the relaxations used in branch-
and-bound.

8.4.4 Convexity+Cone propagator

If we use only the convexity propagator and compare the results with plain SCIP and enabled
heuristics, then we see that more nodes can be processed in significantly less time. Addition-
ally enabling the cone propagator also allows to solve two more instances in the epigraph
model; see Fig. 7 again. Regarding the quadratic model, using the convexity and cone prop-
agators allows to process more nodes in the branch-and-bound tree. This, however, comes at
the price that the solvable instance requires more time. We conclude that the convexity and
cone propagators enhance the solution process, where the effect is more dominant for the
epigraph model.

8.4.5 Barycenter+Convexity+Cone propagator

The quadratic model clearly benefits from using the barycenter propagator together with
convexity and cone propagation as one more instance can be solved and in less time. For the
epigraph model, no significant change regarding running times can be observed, however it
has a positive effect on some gaps; see Fig. 7.

8.4.6 Cutting planes

Regarding the cutting planes, we again focus only on the OA cuts, since the localized version
of the cardinality cuts does not positively affect the solution process in general. In Table 9
we present the aggregated results for the epigraph model with and without OA cuts. Note
that by using the OA cuts we can solve the same number of instances, while requiring less
time and much less nodes. The OA cuts help mainly in terms of dual bounds; see also Fig. 8.
Therefore, we conclude that the OA cuts are also beneficial for the epigraph model in the
harder case of k = 3.

8.4.7 Distance propagator

The distance propagator does not impact the solution process if used standalone. The reason
is that, for most of the instances, the propagator does not find any reduction, which is to
be expected because fixing x-variables to 0 is less powerful than fixing them to 1 (as the
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Table 9 Comparison of mean
number of nodes, mean running
time per instance (in seconds),
and number of solved instances
using OA cuts for 3 clusters

Setting Epigraph model
#nodes time #solved

w/o OA cuts 6057.0 2760.58 3

w/ OA cuts 3601.0 2686.29 3

Fig. 8 Comparison of gaps using different propagators and using or not the OA cuts for 3 clusters

Table 10 Comparison of mean number of nodes, mean running time per instance (in seconds), and number
of solved instances using or not the distance propagator for 3 clusters

Setting Quadratic model Epigraph model
#nodes time #solved #nodes time #solved

w/o dist. propagator 26,530.7 2856.07 2 3601.0 2686.29 3

w/ dist. propagator 29,947.6 2821.97 2 4602.5 2629.80 3

convexity propagator does, for instance). However, as more reductions and fixings are being
made by other components, the distance propagator slightly helps; see the summary results
shown in Table 10.

The distance propagator improves the solution process of both models, since more nodes
can be explored and in less time while solving the same number of instances. Therefore, we
enable this propagator as well in the following experiments.

8.4.8 Branching rules

Finally, we report on the effect of branching rules. Again, the centrality and pairs-in-the-
middle-of-pairs rule hinder the solution process. Therefore, we focus only on the entropy
and distance branching rules, which are summarized in Table 11. The branching rules do not
really change the results. In Fig. 9, we see that the entropy branching rule has a positive effect
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Table 11 Comparison of mean number of nodes, mean running time per instance (in seconds), and number
of solved instances using different branching rules for 3 clusters

Setting Quadratic model Epigraph model
#nodes time #solved #nodes time #solved

standard 29,947.6 2821.97 2 4602.5 2629.80 3

entropy 31,264.8 3059.02 1 5839.5 2843.52 2

distance 32,084.3 2833.34 2 7674.1 2628.51 3

Fig. 9 Comparison of gaps using different branching rules for 3 clusters

on four gaps of the quadratic model, but harms the solution process of two other instances.
Moreover, it requires more time. For the epigraph model, it is visibly bad. The standard and
distance branching rules perform equally good for the quadratic model; see Fig. 9 again.
While, for the epigraph model, the standard branching rule performs best.

8.4.9 Best setting

To finalize the discussion of the numerical results for the case k = 3, we again compare plain
SCIP with the best setting so far. We consider as the best setting the following: the primal
heuristics, the four propagators, the OA cuts (for the epigraph model), and the standard
branching rules that are part of SCIP, all enabled. The comparison is presented in Fig. 10.

As for the case k = 2, the dual bounds obtained with the epigraph model are better
than the ones obtained with the quadratic model if plain SCIP is used. Although not many
instances can be solved by using our techniques, the improvement that they bring to the
solution process is significant in terms of primal-dual gaps. The instances solved to global
optimality within the time limit are the smallest instances in our test set in terms of data
points, i.e., instances 2 and 3 can be solved by the quadratic model and the epigraph model
additionally solves instance 12; see Table 1 for details about these instances and Table 31 in
the “Appendix” for detailed results per instance.

8.5 Discussion of the numerical results for samples of instances

The results discussed in the last two sections indicate that our techniques are highly beneficial
for SCIP when solving the MSSC problem with a number of data points that is not too large.
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Fig. 10 Running times and gaps comparison between plain SCIP and SCIP enabled with the best setting for 3
clusters

On the tested instances, this roughly means n < 1000 and d = 2. To further support this
hypothesis, we conducted experiments on a broader test set of smaller instances. We have
formed 10 new sub-test sets by extracting samples of sizes {100, 200, . . . , 1000} from the
two-dimensional and large instances a1, a2, a3, s1, s2, s3, s4. Each sub-test set is comprised
of 7 instances, which in total yields additional 70 instances. To sample the data, we use
the Python routine skopt.sampler.Sobol; for Sobol sequences see Sobol’ [56]. In Fig. 11,
we show two examples of these samples (or sub-instances). The blue points represent the
original data points, while the red crosses represent the obtained sample. We believe that
these samples extract meaningful information of the larger instances as the samples look
similar to the full instances.

In the following, we investigate how our novel methods scale with increasing problem
size. We focus on the case k = 2, because the instances for k = 3 are still very challenging
to solve and drawing reliable conclusions is difficult.

8.5.1 Primal heuristics and propagators

Table 12 shows aggregated results obtained by enabling our primal heuristics and propagators
in SCIP. We can immediately see that SCIP’s performance clearly improves if more of our
components are enabled as more instances can be solved and the running times decrease
drastically. In particular, enabling all our techniques allows us to solve using the quadratic
model all 7 instances per sub-test set for up to 500 data points. Using the epigraph model, all
instances with up to 900 data points can be solved to global optimality within the time limit.
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Fig. 11 Example of samples extracted from the s1 instance. The sample sizes are: 200 (left) and 500 (right).
The blue points represent the original data points, while the red crosses represent the sampled data points

Moreover, for both models, we can solve almost all instances with 1000 data points if all our
methods are enabled. Without our techniques, SCIP cannot solve a single instance even if the
number of data points is 100.

8.5.2 Cutting planes

We again only focus on the OA cuts and on the epigraph model. The summarized results are
presented in Table 13. Interestingly, the OA cuts do more harm than good in this experiment.
We can thus conclude that since these cuts are not based on problem-specific clustering ideas,
they do not help as much as the propagators do for solving the MSSC problem effectively.

8.5.3 Branching rules

Now we evaluate the performance of our branching rules. Again, we focus only on the two
branching rules that yield some improvement in the solution process of the MSSC problem.
The comparison results are displayed in Table 14.

