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Abstract
The aim of this paper is to establish new results on the error bounds for a class of vector
equilibrium problems with partial order provided by a polyhedral cone generated by some
matrix. We first propose some regularized gap functions of this problem using the concept
of GA-convexity of a vector-valued function. Then, we derive error bounds for vector equi-
librium problems with partial order given by a polyhedral cone in terms of regularized gap
functions under some suitable conditions. Finally, a real-world application to a vector network
equilibrium problem is given to illustrate the derived theoretical results.

Keywords Vector equilibrium problem · Vector network equilibrium problem · Regularized
gap function · Error bound · Polyhedral cone

Mathematics Subject Classification 90C30 · 90C26 · 49J52

1 Introduction

It is well known that the theory of equilibrium problems is a generalization of various prob-
lems related to optimization such as variational inequalities, complementarity problems and
optimization problems, etc. Equilibrium problems have remarkable applications in the fields
of mechanics, network analysis, transportation, finance, economics, operations research and
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optimization. For details, we refer the readers to works [9,13,18,20,25,26] and the references
therein.

A scalar equilibrium problem is defined as follows:

(EP) : find x∗ ∈ K such that F(x∗, y) ≥ 0, for all y ∈ K ,

where K is a given set, F : K ×K → R is a bifunction satisfying F(x, x) = 0 for all x ∈ K .
The problem (EP) is also known under the name of equilibrium problem in the works of
Blum and Oettli [4], Muu and Oettli [30], or Ky Fan equilibrium problem in [11].

The error bound of a certain problem is known as an upper estimate of the distance between
an arbitrary feasible point and the solution set. It has played a crucial role from the point
of view of theoretical analysis as well as to study the convergence of iterative algorithms
for solving optimization problems, complementarity problems, variational inequalities and
equilibrium problems. In 2003, based on the study of gap functions of (EP), Mastroeni [29]
established global error bounds for (EP) under the assumption of strong monotonicity of F .
The theory of gap functions in [29] is a generalization of the gap functions for variational
inequalities considered in the literature. The notion of gap functions was first introduced by
Auslender (1976) [2] to reformulate the variational inequality into an equivalent optimization
problem:

ϒ(x) = sup
y∈K

〈h(x), x − y〉

subject to x ∈ K ⊂ R
n , where h : Rn → R

n , and 〈·, ·〉 is the scalar product in R
n .

However, in general, the Auslender gap functions are not differentiable. To overcome this
non-differentiability, Fukushima [12], Yamashita and Fukushima [39] proposed the notion
of regularized gap functions for variational inequalities:

ϒα(x) = sup
y∈K

{〈h(x), x − y〉 − α‖x − y‖2},

where α is a nonnegative parameter. Moreover, Yamashita and Fukushima [39] also estab-
lished the regularized function of Moreau-Yosida type as follows:

�ϒα,λ(x) = inf
z∈K{ϒα(z) + λ‖x − z‖2},

where λ is a positive parameter. Using gap functions in forms of the Fukushima regularization
and the Moreau-Yosida regularization, Yamashita and Fukushima [39] established global
error bounds for general variational inequalities. Thereafter, many regularized gap functions
and error bounds have been studied for various kinds of equilibrium problems and variational
inequalities, see e.g., [1,3,19,21–24,27,35] and the references therein for a more detailed
discussion of interesting topics. In particular, Khan and Chen [27] established regularized
gap functions and error bounds for generalized mixed vector equilibrium problems under the
partial order introduced by the usual positive cone in finite dimensional spaces. Anh et al. [1]
and Hung et al. [23] developed the results in [27] for generalized mixed vector equilibrium
problems of strong types and mixed vector variational inequalities, respectively, whose final
space is partially ordered by a infinite dimensional cone.

On the other hand, the study of linear inequalities has been applied to mathematical
programming and econometrics (see Stoer andWitzgall [34]). This study has led to investigate
a special class of cones, the polyhedral cones (cf. Definition 2.1). The theory of polyhedral
cones is considered extensively. For more details, we refer the interested readers to [5,14,34].
Using properties of polyhedral convex cones associated to thematrices,Chegancas andBurgat
[6] established sufficient conditions for asymptotic stability of a linear discrete-time-varing
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system.A class of linear complementarity problems over a polyhedral conewas considered by
Zhang et al. [40]. They also designed a Newton-type algorithm for solving it. Very recently,
Gutiérrez et al. [15,16] characterized the several kind of exact and approximate efficient
solutions of a class of multiobjective optimization problems with partial order provided by a
polyhedral cone. From a computational point of view, they showed that the results in [15,16]
based on the ordering cone generated by some matrix are attractive. Using the partial order
considered in [16], Hai et al. [17] continued to investigating vector equilibrium problemswith
a polyhedral ordering cone. In [17], variants of the Ekeland variational principle for a type
of approximate proper solutions of those vector equilibrium problems were also provided.
However, to the best of our knowledge, up to now, there is no paper devoted to error bounds
for vector equilibrium problems and vector network equilibrium problems, whose final space
is finite dimensional partially ordered by a polyhedral cone generated by some matrix.

Inspired by the works above, in this paper, we establish some new results on the error
bounds for a class of vector equilibrium problems with a partial order defined by a polyhedral
cone generated by somematrix based on regularized gap functions in forms of the Fukushima
regularization and the Moreau-Yosida regularization introduced in [39] by using the concept
of GA-convexity. Finally, we illustrate the main results by an application to a vector network
equilibrium problem for which we establish analysing error bounds.

The paper is structured as follows. In Sect. 2 we introduce the framework, notations
and definitions which are needed along the paper. Based on a partial order provided by a
polyhedral cone, in Sect. 3 we propose some regularized gap functions for a class of vector
equilibrium problems under some suitable conditions. Then, the error bound analysis for
these problems in terms of regularized gap functions is studied. An application to a vector
network equilibrium problem is given to illustrate our main theoretical results in Sect. 4.
Finally, some conclusions are stated in Sect. 5.

