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Abstract The art gallery problem (AGP) is one of the classical problems in computational
geometry. It asks for theminimumnumber of guards required to achieve visibility coverage of
a given polygon. The AGP is well-known to be NP-hard even in restricted cases. In this paper,
we consider the AGP with fading (AGPF): A polygonal region is to be illuminated with light
sources such that every point is illuminated with at least a global threshold, light intensity
decreases over distance, and we seek to minimize the total energy consumption. Choosing
fading exponents of zero, one, and two are equivalent to the AGP, laser scanner applications,
and natural light, respectively. We present complexity results as well as a negative solvability
result. Still, we propose two practical algorithms for AGPF with fixed light positions (e.g.
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vertex guards) independent of the fading exponent, which we demonstrate to work well in
practice. One is based on a discrete approximation, the other on non-linear programming by
means of simplex-partitioning strategies. The former approach yields a fully polynomial-time
approximation scheme for the AGPF with fixed light positions. The latter approach obtains
better results in our experimental evaluation.

Keywords Art gallery problem · Fading · Computational geometry · Linear program ·
Non-linear program · Lipschitz function · Algorithm engineering

Mathematics Subject Classification 65D18 · 68W25 · 68W40 · 68U05 · 90C05 · 90C30 ·
90C90

1 Introduction

The classical art gallery problem (AGP) asks for the minimum number of guards required
to cover boundary and interior of a polygon. This is one of the best-known problems in
computational geometry; see the excellent book by O’Rourke [23] for an introduction to
the subject. In the classical AGP guards have an infinite range of visibility. We consider a
problem variant where light fades over distance. The main applications are discussed below.

1.1 Laser scanning

Consider obtaining an exact, two-dimensional laser scan of some indoor environment. A
typical 360◦ laser scanner can be placed at any point. It operates by taking a sample in one
direction then turning by a configurable angle θ and repeating the process. The time t to
obtain a scan is roughly t ∼ θ−1 and can range anywhere between seconds and several hours
in real-world applications. The quality of the result depends on the sample-point density q on
the walls. For an object at distance d this is about q ∼ d−1. Together, we get q ∼ td−1. The
actual fading of the laser-light intensity is irrelevant in practice. The problem of minimizing
the time spent scanning (with one scanner) while maintaining sufficient scanning quality is
an AGP generalization with linear fading.

1.2 Realistic light

Light suffers from quadratic fading over distance. From a dimmable light bulb at brightness
b an object at distance d receives light in an amount of q ∼ bd−2. We assume a linear
correspondence between energy consumption and brightness. The AGP generalization of
illuminating a polygonal area with the minimum total energy was introduced by O’Rourke in
2005 [12]. Since then only a restricted case of this problem has been addressed by Eisenbrand
et al. [14].

1.3 Our contribution

We study two versions of the art gallery problem with fading (AGPF). One is the discrete
version where guards can only be placed on finitely many a-priori known locations (e.g.
vertex guards). The other version allows guards that can be positioned anywhere in the input
polygon (point guards). We address the question of computational complexity as well as
solvability of AGPF (both the discrete and the general variant).
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Two algorithms for the AGPF with fixed guard positions constitute the core of our con-
tribution. That is, for the case that the selected guard locations have to be chosen from a
given, finite candidate-location set. Our algorithms are based on infinite LP formulations of
the problem. Both solve the problem of finding the darkest point in an intermediate solution,
referred to as the primal separation problem (PSP), in different ways. Our algorithms work
for arbitrary fading exponents; they can be applied to the laser scanning as well as to the
natural light scenario.

The first algorithm approximates the PSP by replacing continuous fading with an appro-
priate step function. For a finite guard candidate set, such as vertex guards, we illustrate that
it yields a fully polynomial-time approximation scheme (FPTAS).

Our second algorithm solves the PSP by means of a derivative-free approach based on tri-
angulation of the polygon’s visibility coverage, followed by optimizing non-linear programs
by using a simplex-partitioning procedure [24].

1.4 Overview

Related work is presented in Sect. 2. Sections 3 and 4 formally introduce the problem, and
discuss fading functions and complexity results. In Sect. 5, we turn our attention to the case
of fixed, finite sets of guard positions (e.g. vertex guards) and propose two algorithms, one of
which yields an FPTAS.We evaluate our algorithms experimentally in Sect. 6. Section 7 gives
a brief introduction to the general (point guard) case where guards can be placed anywhere
in the polygon. We conclude this paper in Sect. 8.