The entropy branching rule performs better if the epigraph model is used, whereas both
the distance and the standard branching rules of SCIP are equally good if the quadratic model
is used.

8.5.4 Best setting

As in the last sections, we conclude the analysis by comparing plain SCIP with the best
setting, see Fig. 12. One can clearly see the significant improvement achieved by using our
techniques. Moreover, it is also visible that as the sizes of the instances get larger, the harder
the instances become. Therefore, if the size of the MSSC problem at hand is not too large,
i.e., the number of data points n is around 1000, the dimension d is 2, and the number of
clusters k is 2, then our techniques can be efficiently used to solve the problem to global
optimality in just a few seconds. However, it is important to note that this is the case only for
the instances we consider because the difficulty of a MSSC problem does not solely depend
on the size of the instance but also depends on the structure of the given data points.
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Table 12 Comparison of mean number of nodes, mean running time per instance (in seconds), and number
of solved instances using different propagators for the sampled instances and 2 clusters

Setting Quadratic model Epigraph model
bary conv cone dist #nodes time #solved #nodes time #solved

Sample (100)

0 0 0 0 1,48,998.2 3600.00 0 145,954.6 3600.00 0

1 0 0 0 1,430,149.6 3600.00 0 124,688.3 3600.00 0

0 1 0 0 11,516.5 55.03 7 8304.1 129.77 7

0 1 1 0 5084.5 24.22 7 2026.4 39.89 7

1 1 1 0 1715.9 1.88 7 2171.7 43.00 7

1 1 1 1 1715.9 1.90 7 2171.7 42.65 7

Sample (200)

0 0 0 0 66,858.5 3600.00 0 75 996.9 3600.00 0

1 0 0 0 613,716.4 3600.00 0 62 344.1 3600.00 0

0 1 0 0 38,690.2 512.18 7 39 877.6 1291.27 7

0 1 1 0 9265.9 115.06 7 3375.9 134.83 7

1 1 1 0 3239.7 6.96 7 3094.1 123.98 7

1 1 1 1 3229.1 6.95 7 3094.1 124.43 7

Sample (300)

0 0 0 0 29,917.0 3600.00 0 57,146.0 3600.00 0

1 0 0 0 395,799.2 3600.00 0 40 245.3 3600.00 0

0 1 0 0 82,681.6 2013.81 6 60 333.7 2995.39 4

0 1 1 0 13,246.8 393.49 6 4834.3 284.08 7

1 1 1 0 4624.5 12.25 7 4387.3 258.03 7

1 1 1 1 4632.5 12.45 7 4387.3 262.19 7

Sample (400)

0 0 0 0 19,447.9 3600.00 0 43,183.8 3600.00 0

1 0 0 0 289,341.7 3600.00 0 32,858.2 3600.00 0

0 1 0 0 61,044.7 3600.00 0 50,033.9 3600.00 0

0 1 1 0 18,772.3 525.20 7 5914.5 461.67 7

1 1 1 0 5366.1 16.29 7 5430.1 415.82 7

1 1 1 1 5356.3 16.24 7 5430.1 408.90 7

Sample (500)

0 0 0 0 13,686.3 3600.00 0 37,474.9 3600.00 0

1 0 0 0 217,871.4 3600.00 0 25,936.2 3600.00 0

0 1 0 0 37,497.1 3600.00 0 35,275.6 3600.00 0

0 1 1 0 19,621.3 1307.09 5 6170.0 627.29 7

1 1 1 0 5953.0 20.67 7 6998.6 672.39 7

1 1 1 1 5956.7 20.94 7 6998.6 681.69 7
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Table 12 continued

Setting Quadratic model Epigraph model
bary conv cone dist #nodes time #solved #nodes time #solved

Sample (600)

0 0 0 0 9475.0 3600.00 0 29,099.4 3600.00 0

1 0 0 0 181,258.9 3600.00 0 21,186.1 3600.00 0

0 1 0 0 28,615.5 3600.00 0 28,174.6 3600.00 0

0 1 1 0 21,447.4 1941.54 4 7426.4 913.55 7

1 1 1 0 5837.4 61.37 6 8077.5 948.55 7

1 1 1 1 5863.2 61.20 6 8077.5 974.16 7

Sample (700)

0 0 0 0 7734.4 3600.00 0 26 465.3 3600.00 0

1 0 0 0 152,656.8 3600.00 0 19,163.8 3600.00 0

0 1 0 0 23,220.9 3600.00 0 21,774.4 3600.00 0

0 1 1 0 30,603.9 1780.14 6 7814.5 1131.49 7

1 1 1 0 6372.9 138.53 5 8800.0 1257.95 7

1 1 1 1 6325.5 140.55 5 8800.0 1274.35 7

Sample (800)

0 0 0 0 6139.6 3600.00 0 22,311.9 3600.00 0

1 0 0 0 130,506.2 3600.00 0 17,108.1 3600.00 0

0 1 0 0 18,217.5 3600.00 0 17,203.4 3600.00 0

0 1 1 0 26,364.9 2506.24 4 9310.2 1518.02 7

1 1 1 0 7861.5 80.38 6 9628.0 1570.32 7

1 1 1 1 7840.7 79.63 6 9628.0 1546.33 7

Sample (900)

0 0 0 0 5808.0 3600.00 0 20,471.8 3600.00 0

1 0 0 0 118,504.8 3600.00 0 15,074.9 3600.00 0

0 1 0 0 16,275.8 3600.00 0 13,287.0 3600.00 0

0 1 1 0 25,767.8 3174.30 3 9624.2 1885.05 7

1 1 1 0 5741.3 301.63 4 9732.6 1898.40 7

1 1 1 1 7102.9 177.60 5 9732.6 1862.99 7

Sample (1000)

0 0 0 0 4839.0 3600.00 0 17,887.6 3600.00 0

1 0 0 0 104,220.5 3600.00 0 14,923.6 3600.00 0

0 1 0 0 12,403.4 3600.00 0 11,910.6 3600.00 0

0 1 1 0 23,446.3 3372.88 2 10,227.0 2127.64 6

1 1 1 0 8852.9 109.65 6 10,752.2 2148.66 6

1 1 1 1 7873.6 182.62 5 10,840.9 2089.13 6
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Table 13 Comparison of mean
number of nodes, mean running
time per instance (in seconds),
and number of solved instances
using or not the OA cuts for the
epigraph model

Epigraph model
Setting #nodes time #solved

Sample (100)

w/o OA cuts 2171.7 42.65 7

w/ OA cuts 2459.9 50.21 7

Sample (200)

w/o OA cuts 3094.1 124.43 7

w/ OA cuts 3327.1 177.07 7

Sample (300)

w/o OA cuts 4387.3 262.19 7

w/ OA cuts 5051.0 385.62 7

Sample (400)

w/o OA cuts 5430.1 408.90 7

w/ OA cuts 6171.4 624.12 7

Sample (500)

w/o OA cuts 6998.6 681.69 7

w/ OA cuts 7249.4 1004.41 7

Sample (600)

w/o OA cuts 8077.5 974.16 7

w/ OA cuts 7792.4 1292.30 7

Sample (700)

w/o OA cuts 8800.0 1274.35 7

w/ OA cuts 9289.0 1754.04 7

Sample (800)

w/o OA cuts 9628.0 1546.33 7

w/ OA cuts 10,139.6 2224.56 7

Sample (900)

w/o OA cuts 9732.6 1862.99 7

w/ OA cuts 10,387.2 2300.25 6

Sample (1000)

w/o OA cuts 10,840.9 2089.13 6

w/ OA cuts 9838.3 2622.94 4

From this experiment, we also conclude that, in general, the quadratic model performs
better regarding running times, whereas the epigraph model performs better regarding the
dual bounds, which in turn leads to more instances being solved.