2 Preliminaries and notations

We first introduce a class of vector equilibrium problems with partial order provided by a
polyhedral cone generated by some matrix A as follows:

VEP(C, F,GA): Find x∗ ∈ C such that

F(x∗, y) /∈ −int(GA), (1)

for all y ∈ C, where C is a nonempty closed and convex subset of a real normed space X ,
A = (ai j ) is a real matrix with p rows and m columns with the positive integers p,m such
that p ≥ m and rank(A) = m, GA is a polyhedral cone generated by A (cf. Definition 2.1)
such that GA has non-empty interior, F : C × C → R

m is a vector-valued function such that
F(x, x) = 0 for all x ∈ C. In case of C = X being X is a nontrivial complete metric space,
the problem VEP(C, F,GA) was mentioned in [17].

Next, we recall some basic concepts and their properties. Throughout the paper, letRp be
the p-dimensional Euclidean space and

R
p
+ = {(a1, . . . , ap) ∈ R

p : ai ≥ 0, ∀i = 1, . . . , p}.
For any two vectors a = (a1, . . . , ap)� and b = (b1, . . . , bp)�, a, b ∈ R

p , we define the
relationships between vectors as follows:

a ≤ b if and only if ai ≤ bi for all i ∈ {1, . . . , p}, (2)

a < b if and only if ai < bi for all i ∈ {1, . . . , p}. (3)
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A nonempty set G ⊂ R
p is a cone if λx ∈ G for all x ∈ G and λ ≥ 0. A cone G is said to

be pointed if G ∩ −G = {0}, where 0 = (0, . . . , 0)� ∈ R
p .

As usual, a hyperplane in R
p is a set associated with some (a, b) ∈ R

p × R, a �= 0, and
defined as {x ∈ R

p : 〈a, x〉 = b}. The closed half-space of Rp is a set associated with some
(a, b) ∈ R

p ×R, a �= 0, and defined as {x ∈ R
p : 〈a, x〉 ≤ b}. A set P ⊂ R

p is said to be a
polyhedral set if it can be expressed as the intersection of a finite family of closed half-spaces
or hyperplanes.

Proposition 2.1 (see [32]) The following statements are equivalent for a set G ⊂ R
m:

(i) G is a polyhedral cone;
(ii) G has a representation of the form

G = {x ∈ R
m : 〈ai , x〉 ≤ 0, ∀i = 1, . . . , p},

for some positive integer p and some ai ∈ R
m, i = 1, . . . , p.

Denote the set of all real matrices with p rows and m columns by Rp×m .

Definition 2.1 (see [10]) Let A ∈ R
p×m . Then

GA = {x ∈ R
m : Ax ≥ 0}, (4)

which is called a cone generated by A.

The cone GA is polyhedral, and so it is also convex and closed.

Proposition 2.2 (see [31], Proposition 4 and Proposition 5) Let A ∈ R
p×m. Then

(i) The cone GA defined by (4) is pointed if and only if rank(A) = m (p ≥ m).
(ii) If the matrix A has no zero rows, then

int(GA) = {x ∈ R
m : Ax > 0}, (5)

Lemma 2.1 (see [38], Lemma 1) Let A ∈ R
p×m. If GA = {0}, then rank(A) = m and p > m.

Let A ∈ R
p×m be a given matrix. The mapping defined by the matrix A is also denoted

by A, where A : Rm → R
p defined by x �→ Ax (or A(x)) is a bounded linear mapping.

Proposition 2.3 (see [33], Proposition 4.1) Let A be a mapping defined by a matrix A ∈
R

p×m. Assume that the set {x ∈ R
m : Ax ≥ 0} is a pointed cone, or, equivalently, that

rank(A) = m and p ≥ m. Then, the following statements hold:

(i) the mapping A is injective,
(ii) the image of the set {x ∈ R

m : Ax ≥ 0} under the mapping A is a convex cone included
in R

p
+,

(iii) if p = m, then the image of the space Rm under the mapping A is Rp and the image of
the cone {x ∈ R

m : Ax ≥ 0} is Rp
+,

(iv) if p > m, then the image of the space Rm under the mapping A is a proper subset of
R

p and the image of the cone {x ∈ R
m : Ax ≥ 0} is a proper subset of Rp

+.

To end this section, we derive a useful remark to convert the problem VEP(C, F,GA) into
a usual vector equilibrium problem, which is easier to handle from a computational point
of view.
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Remark 2.1 Suppose that the function F : C × C → R
m is defined by

F(x, y) = (F1(x, y), . . . , Fm(x, y))� ∈ R
m

for all x, y ∈ C. Let A ◦ F denote the composition of the mapping defined by the matrix A
with the function F . Hence, A ◦ F : C × C → R

p is defined by

A ◦ F = ((A ◦ F)1, . . . , (A ◦ F)p)
� and (A ◦ F)(x, y) = A(F(x, y)), ∀x, y ∈ C.

Then, thanks to Proposition 2.2(ii), Proposition 2.3(ii) and the linearity of mapping A, we
can show that (1) is equivalent to

(A ◦ F)(x∗, y) /∈ −int(Rp
+).

3 Main results

In this section, we shall introduce the notion of the GA-convexity of a vector-valued function
based on the partial order provided by a polyhedral cone. Then regularized gap functions and
error bounds for the problem VEP(C, F,GA) will be investigated by using the property of
the GA-convexity and some suitable assumptions.

Throughout the paper, unless other specified, let X be a real normed space with norm
‖ · ‖ and C be a nonempty closed and convex subset of X . For a fixed subset D ⊂ X and
a ∈ X , the distance between the point a and the set D is d(a, D) = infd∈D{‖a − d‖}.
Denote the solution set of the problem VEP(C, F,GA) by S(C, F,GA). We always assume
that S(C, F,GA) is a nonempty set.

Definition 3.1 A real function ρ : C → R is said to be a gap function for the problem
VEP(C, F,GA) if the following properties hold:

(a) ρ(x) ≥ 0 for all x ∈ C;
(b) for any x∗ ∈ C, ρ(x∗) = 0 if and only if x∗ is a solution of the problem VEP(C, F,GA).

For each fixed constant γ > 0, we now consider the following function �
	
γ : C → R

defined by

�	
γ (x) = sup

y∈C

(
− max

1≤i≤p
{(A ◦ F)i (x, y)} − γ 	(x, y)

)

= sup
y∈C

(
− max

1≤i≤p

{
m∑

k=1

aik Fk(x, y)

}
− γ 	(x, y)

)
, (6)

where 	 : C×C → R+ is a continuously differentiable function, which satisfies the following
property with the associated constants β ≥ 2α > 0.