2 Related work

Guarding problems have been studied for several decades. Chvátal [3] was the first to answer
Victor Klee’s question on the number of guards that are always sufficient and sometimes
necessary tomonitor a polygon P with n vertices;

⌊ n
3

⌋
is the tight bound for general polygons

which was soon afterwards shown by a beautiful proof of Fisk [16]. Many other polygon
classes have been considered w.r.t. this kind of Art Gallery Theorems. For example, Kahn
et al. [19] obtained a tight bound of

⌊ n
4

⌋
for orthogonal polygons. Generally, the guards are

allowed to be located anywhere in the polygon (point guards). Sometimes, less powerful
guards have been considered, such as guards that must be placed on vertices of P (vertex
guards), or guards that only have a certain illumination angle γ . For the latter problem,
Tóth [25] showed an art gallery theorem with tight bound

⌊ n
3

⌋
for γ = 180◦. While the

above results give bounds on the number of guards in certain classes of polygons, the AGP
asks for the minimum number of guards that cover a given polygon P . Several versions of
this problem were shown to be NP-hard, for example the problem restricted to guards placed
on vertices of simple polygons, as shown by Lee and Lin [22]. See [11,23] for surveys on
the AGP.

The AGPF has only been considered for the case of fixed light-source positions in the
plane and the illumination of a line (the stage). Eisenbrand et al. [14] aim at minimizing the
total amount of power assigned to the given light sources such that the entire stage is lit. The
authors give a convex programming formulation of the problem that leads to a polynomial-
time solution. They present a constant-factor approximation and a PTAS.
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Over the last few years, efficient implementations for the classical AGP emerged [6,8,15,
20,21,26]. Currently, the state of the art is that optimal solutions for polygons with several
thousand of vertices can be found efficiently. See [11] for a survey on that matter.

3 Notation and preliminaries

We consider a given polygon P , possibly with holes. P has vertices V , with |V | = n. The
diameter of P is denoted D := diam P . For a point p ∈ P the visibility region V(p) is
the (star-shaped) set of all points of P visible from p. In the original AGP, we say a guard
set G ⊆ P covers P if and only if

⋃
g∈G V(g) = P . The goal is to find a covering G of

minimum cardinality.
In this paper, we consider a variant of this problem: We assume the guards g ∈ G to

be light sources whose intensity (and therefore energy consumption) can be controlled. We
denote the intensity of g ∈ G by 0 ≤ xg ∈ R. Furthermore, light suffers from fading over
distance, modeled by a fading function �: While a point w /∈ V(g) does not receive any light
from g, w ∈ V(g) receives �(g, w)xg , i.e., � accounts for the possible fading exponents
motivated in Sect. 1.

For a set W ⊆ P of witnesses (points that witness sufficient or insufficient illumination),
we say a guard set G ⊆ P with intensities x ∈ RG≥0 illuminates W if and only if every point
inW is sufficiently lit. Without loss of generality, we normalize the meaning ofw ∈ W being
sufficiently lit to

∑

g∈G∩V(w)

�(g, w)xg ≥ 1 . (1)

Given a set of possible light sources G, a set W of witness points, and a fading function �,
our objective is to illuminateW using minimum total energy

∑
g∈G xg . We call this problem

art gallery problem with fading, AGPF �(G,W ). When � is clear from context, we occa-
sionally write AGPF(G,W ) instead. In general, we are interested in illuminating all of P .
Therefore, the relevant cases are AGPF(G, P)—where possible guard positions are given,
e.g. AGPF(V, P) is the common discretization with vertex guards—and AGPF(P, P), the
continuous/point guard variant where guards can be placed anywhere in P . AGPF �(G,W )

can be formulated as a linear program (LP):

min
∑

g∈G
xg (2)

s. t.
∑

g∈G∩V(w)

�(g, w)xg ≥ 1 ∀w ∈ W (3)

xg ≥ 0 ∀g ∈ G . (4)

It should be noted that AGPF(P, P) results in an LP with an infinite number of both
variables and constraints. Kröller et al. [20] were the first to show how to solve this type of
LP for the original AGP with fractional guards, i.e., for �(·, ·) = 1.
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1

1 2 4 8 distance

�

Fig. 1 Fading function �

4 Fading function and complexity

4.1 Fading function

For a fading exponent α ∈ R≥0, we define the fading function �(g, w) by

�(g, w) :=
{

‖g − w‖−α if ‖g − w‖ ≥ 1 and

1 otherwise,
(5)

compare Fig. 1. Here ‖·‖ denotes the Euclidean norm inR2. As motivated above, the amount
of light received by a point w from the light source g is �(g, w)xg with α = 2 for natural
light, α = 1 for laser scanners, and α = 0 for the classical AGP.

Our motivation for capping � at 1 is two-fold: (1) Without this restriction, any non-zero
guard provides an infinite amount of light to itself. This results in the “optimal solution” of
AGPF(P, P) to consist of every point in P glowing with an infinitesimally small brightness.
This problem is not well-defined, see Lemma 1. (2) In an application, guards correspond
physical objects like light bulbs or scanners. These objects are not point-shaped; they have a
physical size. We are interested in obtaining coverage for the environment of the light source
rather than for the light source itself. Hence, we assume that the input is scaled such that the
radius 1 around a guard falls completely into the object size. That motivates capping � at 1,
even in the discrete version.