9 Conclusion

Solving the MSSC problem to global optimality is a very challenging task that already has
received considerable attention in the literature. Nevertheless, the problem is far from being

123



Journal of Global Optimization (2023) 87:133–189 165

Table 14 Comparison of mean number of nodes, mean running time per instance (in seconds), and number
of solved instances using different branching rules

Setting Quadratic model Epigraph model
#nodes time #solved #nodes time #solved

Sample (100)

Standard 1715.9 1.91 7 2459.9 50.21 7

Distance 2220.6 2.50 7 1990.6 46.67 7

Entropy 2133.9 2.38 7 2043.8 41.30 7

Sample (200)

Standard 3229.1 6.78 7 3327.1 177.07 7

Distance 3715.7 8.33 7 3626.5 218.33 7

Entropy 3652.8 7.94 7 3572.1 164.08 7

Sample (300)

Standard 4632.5 12.25 7 5051.0 385.62 7

Distance 5134.7 14.29 7 5174.6 493.21 7

Entropy 4445.0 35.91 6 4959.5 354.50 7

Sample (400)

Standard 5356.3 16.11 7 6171.4 624.12 7

Distance 5601.1 18.33 7 5934.1 792.31 7

Entropy 5169.0 44.84 6 6164.3 571.01 7

Sample (500)

Standard 5956.7 21.09 7 7249.4 1004.41 7

Distance 5086.9 58.55 6 7653.5 1182.79 7

Entropy 6205.8 59.10 6 7124.9 902.84 7

Sample (600)

Standard 5863.2 61.93 6 7792.4 1292.30 7

Distance 7754.0 34.30 7 9088.0 1763.90 7

Entropy 6690.4 27.86 7 7922.3 1083.07 7

Sample (700)

Standard 6325.5 139.71 5 9289.0 1754.04 7

Distance 7288.0 82.41 6 10,056.9 2147.21 7

Entropy 7625.7 34.99 7 9250.8 1540.31 7

Sample (800)

Standard 7840.7 78.82 6 10,139.6 2224.56 7

Distance 6844.6 163.07 5 10,594.9 2518.07 5

Entropy 7535.0 151.02 5 10,435.5 1969.20 6

Sample (900)

Standard 7102.9 174.98 5 10 387.2 2300.25 6

Distance 6872.1 166.80 5 8988.8 2390.23 5

Entropy 6307.4 158.35 5 11,012.2 2308.25 5
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Table 14 continued

Setting Quadratic model Epigraph model
#nodes time #solved #nodes time #solved

Sample (1000)

Standard 7873.6 180.79 5 9838.3 2622.94 4

Distance 9924.7 62.60 7 9021.6 2705.16 4

Entropy 8833.3 200.34 5 11,400.1 2663.63 5

Fig. 12 Running times and gaps comparison between plain SCIP and SCIP enabled with the best setting for
the sampled instances and for 2 clusters

“practically solved”. In this paper, we propose different techniques (including propagation,
cutting planes, branching rules, or primal heuristics) that can be incorporated in a branch-and-
bound framework for solving the problem. Our extensive numerical study shows that these
novel techniques significantly help to improve the solution process. On the one hand, we can
now solve instances that have not been solvable before. On the other hand, the optimality
gaps for those instances that remain unsolvable are significantly reduced.

Not surprisingly, there are still some ideas left for future research. Let us sketch two of
them. First, we show that our techniques can be used to globally solve instances of moderate
size. Thus, our methods could also be used in solution approaches for the MSSC problem
that rely on reducing the dimension or the size of the originally given problem; see, e.g.,
Hua et al. [35]. Second, there further exist variants of the MSSC problem with additional
side constraints as discussed in, e.g., Liberti and Manca [38]. Such side constraints allow
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for solution techniques that are feasibility-based, whereas all our techniques are optimality-
based. Hence, a combination of both could yield an overall branch-and-bound framework
that is even more effective for side-constrained MSSC problems.
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Appendix A. List of SCIP heuristics disabled in our experiments

We disabled the following SCIP heuristics: alns, mpec, subnlp, rens, locks, objpscostdiv-
ing, distributiondiving, clique, nlpdiving, rins, linesearchdiving, conflictdiving, crossover,
fracdiving, guideddiving, pscostdiving, randrounding, veclendiving, adaptivediving.

Appendix B. Numerical results per instance

Here we present the detailed numerical results obtained for each instance. The running time
(in seconds) is encoded as “time”. The gap (in percentage) between the primal and dual
bounds is encoded as “gap”.

See Tables 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, and 33.
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Table 15 Results for 2 clusters using plain SCIP

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 909,913 3600.00 ∞ 18,956 3600.00 170.24

German22 207,026 900.31 0.00 1343 17.25 0.00

German59 203,438 3600.00 ∞ 112,482 3600.00 32.98

body-measurements 38,934 3600.00 ∞ 8862 3600.00 3338.16

cities-coord-202 84,088 3600.00 ∞ 30,276 3600.00 284.64

cities-coord-666 16,459 3600.00 ∞ 19,784 3600.00 2886.05

concrete-compressive 12,496 3600.00 ∞ 8505 3600.00 79149.66

glass-identification 240,834 3600.00 ∞ 12,176 3600.00 1920.57

image-segmentation 3026 3600.00 ∞ 2870 3600.00 8405.89

padberg-rinaldi-hole-dri 2654 3600.00 ∞ 114,594 3600.00 ∞
reinelt-hole-drilling 2265 3600.00 ∞ 235,206 3600.00 ∞
ruspini 874,673 3600.00 ∞ 137,981 3600.00 132.28

telugu-indian-vowel 846 3600.00 ∞ 13,681 3600.00 5082.69

a1 3024 3600.00 ∞ 88,111 3600.00 ∞
a2 5338 3600.00 ∞ 67,159 3600.00 ∞
a3 6852 3600.00 ∞ 41,941 3600.00 ∞
dim 3175 3600.00 ∞ 738 3600.00 ∞
g2-2-30 13,927 3600.00 ∞ 10,273 3600.00 22444.38

g2-2-50 11,804 3600.00 ∞ 10,837 3600.00 13433.08

g2-2-70 2376 3600.00 ∞ 8235 3600.00 19192.83

s1 5032 3600.00 ∞ 58,633 3600.00 ∞
s2 5050 3600.00 ∞ 47,121 3600.00 ∞
s3 5035 3600.00 ∞ 55,728 3600.00 ∞
s4 5029 3600.00 ∞ 53,218 3600.00 ∞
unbalance 6544 3600.00 ∞ 37,468 3600.00 ∞
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Table 16 Results for 2 clusters using enabled heuristics

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 818,860 3600.00 ∞ 15,462 3600.00 219.06