(H	) : For all x, y ∈ C, α||x − y||2 ≤ 	(x, y) ≤ (β − α)||x − y||2.

Definition 3.2 For each k ∈ {1, . . . ,m}, let ϕk : C → R be a function. A function ϕ :=
(ϕ1, . . . , ϕm) defined by ϕ(x) = (ϕ1(x), . . . , ϕm(x)) is said to be GA-convex if, for all
x, y ∈ C and λ ∈ [0, 1],

λϕ(x) + (1 − λ)ϕ(y) − ϕ(λx + (1 − λ)y) ∈ GA. (7)

123



144 Journal of Global Optimization (2022) 82:139–159

Remark 3.1 (i) The condition (7) is equivalent to

A(λϕ(x) + (1 − λ)ϕ(y) − ϕ(λx + (1 − λ)y)) ∈ R
p
+

that is, for any i ∈ {1, . . . , p},
m∑

k=1

aik[λϕk(x) + (1 − λ)ϕk(y) − ϕk(λx + (1 − λ)y)] ≥ 0. (8)

(ii) Moreover, if aik ≥ 0 and ϕk is a convex function for all i ∈ {1, . . . , p} and k ∈
{1, . . . ,m}, then it is easy to see that the above inequality holds and so ϕ is GA-convex.
However, the reverse implication does not hold, that is, assume that ϕ is GA-convex. Then it
is not necessary that the function ϕk is convex for all k ∈ {1, . . . ,m}. The following example
shows the converse is not true.

Example 3.1 Let X = R, C = [0, 2], p = m = 2 and the matrix A ∈ R
p×m be defined by

A =
(
1 2
1 0

)
. Then, rank(A) = 2 and we have

GA = {x = (x1, x2)
� ∈ R

2 : Ax ≥ 0}
= {x = (x1, x2)

� ∈ R
2 : x1 + 2x2 ≥ 0 and x1 ≥ 0}.

Let ϕ = (ϕ1, ϕ2)
� : C → R

2 be defined as follows:

ϕ(x) = (ϕ1(x), ϕ2(x))
� = (3x2 + 1,−x2)�.

For each i ∈ {1, 2}, it is easy to check that the inequality (8) holds for all x, y ∈ C and
λ ∈ [0, 1]. Thus, it follows from Remark 3.1(i) that ϕ is GA-convex on C. However, the
function ϕ2 defined by ϕ2(x) = −x2 is not convex on C.

Proposition 3.1 Let F be GA-convex in the second component and 	 satisfy the condition
(H	). Then for any γ > 0, the function �

	
γ defined by (6) is finite-valued on C.

Proof For each γ > 0, it follows from (6) that

�	
γ (x) = sup

y∈C

(
− max

1≤i≤p

{
m∑

k=1

aik Fk(x, y)

}
− γ 	(x, y)

)

= − inf
y∈C

(
max
1≤i≤p

{
m∑

k=1

aik Fk(x, y)

}
+ γ 	(x, y)

)

≤ − inf
y∈C

(
max
1≤i≤p

{
m∑

k=1

aik Fk(x, y)

}
+ γα||x − y||2

)

(	 satisfies the condition (H	)).

Since F is GA-convex in the second component, for all i ∈ {1, . . . , p}, y1, y2 ∈ C and
λ ∈ [0, 1], by Remark 3.1(i), we have

m∑
k=1

aik[λFk(x, y1) + (1 − λ)Fk(x, y2) − Fk(x, λy1 + (1 − λ)y2)] ≥ 0,
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that is,

m∑
k=1

aik Fk(x, λy1 + (1 − λ)y2) ≤ λ

m∑
k=1

aik Fk(x, y1) + (1 − λ)

m∑
k=1

aik Fk(x, y2).

This implies that for all i ∈ {1, . . . , p}, the function y �→ ∑m
k=1 aik Fk(x, y) is convex and

so the function

y �→ max
1≤i≤p

{
m∑

k=1

aik Fk(x, y)

}
+ γα||x − y||2 (9)

is strongly convex. Since C is a closed and convex set, the function (9) has a uniqueminimizer
over C. Thus �

	
γ is finite-valued on C. ��

Theorem 3.1 Suppose that F is GA-convex in the second component and 	 satisfies the
condition (H	). Then the function �

	
γ defined by (6) for any γ > 0 is a gap function for

VEP(C, F,GA).

Proof (a) For each γ > 0 fixed, since Fk(x, x) = 0 and 	(x, x) = 0 for all k ∈ {1, . . . ,m}
and u ∈ C, we have

�	
γ (x) ≥ − max

1≤i≤p

{
m∑

k=1

aik Fk(x, x)

}
− γ 	(x, x) = 0

(b) Suppose x∗ ∈ C such that �	
γ (x∗) = 0, namely,

sup
y∈C

(
− max

1≤i≤p

{
m∑

k=1

aik Fk(x
∗, y)

}
− γ 	(x∗, y)

)
= 0.

This implies

− max
1≤i≤p

{
m∑

k=1

aik Fk(x
∗, y)

}
≤ γ 	(x∗, y),∀y ∈ C.

Equivalently,

min
1≤i≤p

{
−

m∑
k=1

aik Fk(x
∗, y)

}
≤ γ 	(x∗, y),∀y ∈ C.

Then there exits i0 ∈ {1, . . . , p} such that

−
m∑

k=1

ai0k Fk(x
∗, y) ≤ γ 	(x∗, y)

for all y ∈ C. For any x ∈ C and λ ∈ (0, 1), we set yλ := λx∗ + (1 − λ)x ∈ C, and so

−
m∑

k=1

ai0k Fk(x
∗, yλ) ≤ γ 	(x∗, yλ). (10)

It follows from the condition (H	) that

	(x∗, yλ) ≤ (α − β)||x∗ − yλ||2 = (1 − λ)2(α − β)||x∗ − x ||2. (11)
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By the GA-convexity of y �→ F(x∗, y) and Fk(x∗, x∗) = 0 for all k ∈ {1, . . . ,m}, we
have

m∑
k=1

ai0k[λFk(x∗, x∗) + (1 − λ)Fk(x
∗, x) − Fk(x

∗, yλ)] ≥ 0.