German22 112,049 327.16 0.00 1141 14.39 0.00

German59 266,506 3600.00 ∞ 142,167 3600.00 32.20

body-measurements 100,130 3600.00 ∞ 7959 3600.00 2441.41

cities-coord-202 74,901 3600.00 ∞ 37,155 3600.00 234.43

cities-coord-666 13,015 3600.00 ∞ 16,950 3600.00 1980.38

concrete-compressive 26,517 3600.00 ∞ 4933 3600.00 17012.20

glass-identification 253,985 3600.00 ∞ 10,690 3600.00 905.82

image-segmentation 2666 3600.00 ∞ 1601 3600.00 28016.73

padberg-rinaldi-hole-dri 4703 3600.00 ∞ 101,082 3600.00 ∞
reinelt-hole-drilling 2081 3600.00 ∞ 189,387 3600.00 ∞
ruspini 736,505 3600.00 ∞ 142,065 3600.00 85.06

telugu-indian-vowel 852 3600.00 ∞ 10,886 3600.00 2774.03

a1 5913 3600.00 ∞ 76,717 3600.00 ∞
a2 5156 3600.00 ∞ 24,795 3600.00 ∞
a3 7083 3600.00 ∞ 38,235 3600.00 ∞
dim 3991 3600.00 ∞ 1257 3600.00 ∞
g2-2-30 13,412 3600.00 ∞ 9103 3600.00 5636.36

g2-2-50 10,475 3600.00 ∞ 9832 3600.00 8397.81

g2-2-70 11,617 3600.00 ∞ 11,084 3600.00 8115.49

s1 4840 3600.00 ∞ 29,981 3600.00 ∞
s2 9902 3600.00 ∞ 47,364 3600.00 ∞
s3 9786 3600.00 ∞ 44,516 3600.00 ∞
s4 4917 3600.00 ∞ 45,528 3600.00 ∞
unbalance 6075 3600.00 ∞ 28,532 3600.00 ∞
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Table 17 Results for 2 clusters using enabled heuristics and barycenter propagator

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 1,291,451 3600.00 390.75 36,671 3600.00 133.79

German22 735 1.00 0.00 603 3.14 0.00

German59 298,474 3600.00 60.67 181,024 3302.02 0.00

body-measurements 175,149 3600.00 4020.08 10,707 3600.00 2023.87

cities-coord-202 209,526 3600.00 182.11 53,429 3600.00 135.06

cities-coord-666 6326 3600.00 2030.10 29,584 3600.00 1624.17

concrete-compressive 78,715 3600.00 5124.69 5448 3600.00 18755.18

glass-identification 378,677 3600.00 327.75 13,634 3600.00 449.85

image-segmentation 13,938 3600.00 41771.35 251 3600.00 ∞
padberg-rinaldi-hole-dri 215,038 3600.00 5111.74 115,222 3600.00 ∞
reinelt-hole-drilling 548,760 3600.00 1821.46 243,529 3600.00 ∞
ruspini 371,336 3600.00 172.24 202,409 3600.00 62.62

telugu-indian-vowel 482,986 3600.00 1188.41 11,452 3600.00 2802.01

a1 154,455 3600.00 9892.16 76,186 3600.00 ∞
a2 79,802 3600.00 14609.94 28,009 3600.00 ∞
a3 50,747 3600.00 28536.14 8957 3600.00 ∞
dim 20,279 3600.00 12806.54 938 3600.00 ∞
g2-2-30 68,620 3600.00 10686.30 9677 3600.00 8018.12

g2-2-50 69,035 3600.00 8460.72 11,622 3600.00 6694.39

g2-2-70 75,071 3600.00 6784.35 10,224 3600.00 6502.58

s1 78,784 3600.00 29879.42 30,042 3600.00 ∞
s2 82,041 3600.00 18242.68 34,579 3600.00 ∞
s3 87,351 3600.00 17978.65 32,344 3600.00 ∞
s4 87,945 3600.00 17583.74 35,208 3600.00 ∞
unbalance 70,452 3600.00 5680.62 22,020 3600.00 ∞
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Table 18 Results for 2 clusters using enabled heuristics and convexity propagator

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 1,262,448 3600.00 ∞ 38,295 3600.00 130.60

German22 621 1.47 0.00 523 2.55 0.00

German59 2887 10.46 0.00 1979 17.74 0.00

body-measurements 232,593 3600.00 ∞ 12,806 3600.00 1701.41

cities-coord-202 150,793 293.82 0.00 37,339 1333.65 0.00

cities-coord-666 179,651 3600.00 12.50 17,055 3600.00 93.41

concrete-compressive 771 3600.00 ∞ 6482 3600.00 31862.98

glass-identification 210,831 3600.00 ∞ 12,077 3600.00 885.51

image-segmentation 1946 3600.00 ∞ 2394 3600.00 28016.73

padberg-rinaldi-hole-dri 111 3600.00 ∞ 33,732 3600.00 ∞
reinelt-hole-drilling 231 3600.00 ∞ 131,094 3600.00 ∞
ruspini 9953 20.64 0.00 1957 36.14 0.00

telugu-indian-vowel 171 3600.00 ∞ 8986 3600.00 354.14

a1 183 3600.00 ∞ 40,666 3600.00 ∞
a2 377 3600.00 ∞ 20,874 3600.00 ∞
a3 64 3600.00 ∞ 12,275 3600.00 ∞
dim 3278 3600.00 ∞ 1502 3600.00 ∞
g2-2-30 107,172 3600.00 ∞ 5668 3600.00 29.91

g2-2-50 196,144 3600.00 ∞ 3547 3600.00 34.49

g2-2-70 226,646 3600.00 ∞ 2775 3600.00 92.31

s1 84 3600.00 ∞ 22,269 3600.00 ∞
s2 182 3600.00 ∞ 18,286 3600.00 ∞
s3 89 3600.00 ∞ 23,013 3600.00 ∞
s4 98 3600.00 ∞ 22,590 3600.00 ∞
unbalance 98 3600.00 ∞ 26,895 3600.00 ∞
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Table 19 Results for 2 clusters using enabled heuristics and convexity+cone propagator

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 1,254,550 3600.00 ∞ 38,867 3600.00 114.71

German22 539 1.40 0.00 269 1.28 0.00

German59 2139 7.71 0.00 627 7.45 0.00

body-measurements 247,712 3600.00 ∞ 10,235 3600.00 1460.22

cities-coord-202 49,373 142.42 0.00 4759 155.58 0.00

cities-coord-666 63,323 773.03 0.00 3644 525.23 0.00

concrete-compressive 962 3600.00 ∞ 6464 3600.00 31862.98

glass-identification 216,426 3600.00 ∞ 12,824 3600.00 877.58

image-segmentation 2175 3600.00 ∞ 2193 3600.00 28016.73

padberg-rinaldi-hole-dri 53 3600.00 ∞ 44,395 3600.00 ∞
reinelt-hole-drilling 26 3600.00 ∞ 161,496 3600.00 ∞
ruspini 6875 15.21 0.00 549 10.29 0.00

telugu-indian-vowel 361 3600.00 ∞ 8627 3600.00 171.65

a1 340 3600.00 ∞ 40,987 3600.00 ∞
a2 22 3600.00 ∞ 10,912 3600.00 ∞
a3 219 3600.00 ∞ 5419 3600.00 ∞
dim 3318 3600.00 ∞ 1655 3600.00 ∞
g2-2-30 172,536 3600.00 ∞ 6249 3460.79 0.00

g2-2-50 205,102 3600.00 ∞ 4509 3600.00 11.25

g2-2-70 190,472 3600.00 ∞ 3714 3600.00 44.85

s1 206 3600.00 ∞ 15,937 3600.00 ∞
s2 58 3600.00 ∞ 14,702 3600.00 ∞
s3 70 3600.00 ∞ 14,203 3600.00 ∞
s4 34 3600.00 ∞ 16,303 3600.00 ∞
unbalance 24 3600.00 ∞ 20,735 3600.00 ∞
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Table 20 Results for 2 clusters using enabled heuristics and barycenter+convexity+cone propagator

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 1,333,676 3600.00 180.59 47,822 3600.00 84.02

German22 155 0.21 0.00 179 0.96 0.00

German59 509 0.98 0.00 631 7.57 0.00

body-measurements 316,874 3600.00 3781.81 12,521 3600.00 1281.91

cities-coord-202 3385 5.74 0.00 3954 139.40 0.00

cities-coord-666 2800 14.04 0.00 4116 562.66 0.00

concrete-compressive 91,207 3600.00 5087.22 5158 3600.00 18171.42

glass-identification 542,435 3600.00 326.10 13,759 3600.00 442.45

image-segmentation 17,008 3600.00 39499.81 257 3600.00 ∞
padberg-rinaldi-hole-dri 1469 3600.00 23.52 80,303 3600.00 ∞
reinelt-hole-drilling 1788 3600.00 19.02 155,237 3600.00 ∞
ruspini 487 0.95 0.00 505 9.96 0.00

telugu-indian-vowel 28,388 3600.00 60.12 7274 3600.00 143.63

a1 1718 3600.00 25.16 35,274 3600.00 ∞
a2 936 3600.00 30.58 13,296 3600.00 ∞
a3 886 3600.00 84.06 6954 3600.00 ∞
dim 21,686 3600.00 12465.58 884 3600.00 ∞
g2-2-30 6383 114.73 0.00 5959 3600.00 7.10

g2-2-50 14,995 217.03 0.00 5967 3600.00 13.32

g2-2-70 36,329 370.00 0.00 2531 3600.00 19.68

s1 2367 3600.00 244.12 13,093 3600.00 ∞
s2 676 3600.00 173.69 15,993 3600.00 ∞
s3 3971 3600.00 133.13 11,323 3600.00 ∞
s4 4708 3600.00 102.62 23,422 3600.00 ∞
unbalance 181 3600.00 ∞ 15,874 3600.00 ∞
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Table 21 Results for 2 clusters using enabled heuristics, barycenter+convexity+cone+distance propagators,
and OA cuts (only applicable for epigraph model)

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 1,594,034 3600.00 163.35 89,287 3600.00 53.12

German22 155 0.18 0.00 247 1.12 0.00

German59 509 0.83 0.00 571 5.63 0.00

body-measurements 374,487 3600.00 3670.49 14,984 3600.00 1609.83

cities-coord-202 3383 5.40 0.00 4146 111.59 0.00

cities-coord-666 2800 13.41 0.00 5023 648.54 0.00

concrete-compressive 99,409 3600.00 5038.68 5290 3600.00 14466.75

glass-identification 653,118 3600.00 326.46 20,036 3600.00 286.45

image-segmentation 18,400 3600.00 38483.96 1200 3600.00 10007.79

padberg-rinaldi-hole-dri 1469 3600.00 23.52 598 3600.00 882.60

reinelt-hole-drilling 1788 3600.00 19.02 625 3600.00 250.56

ruspini 487 0.92 0.00 573 7.89 0.00

telugu-indian-vowel 28,388 3600.00 60.12 6074 3600.00 132.42

a1 1718 3600.00 25.16 7080 3600.00 754130.50

a2 936 3600.00 30.58 828 3600.00 3488806.65

a3 886 3600.00 84.06 49 3600.00 26935734.14

dim 24,323 3600.00 12218.34 573 3600.00 ∞
g2-2-30 6383 87.79 0.00 6989 2924.55 0.00

g2-2-50 14,995 172.40 0.00 7800 3600.00 11.49

g2-2-70 36,329 320.03 0.00 5514 3600.00 19.66

s1 2367 3600.00 244.12 183 3600.00 1124074.89

s2 676 3600.00 173.69 211 3600.00 2062192.77

s3 2815 3600.00 220.62 213 3600.00 12046.53

s4 2657 3600.00 182.74 1512 3600.00 11820.60

unbalance 181 3600.00 ∞ 461 3600.00 269814.70
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Table 22 Results for 2 clusters using enabled heuristics, propagators, cuts, and entropy branching rule

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 1,462,878 3600.00 226.87 68,847 3600.00 169.43

German22 357 0.43 0.00 155 0.69 0.00

German59 765 1.32 0.00 649 4.26 0.00

body-measurements 410,938 3600.00 3632.71 18,072 3600.00 1396.68

cities-coord-202 3541 5.47 0.00 3249 68.49 0.00

cities-coord-666 2604 11.45 0.00 5308 690.09 0.00

concrete-compressive 104,887 3600.00 5502.52 10,227 3600.00 10001.54

glass-identification 650,169 3600.00 567.57 26,316 3600.00 304.25

image-segmentation 22,334 3600.00 51123.06 885 3600.00 9677.16

padberg-rinaldi-hole-dri 1080 3600.00 32.60 748 3600.00 56479.73

reinelt-hole-drilling 1857 3600.00 16.07 1243 3600.00 686.79

ruspini 1039 1.81 0.00 555 5.95 0.00

telugu-indian-vowel 160,309 580.64 0.00 13,930 3600.00 695.29

a1 2863 3600.00 18.17 3496 3600.00 177852.67

a2 936 3600.00 30.58 1677 3600.00 26840744.46

a3 886 3600.00 84.06 1604 3600.00 1784421.45

dim 11,684 3600.00 12621.01 1488 3600.00 ∞
g2-2-30 6123 79.84 0.00 6399 2314.59 0.00

g2-2-50 8169 3600.00 6.84 9044 3600.00 15.52

g2-2-70 39,249 455.03 0.00 6310 3600.00 32.64

s1 2367 3600.00 244.12 1690 3600.00 91869.90

s2 676 3600.00 173.69 433 3600.00 163413.35

s3 2815 3600.00 220.62 173 3600.00 71533.78

s4 2657 3600.00 182.74 2898 3600.00 600335.95

unbalance 181 3600.00 ∞ 459 3600.00 179555.61
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Table 23 Results for 2 clusters using enabled heuristics, propagators, cuts, and distance branching rule

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 1,445,510 3600.00 273.88 84,174 3600.00 94.85