The above inequality becomes

−
m∑

k=1

ai0k Fk(x
∗, yλ) ≥ −(1 − λ)

m∑
k=1

ai0k Fk(x
∗, x). (12)

Having in mind relations (10)–(12), it gives

−(1 − λ)

m∑
k=1

ai0k Fk(x
∗, x) ≤ (1 − λ)2(α − β)||x∗ − x ||2.

Hence, we obtain

−
m∑

k=1

ai0k Fk(x
∗, x) ≤ (1 − λ)(α − β)||x∗ − x ||2 (13)

for all x ∈ C. In (13), letting λ → 1−, it implies

m∑
k=1

ai0k Fk(x
∗, x) ≥ 0, ∀x ∈ C ⇐⇒ (A ◦ F)(x∗, x) /∈ −int(Rp

+), ∀x ∈ C

⇐⇒ F(x∗, x) /∈ −int(GA), ∀x ∈ C,

that is, x∗ ∈ S(C, F,GA).
Conversely, suppose that x∗ is a solution of VEP(C, F,GA), that is, x∗ ∈ C and

F(x∗, y) /∈ −int(GA), ∀y ∈ C ⇐⇒ (A ◦ F)(x∗, y) /∈ −int(Rp
+), ∀y ∈ C.

Hence, for every y ∈ C, there exists i0(y) ∈ {1, . . . , p} such that

(A ◦ F)i0(x
∗, y) ≥ 0, i.e.,

m∑
k=1

ai0k Fk(x
∗, y) ≥ 0.

Therefore,

sup
y∈C

(
− max

1≤i≤p

{
m∑

k=1

aik Fk(x
∗, y)

}
− γ 	(x∗, y)

)
≤ 0.

It follows from the above inequality that �
	
γ (x∗) ≤ 0. Since �

	
γ (x∗) ≥ 0, one has

�
	
γ (x∗) = 0. The proof is completed. ��

Remark 3.2 Recently, several regularized gap functions for various kinds of vector equilib-
rium problems with partial order provided by the cone Rm+ have been studied. For instance,
we reconsider a special case of the vector equilibrium problem in Khan and Chen [27], which
consists in finding x∗ ∈ C such that

F(x∗, y) = (F1(x
∗, y), . . . , Fm(x∗, y))� /∈ −int(Rm+), ∀y ∈ C. (14)
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Then, to establish the regularized gap function for problem (14), all component functions
y �→ F1(x, y), y �→ F2(x, y), . . . , y �→ Fm(x, y) are imposed to be convex on C (see [27,
Theorem 3.2]).

Meanwhile, our Theorem 3.1 used the characteristic of the GA-convexity in terms of a
perturbation of the matrix A, that is, the convexity assumption of all component functions
F1, F2, . . . , Fm in the gap function is not required.

Lemma 3.1 Assume that all assumptions of Theorem 3.1 hold and, further, that C is a compact
set, Fk is continuous for all k ∈ {1, . . . ,m} and 	 satisfies the condition (H	). Then, for each
γ > 0, the gap function �

	
γ is continuous on C.

Proof Since Fk is continuous for each k ∈ {1, . . . ,m}, and 	 is continuous, we have that the
function h : C × C → R defined by

h(x, y) = − max
1≤i≤p

{
m∑

k=1

aik Fk(x, y)

}
− γ 	(x, y)}

is continuous in C × C. Moreover, C is a compact set, so the function �
	
γ defined by

�	
γ (x) = sup

y∈C
h(x, y)

is continuous on C. This completes the proof. ��
Now, we propose a gap function based on the Moreau-Yosida regularization of �

	
γ as

follows:

Δ
ψ

�
	
γ ,δ

(x) = inf
u∈C

{
�	

γ (u) + δψ(x, u)
}

, (15)

whereψ : C×C → R+ is a continuously differentiable function,which satisfies the following
property with the associated constants θ ≥ 2η > 0.

(Hψ) : For all x, y ∈ C, η||x − y||2 ≤ ψ(x, y) ≤ (θ − η)||x − y||2.
Δ

ψ

�
	
γ ,δ

defined by (15) is rewritten as follows:

Δ
ψ

�
	
γ ,δ

= inf
u∈C

[
sup
y∈C

(
− max

1≤i≤p

{
m∑

k=1

aik Fk(u, y)

}
− γ 	(u, y)

)
+ δψ(x, u)

]
. (16)

Theorem 3.2 Suppose that all conditions of Lemma 3.1 hold, and assume further that ψ

satisfies the condition (Hψ). Then the function Δ
ψ

�
	
γ ,δ

defined by (15) for any γ, δ > 0 is a

gap function for VEP(C, F,GA).

Proof (a) For any θ, τ > 0, it is easy to show that Δψ

�
	
γ ,δ

(x) ≥ 0 for all x ∈ C.
(b) Assume that x∗ ∈ S(C, F,GA). It follows from Theorem 3.1 that �	

γ (x∗) = 0 and so

Δ
ψ

�
	
γ ,δ

(x∗) = inf
u∈C

{
�	

γ (u) + δψ(x∗, u)
}

≤ �	
γ (x∗) + δψ(x∗, x∗) = 0.

Since Δ
ψ

�
	
γ ,δ

(x∗) ≥ 0, we get Δψ

�
	
γ ,δ

(x∗) = 0.
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Conversely, if Δ
ψ

�
	
γ ,δ

(x∗) = 0, i.e,

inf
u∈C{�

	
γ (u) + δψ(x∗, u)} = 0.

Then, for each n, there is a un ∈ C such that

�	
γ (un) + δψ(x∗, un) <

1

n
. (17)

Since ψ satisfies the condition (Hψ), it follows from (17) that

0 ≤ �	
γ (un) + δη‖x∗ − un‖2 <

1

n
.

This implies that �	
γ (un) → 0 and ‖x∗ − un‖ → 0, as n → +∞, i.e., �	

γ (un) → 0 and
un → x∗, as n → +∞. Thanks to Lemma 3.1, the continuity of �

	
γ holds, and so

�	
γ (x∗) = lim

n→+∞ �	
γ (un) = 0.

Therefore, we get x∗ ∈ S(C, F,GA). This completes the proof. ��
Now, we give the following example to illustrate all the assumptions of Theorems 3.1 and

3.2 are satisfied.

Example 3.2 Let X = R, C = [0, e2], p = m = 2 and the matrix A ∈ R
p×m be defined by

A =
(
1 0
1

2

1

2

)
.

Then, rank(A) = 2 and we have

GA = {x = (x1, x2)
� ∈ R

2 : Ax ≥ 0}
= {x = (x1, x2)

� ∈ R
2 : x1 ≥ 0 and x1 + x2 ≥ 0}.

Let 	,ψ : C × C → R+ and F = (F1, F2)� : C × C → R
2 be defined as follows:

	(x, y) = ψ(x, y) = 1

2
‖x − y‖2 = 1

2
(x − y)2,

F(x, y) = (F1(x, y), F2(x, y))
�,

F1(x, y) = y2 + 2xy − 3x2,

F2(x, y) = y2 + 3xy − 4x2.

This implies that

(A ◦ F)(x, y) = A(F(x, y))

=
(
F1(x, y),

1

2
F1(x, y) + 1

2
F2(x, y)

)�

=
(
y2 + 2xy − 3x2, y2 + 5

2
xy − 7

2
x2
)�

.

By Remark 2.1, the problem VEP(C, F,GA) is equivalent to finding x ∈ C such that

(A ◦ F)(x, y) /∈ −int(R2+), ∀y ∈ C,
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that is, finding x ∈ [0, e2] such that
(
y2 + 2xy − 3x2, y2 + 5

2
xy − 7

2
x2
)�

/∈ −int(R2+), ∀y ∈ [0, e2].

Hence, it is easy to see that x = 0 is the solution of the problem VEP(C, F,GA). Thus, we
have S(C, F,GA) = {0}.

By the convexity of R � y �→ F1(x, y) and R � y �→ F2(x, y) for all x ∈ R, we can
show thatR � y �→ F(x, y) is GA-convex [by Remark 3.1(ii)]. Moreover, 	 is a continuously
differentiable function and satisfies condition (H	) with β = 1, α = 1

2 . Therefore, all the
assumptions of Theorem 3.1 hold. Then for any γ > 0, the function �

	
γ defined by (6) is a

gap function for VEP(C, F,GA). For example, we take γ = 1, and we obtain

�	
γ (x) = sup

y∈C

(
− max

1≤i≤p
{(A ◦ F)i (x, y)} − γ 	(x, y)

)

= max
y∈[0,e2]

(
−max

{
y2 + 2xy − 3x2, y2 + 5

2
xy − 7

2
x2
}

− 1

2
(x − y)2

)

= max
y∈[0,e2]

(
3

2
(2x2 − xy − y2)

)

= 3x2.

Hence, �	
γ is a gap function for VEP(C, F,GA).

By a similar argument, all the assumptions of Theorem 3.2 are satisfied with θ = 1 and
η = 1

2 . Then for any γ, δ > 0, the function Δ
ψ

�
	
γ ,δ

defined by (15) is a gap function for

VEP(C, F,GA). For example, we take γ = θ = 1, and we have

Δ
ψ

�
	
γ ,δ

(x) = inf
u∈C

{
�	

γ (u) + δψ(x, u)
}

= min
u∈[0,e2]

{
3u2 + 1

2
(x − u)2

}
= 3

7
x2.

Remark 3.3 As mentioned before there is no result concerning regularized gap functions
for the problem VEP(C, F,GA). Thus, our results Theorems 3.1 and 3.2 are new in estab-
lishing regularized gap functions for vector equilibrium problems, whose final space is
finite dimensional and partially ordered by a polyhedral cone generated by some matrix.
However, if m = p = 1, A = (1), X = R

n , F(x, y) = F1(x, y) = 〈H(x), y − x〉,
	(x, y) = ψ(x, y) = ‖x − y‖2 for all x, y ∈ C, H : C → R

n , then the functions �
	
γ and

Δ
ψ

�
	
γ ,δ

reduce to gap functions in forms of the Fukushima regularization and the Moreau–

Yosida regularization introduced in [39], respectively for variational inequalities. Hence, in
this sense, Theorems 3.1 and 3.2 extend the corresponding known results in [39].

To establish error bounds for the problem VEP(C, F,GA), we now impose the following
hypotheses:

(HF )1:
⋂p

i=1 Ki := {x ∈ C :∑m
k=1 aik Fk(x, y) ≥ 0,∀y ∈ C

} �= ∅;
(HF )2: There exists ξ > 0 such that, for each (x, y) ∈ C × C,

F(x, y) + F(y, x) + ξ‖x − y‖2e ∈ −GA,

where e = (1, 1, . . . , 1)� ∈ R
m ;
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(HA): The matrix A ∈ R
p×m with A = (ai j ) satisfies that

min
1≤i≤p

{
m∑

k=1

aik

}
> 0.

Next, we establish error bounds for vector equilibrium problems with partial order pro-
vided by a polyhedral cone based on the regularized gap functions studied above.

Theorem 3.3 Suppose that all assumptions of Theorem 3.1 are satisfied and the conditions
(HF )1, (HF )2 and (HA) hold. Then, for each x ∈ C and γ > 0 satisfying

min
1≤i≤p

{
m∑

k=1

aik

}
ξ − γ (β − α) > 0,

we have

d(x,S(C, F,GA)) ≤
√

�
	
γ (x)

min1≤i≤p
{∑m

k=1 aik
}
ξ − γ (β − α)

. (18)

Proof Let x∗ ∈ S(C, F,GA). For each x ∈ C, we have

�	
γ (x) = sup

y∈C

(
− max

1≤i≤p

{
m∑

k=1

aik Fk(x, y)

}
− γ 	(x, y)

)

≥ − max
1≤i≤p

{
m∑

k=1

aik Fk(x, x
∗)
}

− γ 	(x, x∗). (19)

Without loss of generality, we assume that there exists i∗ ∈ {1, . . . , p} such that

max
1≤i≤p

{
m∑

k=1

aik Fk(x, x
∗)
}

=
m∑

k=1

ai∗k Fk(x, x
∗)

and so, (19) gives that

�	
γ (x) ≥ −

m∑
k=1

ai∗k Fk(x, x
∗) − γ 	(x, x∗). (20)