German22 237 0.31 0.00 119 0.61 0.00

German59 585 1.16 0.00 511 4.13 0.00

body-measurements 374,844 3600.00 2935.07 23,410 3600.00 1291.14

cities-coord-202 3387 5.31 0.00 2483 98.77 0.00

cities-coord-666 3374 51.94 0.00 3790 933.78 0.00

concrete-compressive 96,489 3600.00 5507.69 5754 3600.00 9840.40

glass-identification 642,905 3600.00 510.17 22,912 3600.00 278.33

image-segmentation 19,217 3600.00 20930.03 1810 3600.00 5250.19

padberg-rinaldi-hole-dri 1569 3600.00 23.35 562 3600.00 2523.55

reinelt-hole-drilling 1739 3600.00 20.79 1020 3600.00 284.00

ruspini 775 1.43 0.00 447 4.82 0.00

telugu-indian-vowel 235,233 900.46 0.00 10,812 3600.00 1517.12

a1 1812 3600.00 26.21 700 3600.00 1048553.26

a2 1072 3600.00 27.26 979 3600.00 1638209.19

a3 886 3600.00 84.06 218 3600.00 4281949.92

dim 25,692 3600.00 12414.26 1036 3600.00 ∞
g2-2-30 5273 78.59 0.00 5879 2728.94 0.00

g2-2-50 16,711 213.54 0.00 7746 3600.00 25.14

g2-2-70 60,799 1077.49 0.00 7419 3600.00 25.05

s1 2367 3600.00 244.12 145 3600.00 240688.00

s2 676 3600.00 173.69 430 3600.00 138269.06

s3 2815 3600.00 220.62 299 3600.00 5086.40

s4 2657 3600.00 182.74 1454 3600.00 12635.99

unbalance 181 3600.00 ∞ 857 3600.00 13305.57
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Table 24 Results for 3 clusters using plain SCIP

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 328,941 3600.00 ∞ 15,619 3600.00 2920.40

German22 571,240 3600.00 ∞ 10,291 72.95 0.00

German59 123,665 3600.00 ∞ 88,236 3600.00 545.93

body-measurements 12,390 3600.00 ∞ 2842 3600.00 25911.96

cities-coord-202 46,192 3600.00 ∞ 20,439 3600.00 2308.37

cities-coord-666 16,802 3600.00 ∞ 10,309 3600.00 30744.67

concrete-compressive 1998 3600.00 ∞ 2794 3600.00 ∞
glass-identification 58,342 3600.00 ∞ 7863 3600.00 2890.58

image-segmentation 1030 3600.00 ∞ 215 3600.00 ∞
padberg-rinaldi-hole-dri 2578 3600.00 ∞ 6 3600.00 ∞
reinelt-hole-drilling 1046 3600.00 ∞ 220,258 3600.00 ∞
ruspini 169,938 3600.00 ∞ 154,343 3600.00 1144.37

telugu-indian-vowel 864 3600.00 ∞ 3971 3600.00 127881.44

a1 10,052 3600.00 ∞ 162 3600.00 ∞
a2 10,825 3600.00 ∞ 1165 3600.00 ∞
a3 0 3600.00 ∞ 7602 3600.00 ∞
dim 1295 3600.00 ∞ 259 3600.00 ∞
g2-2-30 1972 3600.00 ∞ 4387 3600.00 284987.85

g2-2-50 2059 3600.00 ∞ 4542 3600.00 180381.38

g2-2-70 1204 3600.00 ∞ 3030 3600.00 ∞
s1 5072 3600.00 ∞ 24,037 3600.00 ∞
s2 5038 3600.00 ∞ 15,072 3600.00 ∞
s3 5055 3600.00 ∞ 2529 3600.00 ∞
s4 5056 3600.00 ∞ 56,226 3600.00 ∞
unbalance 6530 3600.00 ∞ 4841 3600.00 ∞
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Table 25 Results for 3 clusters using enabled heuristics

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 256,654 3600.00 ∞ 12,293 3600.00 1564.99

German22 1,054,474 3600.00 ∞ 11,121 86.71 0.00

German59 270,221 3600.00 ∞ 115,879 3600.00 307.58

body-measurements 15,441 3600.00 ∞ 2697 3600.00 ∞
cities-coord-202 48,173 3600.00 ∞ 29,327 3600.00 597.37

cities-coord-666 18,724 3600.00 ∞ 12,652 3600.00 3497.69

concrete-compressive 4809 3600.00 ∞ 2059 3600.00 626164.64

glass-identification 82,131 3600.00 ∞ 8477 3600.00 9802.40

image-segmentation 1097 3600.00 ∞ 334 3600.00 ∞
padberg-rinaldi-hole-dri 7066 3600.00 ∞ 2883 3600.00 ∞
reinelt-hole-drilling 2091 3600.00 ∞ 279,756 3600.00 ∞
ruspini 307,187 3600.00 ∞ 174,971 3600.00 262.23

telugu-indian-vowel 858 3600.00 ∞ 5074 3600.00 31376.38

a1 2952 3600.00 ∞ 708 3600.00 ∞
a2 5176 3600.00 ∞ 942 3600.00 ∞
a3 0 3600.00 ∞ 74 3600.00 ∞
dim 1630 3600.00 ∞ 342 3600.00 ∞
g2-2-30 1508 3600.00 ∞ 3883 3600.00 149048.30

g2-2-50 1490 3600.00 ∞ 4571 3600.00 429183.10

g2-2-70 1246 3600.00 ∞ 3982 3600.00 48797.08

s1 4858 3600.00 ∞ 23,482 3600.00 ∞
s2 9740 3600.00 ∞ 15,041 3600.00 ∞
s3 4889 3600.00 ∞ 17,745 3600.00 ∞
s4 4950 3600.00 ∞ 47,178 3600.00 ∞
unbalance 6224 3600.00 ∞ 12,385 3600.00 ∞
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Table 26 Results for 3 clusters using enabled heuristics and barycenter propagator

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 280,605 3600.00 1734.55 28,221 3600.00 880.33

German22 15,992 23.58 0.00 6493 21.91 0.00

German59 314,057 3600.00 241.47 268,192 3600.00 251.06

body-measurements 43,177 3600.00 11222.63 8046 3600.00 ∞
cities-coord-202 103,462 3600.00 943.44 60,570 3600.00 423.04

cities-coord-666 11,930 3600.00 5752.10 19,756 3600.00 4775.80

concrete-compressive 6277 3600.00 ∞ 2448 3600.00 ∞
glass-identification 118,483 3600.00 1069.56 14,447 3600.00 1443.69

image-segmentation 3574 3600.00 ∞ 322 3600.00 ∞
padberg-rinaldi-hole-dri 78,593 3600.00 ∞ 450 3600.00 ∞
reinelt-hole-drilling 255,437 3600.00 833137.03 443,947 3600.00 ∞
ruspini 292,533 3600.00 715.82 211,537 3600.00 237.44

telugu-indian-vowel 230,083 3600.00 143344.25 6129 3600.00 30813.12

a1 59,081 3600.00 ∞ 142 3600.00 ∞
a2 11,561 3600.00 ∞ 594 3600.00 ∞
a3 0 3600.00 ∞ 74 3600.00 ∞
dim 6135 3600.00 ∞ 323 3600.00 ∞
g2-2-30 11,274 3600.00 399488.15 4714 3600.00 788662.43

g2-2-50 13,451 3600.00 206676.83 5048 3600.00 449014.04

g2-2-70 5850 3600.00 ∞ 4677 3600.00 ∞
s1 16,290 3600.00 ∞ 23,627 3600.00 ∞
s2 15,558 3600.00 ∞ 76,626 3600.00 ∞
s3 19,054 3600.00 ∞ 1999 3600.00 ∞
s4 20,110 3600.00 ∞ 35,733 3600.00 ∞
unbalance 1 3600.00 ∞ 15,560 3600.00 ∞
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Table 27 Results for 3 clusters using enabled heuristics and convexity propagator

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 442,269 3600.00 ∞ 36,077 3600.00 497.90

German22 122,884 273.42 0.00 4506 13.19 0.00

German59 694,633 3600.00 ∞ 371,493 3600.00 58.32

body-measurements 60,146 3600.00 ∞ 7474 3600.00 14488.38

cities-coord-202 636,337 3600.00 ∞ 102,010 3600.00 737.75

cities-coord-666 26,103 3600.00 ∞ 45,587 3600.00 6491.97

concrete-compressive 1 3600.00 ∞ 1 3600.00 ∞
glass-identification 51,612 3600.00 ∞ 11,479 3600.00 9409.18

image-segmentation 977 3600.00 ∞ 388 3600.00 ∞
padberg-rinaldi-hole-dri 3483 3600.00 ∞ 2883 3600.00 ∞
reinelt-hole-drilling 1372 3600.00 ∞ 415,922 3600.00 ∞
ruspini 753,684 3600.00 ∞ 323,701 3600.00 248.52

telugu-indian-vowel 410,343 3600.00 ∞ 8846 3600.00 20873.74

a1 368 3600.00 ∞ 708 3600.00 ∞
a2 2688 3600.00 ∞ 942 3600.00 ∞
a3 0 3600.00 ∞ 74 3600.00 ∞
dim 1343 3600.00 ∞ 429 3600.00 ∞
g2-2-30 8084 3600.00 ∞ 14,399 3600.00 ∞
g2-2-50 12,276 3600.00 ∞ 5698 3600.00 104726.70

g2-2-70 3745 3600.00 ∞ 3829 3600.00 96142.33

s1 3447 3600.00 ∞ 53,673 3600.00 ∞
s2 582 3600.00 ∞ 24,445 3600.00 ∞
s3 322 3600.00 ∞ 11,619 3600.00 ∞
s4 448 3600.00 ∞ 49,473 3600.00 ∞
unbalance 4324 3600.00 ∞ 16,934 3600.00 ∞
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Table 28 Results for 3 clusters using enabled heuristics and convexity+cone propagator

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 229,614 3600.00 ∞ 34,610 3600.00 531.20

German22 234,561 770.50 0.00 6162 21.35 0.00

German59 501,525 3600.00 ∞ 145,215 1285.61 0.00

body-measurements 55,863 3600.00 ∞ 8049 3600.00 12590.36

cities-coord-202 233,440 3600.00 ∞ 91,917 3600.00 275.14

cities-coord-666 26,776 3600.00 ∞ 18,046 3600.00 2763.85

concrete-compressive 1 3600.00 ∞ 1 3600.00 ∞
glass-identification 72,842 3600.00 ∞ 11,375 3600.00 9515.46

image-segmentation 882 3600.00 ∞ 384 3600.00 ∞
padberg-rinaldi-hole-dri 8466 3600.00 ∞ 2883 3600.00 ∞
reinelt-hole-drilling 1022 3600.00 ∞ 350,191 3600.00 ∞
ruspini 710,135 3600.00 ∞ 123,603 1317.54 0.00

telugu-indian-vowel 90,336 3600.00 ∞ 7121 3600.00 37240.30

a1 0 3600.00 ∞ 708 3600.00 ∞
a2 27,022 3600.00 ∞ 942 3600.00 ∞
a3 0 3600.00 ∞ 74 3600.00 ∞
dim 1579 3600.00 ∞ 395 3600.00 ∞
g2-2-30 23,034 3600.00 ∞ 4736 3600.00 440006.61

g2-2-50 21,069 3600.00 ∞ 4186 3600.00 7295513.20

g2-2-70 30,670 3600.00 ∞ 3783 3600.00 ∞
s1 10,659 3600.00 ∞ 49,155 3600.00 ∞
s2 1772 3600.00 ∞ 22,270 3600.00 ∞
s3 7235 3600.00 ∞ 2985 3600.00 ∞
s4 4709 3600.00 ∞ 49,473 3600.00 ∞
unbalance 3769 3600.00 ∞ 16,966 3600.00 ∞
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Table 29 Results for 3 clusters using enabled heuristics and barycenter+convexity+cone propagator

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 348,209 3600.00 1890.73 29,323 3600.00 767.07

German22 7569 10.77 0.00 4576 18.24 0.00

German59 534,709 1949.13 0.00 143,355 1226.50 0.00

body-measurements 74,701 3600.00 15297.12 8419 3600.00 16458.64

cities-coord-202 218,931 3600.00 727.52 92,471 3600.00 246.47

cities-coord-666 26,602 3600.00 58814.95 18,797 3600.00 3456.63

concrete-compressive 1 3600.00 ∞ 1 3600.00 ∞
glass-identification 145,443 3600.00 1034.68 14,558 3600.00 1439.54

image-segmentation 4374 3600.00 ∞ 317 3600.00 ∞
padberg-rinaldi-hole-dri 150,154 3600.00 ∞ 450 3600.00 ∞
reinelt-hole-drilling 379,375 3600.00 ∞ 363,311 3600.00 ∞
ruspini 819,053 3600.00 871.99 145,815 1793.26 0.00

telugu-indian-vowel 281,326 3600.00 ∞ 9796 3600.00 637541.95

a1 111,630 3600.00 ∞ 142 3600.00 ∞
a2 30,873 3600.00 ∞ 594 3600.00 ∞
a3 0 3600.00 ∞ 74 3600.00 ∞
dim 7302 3600.00 ∞ 294 3600.00 ∞
g2-2-30 35,125 3600.00 99442.00 3825 3600.00 ∞
g2-2-50 34,063 3600.00 69060.41 3766 3600.00 960564.45

g2-2-70 12,876 3600.00 ∞ 5841 3600.00 293061.36

s1 5624 3600.00 ∞ 21,594 3600.00 ∞
s2 5496 3600.00 ∞ 65,969 3600.00 ∞
s3 1599 3600.00 ∞ 1365 3600.00 ∞
s4 65,193 3600.00 ∞ 35,733 3600.00 ∞
unbalance 5514 3600.00 ∞ 13,148 3600.00 ∞
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Table 30 Results for 3 clusters using enabled heuristics, barycenter+convexity+cone propagators, and OA
cuts

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 348,209 3600.00 1890.73 37080 3600.00 711.88