It follows from the condition (HF )2 that

A(F(x, x∗) + F(x∗, x) + ξ‖x − x∗‖2e) ∈ −R
p
+,

which implies

m∑
k=1

ai∗k[Fk(x, x∗) + Fk(x
∗, x) + ξ‖x − x∗‖2] ≤ 0,

and so

−
m∑

k=1

ai∗k Fk(x, x
∗) −

m∑
k=1

ai∗k Fk(x
∗, x) ≥

m∑
k=1

ai∗kξ‖x − x∗‖2

≥ min
1≤i≤p

{
m∑

k=1

aik

}
ξ‖x − x∗‖2. (21)
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Since the condition (HF )1 holds, without loss of generality, we assume that x∗ ∈ Ki∗ ,
i.e.,

m∑
k=1

ai∗k Fk(x
∗, x) ≥ 0. (22)

Moreover, it follows from the property (H	) that

−	(x, x∗) ≥ −(β − α)||x − x∗||2. (23)

Employing (20)–(23), we obtain

�	
γ (x) ≥

(
min
1≤i≤p

{
m∑

k=1

aik

}
ξ − γ (β − α)

)
‖x − x∗‖2.

This implies that

‖x − x∗‖ ≤
√

�
	
γ (x)

min1≤i≤p
{∑m

k=1 aik
}
ξ − γ (β − α)

,

that is,

d(x,S(C, F,GA)) ≤ ‖x − x∗‖ ≤
√

�
	
γ (x)

min1≤i≤p
{∑m

k=1 aik
}
ξ − γ (β − α)

and the proof is completed. ��
Theorem 3.4 Suppose that the assumptions of Theorems 3.2 and 3.3 hold. Then, for each
x ∈ C, we have

d(x,S(C, F,GA)) ≤

√√√√ 2Δψ

�
	
γ ,δ

(x)

min
{
min1≤i≤p

{∑m
k=1 aik

}
ξ − γ (β − α), δη

} . (24)

Proof Let x∗ ∈ S(C, F,GA). According to Theorem 3.3 and thanks to the condition (Hψ),
for each x ∈ C, we obtain

Δ
ψ

�
	
γ ,δ

(x) = inf
u∈C

{
�	

γ (u) + δψ(x, u)
}

≥ inf
u∈C

{(
min
1≤i≤p

{
m∑

k=1

aik

}
ξ − γ (β − α)

)
‖u − x∗‖2 + δη‖x − u‖2

}

≥ min

{
min
1≤i≤p

{
m∑

k=1

aik

}
ξ − γ (β − α), δη

}
inf
u∈C
{‖u − x∗‖2 + ‖x − u‖2}

≥ 1

2
min

{
min
1≤i≤p

{
m∑

k=1

aik

}
ξ − γ (β − α), δη

}
‖x − x∗‖2.

Hence,

d(x,S(C, F,GA)) ≤ ‖x − x∗‖ ≤

√√√√ 2Δψ

�
	
γ ,δ

(x)

min
{
min1≤i≤p

{∑m
k=1 aik

}
ξ − γ (β − α), δη

} .
Therefore, the proof is completed. ��
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Finally, we give an illustrative example where it is shown that all assumptions of Theorem
3.3 and Theorem 3.4 hold.

Example 3.3 Let X , C, p,m, A, F, 	, ψ, α, β, γ, δ, θ, η be as in Example 3.2. Then, the
solution set of VEP(C, F,GA), S(C, F,GA) = {0} and the gap functions of the problem
VEP(C, F,GA) are defined by

�	
γ = 3x2, Δ

ψ

�
	
γ ,δ

(x) = 3

7
x2.

Now, we check that all conditions of Theorem 3.3 are fulfilled.
(HF )1 : We have

K1 =
{
x ∈ C :

m∑
k=1

a1k Fk(x, y) ≥ 0,∀y ∈ C
}

= {x ∈ [0, e2] : y2 + 2xy − 3x2 ≥ 0,∀y ∈ [0, e2]}
= {0},

K2 =
{
x ∈ C :

m∑
k=1

a2k Fk(x, y) ≥ 0,∀y ∈ C
}

=
{
x ∈ [0, e2] : y2 + 5

2
xy − 7

2
x2 ≥ 0,∀y ∈ [0, e2]

}

= {0}.

This implies that 0 ∈⋂2
i=1 Ki , i.e.,

⋂2
i=1 Ki �= ∅.

(HF )2 : Setting ξ = 2, for each (x, y) ∈ C × C, we get

F(x, y) + F(y, x) + ξ‖x − y‖2e =
(
F1(x, y) + F1(y, x) + 2(x − y)2

F2(x, y) + F2(y, x) + 2(x − y)2

)

=
(−2(x − y)2 + 2(x − y)2

− 5
2 (x − y)2 + 2(x − y)2

)

=
(

0

−1

2
(x − y)2

)
∈ −GA.

(HA) : The matrix A ∈ R
p×m with A = (ai j ) satisfies that

min
1≤i≤p

{
m∑

k=1

aik

}
= min{1, 1} = 1 > 0.

Furthermore, it follows from Example 3.2 that all assumptions of Theorems 3.1 and 3.2 hold.
Thus, we conclude that all the assumptions of Theorems 3.3 and 3.4 are satisfied and so, (18)
and (24) hold.

Indeed, for example, for all x ∈ [0, e2] and for x∗ = 0 ∈ S(C, F,GA), we have

d(x,S(C, F,GA)) ≤ ‖x − x∗‖ = x
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and √
�

	
γ (x)

min1≤i≤p
{∑m

k=1 aik
}
ξ − γ (β − α)

=
√
3x2

3
2

= √
2x ≥ x,

√√√√ 2Δψ

�
	
γ ,δ

(x)

min
{
min1≤i≤p

{∑m
k=1 aik

}
ξ − γ (β − α), δη

} =
√√√√ 6

7 x
2

1
2

=
√
12

7
x ≥ x .

Hence, inequalities (18) and (24) hold.

Remark 3.4 Since the error bounds in Theorems 3.3 and 3.4 are established by using the
regularized gap functions �

	
γ and Δ

ψ

�
	
γ ,δ

, it follows from Remark 3.3 that the results in

Theorems 3.3 and 3.4 are new and extend known error bounds in the literature.