German22 7569 10.77 0.00 3247 12.81 0.00

German59 534,709 1949.13 0.00 90712 594.55 0.00

body-measurements 74,701 3600.00 15297.12 11605 3600.00 41450.30

cities-coord-202 218,931 3600.00 727.52 90,433 3600.00 187.54

cities-coord-666 26,602 3600.00 58814.95 21,894 3600.00 2596.30

concrete-compressive 1 3600.00 ∞ 1 3600.00 ∞
glass-identification 145,443 3600.00 1034.68 14,860 3600.00 947.23

image-segmentation 4374 3600.00 ∞ 304 3600.00 ∞
padberg-rinaldi-hole-dri 150,154 3600.00 ∞ 1027 3600.00 ∞
reinelt-hole-drilling 379,375 3600.00 ∞ 9789 3600.00 174671.81

ruspini 819,053 3600.00 871.99 216,584 2304.35 0.00

telugu-indian-vowel 281,326 3600.00 ∞ 9217 3600.00 97407.83

a1 111,630 3600.00 ∞ 558 3600.00 ∞
a2 30,873 3600.00 ∞ 747 3600.00 ∞
a3 0 3600.00 ∞ 533 3600.00 ∞
dim 7302 3600.00 ∞ 544 3600.00 ∞
g2-2-30 35,125 3600.00 99442.00 4829 3600.00 1247530.48

g2-2-50 34,063 3600.00 69060.41 5487 3600.00 2292990.33

g2-2-70 12,876 3600.00 ∞ 3349 3600.00 195477.72

s1 5624 3600.00 ∞ 1730 3600.00 ∞
s2 5496 3600.00 ∞ 837 3600.00 ∞
s3 1599 3600.00 ∞ 920 3600.00 ∞
s4 65,193 3600.00 ∞ 1004 3600.00 ∞
unbalance 5514 3600.00 ∞ 971 3600.00 ∞
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Table 31 Results for 3 clusters using enabled heuristics, barycenter+convexity+cone+distance propagators,
and OA cuts

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 446,923 3600.00 1849.96 59,165 3600.00 659.99

German22 7569 8.77 0.00 3247 10.52 0.00

German59 534,709 1597.28 0.00 91,402 503.05 0.00

body-measurements 83,144 3600.00 14592.81 15,451 3600.00 37113.59

cities-coord-202 239,312 3600.00 699.49 130,068 3600.00 147.72

cities-coord-666 27,921 3600.00 57591.83 29,912 3600.00 1974.12

concrete-compressive 1 3600.00 ∞ 1 3600.00 ∞
glass-identification 168,283 3600.00 1013.11 19,760 3600.00 817.90

image-segmentation 4830 3600.00 ∞ 393 3600.00 ∞
padberg-rinaldi-hole-dri 174,185 3600.00 ∞ 3265 3600.00 ∞
reinelt-hole-drilling 419,551 3600.00 ∞ 14,618 3600.00 52928.16

ruspini 906,635 3600.00 796.01 218,941 1775.63 0.00

telugu-indian-vowel 325,351 3600.00 ∞ 10,984 3600.00 97407.83

a1 143,309 3600.00 ∞ 699 3600.00 ∞
a2 41,088 3600.00 ∞ 803 3600.00 ∞
a3 0 3600.00 ∞ 1335 3600.00 ∞
dim 7947 3600.00 ∞ 682 3600.00 ∞
g2-2-30 35,530 3600.00 98431.46 5812 3600.00 1203432.46

g2-2-50 37,600 3600.00 63371.45 6492 3600.00 683571.57

g2-2-70 13,865 3600.00 ∞ 4075 3600.00 126844.00

s1 4586 3600.00 ∞ 1798 3600.00 ∞
s2 11,726 3600.00 ∞ 941 3600.00 ∞
s3 1599 3600.00 ∞ 997 3600.00 ∞
s4 52,430 3600.00 ∞ 1093 3600.00 ∞
unbalance 10,689 3600.00 ∞ 1340 3600.00 15265661.41
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Table 32 Results for 3 clusters using enabled heuristics, propagators, cuts, and entropy branching rule

Instance quadratic model epigraph model
#nodes time gap #nodes time gap

Fisher150iris 343,703 3600.00 1477.66 71,751 3600.00 22683.70

German22 45,150 52.35 0.00 5333 12.16 0.00

German59 936,893 3600.00 56.04 336,433 1635.47 0.00

body-measurements 60,997 3600.00 14613.99 14,271 3600.00 16576.14

cities-coord-202 296,551 3600.00 301.34 155,242 3600.00 421.92

cities-coord-666 26,269 3600.00 7757.89 45,297 3600.00 2234.12

concrete-compressive 1 3600.00 ∞ 1 3600.00 ∞
glass-identification 169,038 3600.00 2547.47 19,694 3600.00 4728.44

image-segmentation 4722 3600.00 ∞ 1068 3600.00 ∞
padberg-rinaldi-hole-dri 171,210 3600.00 ∞ 11,198 3600.00 ∞
reinelt-hole-drilling 418,898 3600.00 ∞ 45,383 3600.00 ∞
ruspini 786,957 3600.00 384.48 393,872 3600.00 225.40

telugu-indian-vowel 317,636 3600.00 ∞ 8674 3600.00 194927.78

a1 138,799 3600.00 ∞ 1212 3600.00 ∞
a2 41,024 3600.00 ∞ 594 3600.00 ∞
a3 0 3600.00 ∞ 276 3600.00 ∞
dim 6776 3600.00 ∞ 1002 3600.00 ∞
g2-2-30 30,811 3600.00 72575.07 8337 3600.00 42157.54

g2-2-50 41,034 3600.00 61675.17 6234 3600.00 62328.59

g2-2-70 9287 3600.00 ∞ 5348 3600.00 174453.15

s1 4586 3600.00 ∞ 252 3600.00 ∞
s2 11,726 3600.00 ∞ 2999 3600.00 ∞
s3 1599 3600.00 ∞ 1978 3600.00 ∞
s4 52,430 3600.00 ∞ 3053 3600.00 ∞
unbalance 10,689 3600.00 ∞ 409 3600.00 ∞
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Table 33 Results for 3 clusters using enabled heuristics, propagators, cuts, and distance branching rule

Instance Quadratic model Epigraph model
#nodes time gap #nodes time gap

Fisher150iris 429,083 3600.00 2347.78 92,344 3600.00 1390.57

German22 11,515 15.42 0.00 2855 6.51 0.00

German59 295,515 1301.84 0.00 148,496 711.93 0.00

body-measurements 80,408 3600.00 29828.45 12,074 3600.00 ∞
cities-coord-202 254,608 3600.00 879.26 163,946 3600.00 470.39

cities-coord-666 39,469 3600.00 16406.07 74,088 3600.00 ∞
concrete-compressive 1 3600.00 ∞ 1 3600.00 ∞
glass-identification 167,142 3600.00 1986.31 17,442 3600.00 1406.33

image-segmentation 7073 3600.00 ∞ 3111 3600.00 ∞
padberg-rinaldi-hole-dri 175,960 3600.00 ∞ 10,875 3600.00 106261.12

reinelt-hole-drilling 411,784 3600.00 ∞ 5711 3600.00 ∞
ruspini 919,006 3600.00 578.31 221,022 1548.04 0.00

telugu-indian-vowel 340,173 3600.00 ∞ 15,303 3600.00 ∞
a1 141,729 3600.00 ∞ 7476 3600.00 ∞
a2 41,553 3600.00 ∞ 526 3600.00 ∞
a3 0 3600.00 ∞ 894 3600.00 ∞
dim 9647 3600.00 ∞ 1015 3600.00 ∞
g2-2-30 40,223 3600.00 231297.98 7569 3600.00 ∞
g2-2-50 37,147 3600.00 33690.28 5833 3600.00 ∞
g2-2-70 33,182 3600.00 ∞ 5532 3600.00 65019.56

s1 4586 3600.00 ∞ 4366 3600.00 ∞
s2 11,726 3600.00 ∞ 3905 3600.00 ∞
s3 1599 3600.00 ∞ 7583 3600.00 ∞
s4 52,430 3600.00 ∞ 10,129 3600.00 ∞
unbalance 10,398 3600.00 ∞ 1212 3600.00 ∞
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