4 Application to a vector network equilibrium problem

The network equilibrium model was introduced by Wardrop [36] for a transportation net-
work. This model has played a vital role in the traffic network planning and to optimize the
traffic control. Based on vector-valued cost functions or multicriteria consideration, many
network equilibrium models have been investigated, see e.g., [7,8,28,37] and the references
therein. In this section, we consider a formulation of vector network equilibrium problem
with partial order provided by a polyhedral cone generated by some matrix, which illustrates
the applicability of the abstract results.

Consider a transportation network G = (N ,A), where N and A denote the set of nodes
and directed arcs, respectively. Let W denote the set of origin-destination (O-D) pairs and
Pw , w ∈ W denotes the set of available paths joining O-D pair w. Let d̂ = (d̂w)w∈W denote
the demand vector, where d̂w denotes the demand of traffic flow on O-D pair w. For a given
path k ∈ Pw , let fk denote the traffic flow on this path and f = ( f1, f2, . . . , fN )� ∈ R

N ,
where N = ∑

w∈W |Pw| being | · | the cardinality of Pw . The path flow vector f induces a
flow ve on each arc e ∈ A given by

ve =
∑

w∈W

∑
k∈Pw

δek fk,

where [δek] ∈ R
ν×N (ν = |A|) is the arc path incidence matrix with

δek =
{
1 if arc e belongs to path k;
0 otherwise.

Let v = (v1, v2, . . . , vν)
� ∈ R

ν be the vector of arc flow. We say that a path flow f satisfies
demands if

∑
k∈Pw

fk = d̂w for all w ∈ W . A flow f ≥ 0 satisfying the demand is called a
feasible flow. Let

H =
⎧⎨
⎩f ∈ R

N : f ≥ 0,
∑
k∈Pw

fk = d̂w, ∀w ∈ W

⎫⎬
⎭ .

Assume thatH �= ∅. It is easy to check that the setH is compact and convex.Let ce : Rν → R
m

be a vector-valued cost function for arc e which is in general a function of all the arc flows.
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We assume that ce(v) = (c1e(v), c
2
e (v), . . . , c

m
e (v))� ∈ R

m . Let Tk : RN → Rm be a vector-
valued cost function along the path k. For each w ∈ W and k ∈ Pw , the vector cost Tk is
assumed to be the sum of all the arc cost of the flow fk through arcs, which belong to the
path k, i.e.,

Tk(f) =
∑
e∈A

δekce(v) =

⎛
⎜⎜⎜⎝

∑
e∈A δekc1e(v)∑
e∈A δekc2e (v)

...∑
e∈A δekcme (v)

⎞
⎟⎟⎟⎠ .

For each w ∈ W , k ∈ Pw , j ∈ {1, 2, . . . ,m}, v ∈ R
ν and f ∈ H, let

T j
k (f) =

∑
e∈A

δekc
j
e (v) and T j (f) = (T j

1 (f), T j
2 (f), ..., T j

N (f))� ∈ R
N .

Then, for each f ∈ H, let

T (f) = (T 1(f), T 2(f), . . . , T m(f))� = (T1(f), T2(f), . . . , TN (f)) ∈ R
m×N .

Let GA be the polyhedral cone considered in Sect. 2. We now introduce the notion of
GA-equilibria of a flow f ∈ H.

Definition 4.1 Aflow f ∈ H is said to be inGA-equilibrium if for allw ∈ W, k ∈ Pw, l ∈ Pw ,

Tk(f) − Tl(f) ∈ int(GA) �⇒ fk = 0. (25)

Remark 4.1 Let p = m. If A is the identity matrix of size m, then GA = {x ∈ R
m : Ax ≥

0} = R
m+. We get that (25) becomes

Tk(f) − Tl(f) ∈ int(Rm+) �⇒ fk = 0.

Then the flow f is in weak vector equilibrium, see [7, Definition 3.2].

Proposition 4.1 The path flow f∗ ∈ H is in GA-equilibrium if f∗ solves the vector variational
inequality (for short, VVI(H, T ,GA)) :

〈T (f∗),h − f∗〉 /∈ −int(GA), ∀h ∈ H. (26)

Proof Let f∗ ∈ H be the solution of problem VVI(H, T ,GA). Consider a path flow vector h
to be such that

hq =

⎧⎪⎨
⎪⎩
f∗q ifq �= k or l;
0 if q = k;
f∗k + f∗l if q = l.

Hence, ∀w ∈ W ,
∑

q∈Pw
hq =∑q∈Pw

f ∗
q = d̂w, and so h ∈ H. Then, we have

〈T (f∗),h − f∗〉 =
∑

w∈W

∑
q∈Pw

(hq − fq)Tq(f∗)

= (hk − f ∗
k )Tk(f∗) + (hl − f ∗

l )Tl(f∗)
= f ∗

k (Tl(f∗) − Tk(f∗)) /∈ −int(GA). (27)
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Equation (27) is equivalent to

f ∗
k

⎛
⎝ m∑

j=1

a1 j
(
T j
l (f∗) − T j

k (f∗)
)

,

m∑
j=1

a2 j
(
T j
l (f∗) − T j

k (f∗)
)

, . . . ,

m∑
j=1

apj
(
T j
l (f∗) − T j

k (f∗)
)⎞⎠

�

× /∈ −int(Rp
+). (28)

If Tk(f∗) − Tl(f∗) ∈ int(GA), i.e.,⎛
⎝ m∑

j=1

a1 j
(
T j
l (f∗) − T j

k (f∗)
)

,

m∑
j=1

a2 j
(
T j
l (f∗) − T j

k (f∗)
)

, . . . ,

m∑
j=1

apj
(
T j
l (f∗) − T j

k (f∗)
)⎞⎠

�

× ∈ −int(Rp
+), (29)

then, it follows from (28) and (29) that f ∗
k = 0. Thus, the path flow f∗ ∈ H is in GA-

equilibrium. ��
We always assume that the solution set of the problem VVI(H, T ,GA), S(H, T ,GA),

is nonempty. Now, we impose the following hypotheses on the the data of the problem
VVI(H, T ,GA):

(HT )1:
⋂p

i=1 K̃i :=
{
f ∈ H :∑m

j=1 ai j
∑

w∈W
∑

k∈Pw
(hk − fk)T j

k (f)≥0,∀h ∈ H
}
�=∅;

(HT )2: There exists ξ̃ > 0 if, for each (f,h) ∈ H × H,∑
w∈W

∑
k∈Pw

[(hk − fk)Tk(f) + ( fk − hk)Tk(h)] + ξ̃‖f − h‖2e ∈ −GA

where e = (1, 1, . . . , 1)� ∈ R
m ;

(HT )3: the function T j
k (·) is continuous for all w ∈ W, k ∈ Pw and j ∈ {1, . . . ,m} .

For each fixed constant γ > 0, we consider the following function �̃
	
γ : H → R defined

by

�̃	
γ (f) = sup

h∈H

⎛
⎝− max

1≤i≤p

⎧⎨
⎩

m∑
j=1

ai j 〈T j (f),h − f〉
⎫⎬
⎭− γ 	(f,h)

⎞
⎠

= sup
h∈H

⎛
⎝− max

1≤i≤p

⎧⎨
⎩

m∑
j=1

ai j
∑

w∈W

∑
k∈Pw

(hk − fk)T j
k (f)

⎫⎬
⎭− γ 	(f,h)

⎞
⎠ , (30)

where	 : H×H → R+ is a continuously differentiable function,which satisfies the condition
(H	).

Theorem 4.1 Under the hypotheses (HT )1, (HT )2, (HA) and (H	), we have

(i) for each γ > 0, the function �̃
	
γ : H → R defined by (30) is a regularized gap function

for VVI(H, T ,GA) .
(ii) if γ > 0 is such that

min
1≤i≤p

{
m∑

k=1

aik

}
ξ̃ − γ (β − α) > 0,

then, for each f ∈ H, it holds

d(f,S(H, T ,GA)) ≤
√√√√ �̃

	
γ (f)

min1≤i≤p

{∑m
j=1 ai j

}
ξ̃ − γ (β − α)

.
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Proof For each j ∈ {1, 2, . . . ,m}, we consider the functions Fj : H × H → R and F : H ×
H → R

m defined by

Fj (f,h) = 〈T j (f),h − f〉 =
∑

w∈W

∑
k∈Pw

(hk − fk)T j
k (f),

F(f,h) = (F1(f,h), F2(f,h), . . . , Fm(f,h))� ∈ R
m ∀f,h ∈ H.

Then, the problem VVI(H, T ,GA) is equivalent to the problem VEP(H, F,GA), i.e., the
function �̃

	
γ is equivalent to the function �

	
γ . Since H � h �→ Fj (f,h) is an affine function

for all j ∈ {1, 2, . . . ,m}, it is easily seen that F is GA-convex in the second component.
Moreover, an easy computation shows that conditions (HF )1 and (HF )2 are satisfied with
C = H,Ki = K̃i for all i ∈ {1, 2, . . . , p} and ξ = ξ̃ . Therefore, by applying Theorems 3.1
and 3.3, we conclude that Theorem 4.1 holds. ��

Remark 4.2 It follows from the condition (HT )3 that Fj is continuous on H × H for all
j ∈ {1, 2, . . . ,m}. Thus, if conditions (HT )3 and (H	) hold, then by Lemma 3.1 the function
�̃

	
γ is continuous.

Next, we consider a gap function based on theMoreau-Yosida regularization of �̃	
γ : H →

R as follows:

Δ̃
ψ

�̃
	
γ ,δ

(f) = inf
g∈H

{
�̃	

γ (g) + δψ(f, g)
}

, (31)

where ψ : H×H → R+ is a continuously differentiable function, which satisfies the condi-
tion (Hψ). From (30) and (31), we can rewrite the function Δ̃

ψ

�̃
	
γ ,δ

as follows:

Δ̃
ψ

�̃
	
γ ,δ

(f)

= inf
g∈H

⎧⎨
⎩sup

h∈H

⎛
⎝− max

1≤i≤p

⎧⎨
⎩

m∑
j=1

ai j
∑

w∈W

∑
k∈Pw

(hk − gk)T j
k (g)

⎫⎬
⎭− γ 	(g,h)

⎞
⎠+ δψ(f, g)

⎫⎬
⎭

(32)

From Theorems 3.2, 3.4 and 4.1, we directly obtain the following error estimates based
on the Moreau-Yosida regularized gap function for VVI(H, T ,GA).

Theorem 4.2 Under the hypotheses (HT )1–(HT )3, (HA), (H	) and (Hψ), we have

(i) for any η, ζ > 0, the function �̃
	
γ : H → R defined by (32) is the Moreau–Yosida

regularized gap function for VVI(H, T ,GA) .
(ii) for any η > 0, if γ > 0 is such that

min
1≤i≤p

{
m∑

k=1

aik

}
ξ̃ − γ (β − α) > 0,

then, for each f ∈ H, it holds

d(f,S(H, T ,GA)) ≤

√√√√ 2Δ̃ψ

�̃
	
γ ,δ

(f)

min
{
min1≤i≤p

{∑m
k=1 aik

}
ξ̃ − γ (β − α), δη

} .
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Remark 4.3 (i) To the best of our knowledge, up to now, there is no paper concerning reg-
ularized gap functions and error bounds for vector network equilibrium problem with
partial order provided by a polyhedral cone generated by some matrix. Thus, Theorems
4.1 and 4.2 are new.

(ii) In the case of Remark 4.1, GA = {x ∈ R
m : Ax ≥ 0} = R

m+. Then, our formulated
vector network equilibrium problem reduces to the vector network equilibrium problem
with the ordering cone Rm+ considered in [7,8]. In this special case, our main results in
this section are still new.

5 Conclusions

In this work, we have studied a class of vector equilibrium problems with partial order pro-
vided by a polyhedral cone generated by some matrix A. Using the concept of GA-convexity
of a vector-valued function, we have proposed some gap functions in forms of the Fukushima
regularization and the Moreau-Yosida regularization to the problem VEP(C, F,GA) (Theo-
rems 3.1 and 3.2). We have also provided some error bounds for the problem VEP(C, F,GA)

by virtue of these regularized gap functions (Theorems 3.3 and 3.4). Especially, to illustrate
our main theoretical findings in a real-world application, we have derived a vector network
equilibrium problem in Sect. 4. Our results in this section are new even in the case where the
ordering cone in R

m+.
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