Lemma 1 Let �̃(g, w) := ‖g − w‖−α , α > 0, be an alternate fading function to �(g, w) in
Eq. (5). Then AGPF �̃(P, P) has no optimal solution.

Proof We show that for any finite G ⊂ P any illumination x ∈ RG≥0 either is infeasible
or not optimal because it can be improved by using more guards G ′ ⊃ G. The dual of
AGPF �̃(P, P) is

max
∑

w∈P

yw (6)

s. t.
∑

w∈V(g)

�̃(g, w)yw ≤ 1 ∀g ∈ P (7)

yw ≥ 0 ∀w ∈ P , (8)

the problem of fractionally packing bright witnesses in P such that no guard receives too
much light.

Assume we are given a feasible, optimal solution x∗ for AGPF �̃(P, P) that only uses a
finite number of guards. By feasibility, there exists a guard g ∈ P with x∗

g > 0. Moreover,
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by optimality, there exists a witness wp ∈ W with
∑

g∈G∩V(wp)

�(g, wp)x
∗
g = 1 ,

otherwise we could reduce the value of some x∗
g while preserving feasibility. Since Con-

straint (3) holds with equality for wp , we have ywp > 0 in the dual. Now consider a point
g ∈ P converging towards wp . As ywp > 0 and �̃(g, wp) → ∞ as g → wp , at some point

∑

w∈W∩V(g)

�̃(g, w)yw ≥ �̃(g, wp)ywp > 1

must hold. A point g fulfilling this inequality indicates a violated Constraint (7). Hence, y is
dually infeasible, so x∗ is not optimal, contradicting our assumptions. ��

This shows that whenever G is finite, we can find an additional guard that improves the
solution. Consequently, AGPF �̃(P, P) only possesses “optimal solutions” with infinitely
many guards. In fact, it is easy to see that the “optimal” guard positions G are topologically
dense in P , using the above ε-neighborhood argument. Then, the solution values can be
scaled down arbitrarily since �̃(g, w) approaches ∞ as w → g. This way, we can construct
a series of solutions of strictly decreasing values, where G is infinite and the values of all
guards converge to 0. Obviously, the limit of this process is x ≡ 0 which is not feasible.

Note that while we cap � at 1, Eisenbrand et al. do not employ capping in [14]: Given
a finite set of guard candidates S, they illuminate a stage L . The guard candidates usually
are not located on the stage. Therefore, no point infinitesimally close to a guard needs to be
covered. In addition, even if guard candidates were located on L , the set S is not dense in L .
Hence, they never experience the situation described by Lemma 1.

4.2 Complexity results

We draw two conclusions regarding the complexity of the AGPF:

Lemma 2 For a finite set G ⊂ P, finding integer solutions to AGPF(G, P) is NP-hard.
Finding integer solutions for AGPF(P, P) is APX-hard.

Proof For α = 0, finding integer solutions corresponds to solving the original AGP. The
corresponding hardness results [13,22] apply. ��

It is tempting to solve the AGPF by reducing it to the AGP. Unfortunately, this approach
results in an approximation factor which is exponential in α:

Lemma 3 The AGPF cannot be approximated by a better factor than 2α by first solving
AGP and computing intensities afterwards.

Proof Consider the polygon shown in Fig. 2 with a spike of length s. The optimal covering
guard set consists of one guard (�). Illuminating the polygon with it requires an intensity

1 s

Fig. 2 An optimal guard placement for the AGP (star symbol) is not optimal for the AGP with fading (star
symbol and bullet symbol)
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of sα . An optimal illumination uses two lights (� and •) with intensities 1 and about
( 1
2 s

)α
.

Therefore, the approximation factor of the first solution is at least

sα

1 + ( 1
2 s

)α

which converges to 2α for large s. ��
Note that this result holds for AGPF(V, P), as we can simply integrate a small bend in

the lower edge with a reflex vertex in the height of •. Again, the optimal solution to the AGP
restricted to vertex guards would be �. Two lights at � and the new reflex vertex at • result in
the same bound on the approximation factor from Lemma 3.

5 Algorithms for fixed (vertex) guards

In this section, we turn our attention to AGPF(G, P), the AGPF with a fixed, finite set of
guard candidates instead of its point guard sibling AGPF(P, P). The reasoning behind that
decision is two-fold:

1. Although both, the AGP with point guards and the AGP with vertex guards, are NP-
hard [22], many papers identified the vertex guard variant of the AGP to be much easier
solvable in terms of practical algorithms than the point guard variant [4,7,11,20]. Since
the AGPF is closely related to the AGP and our algorithms stem from our experience with
the previous algorithms, see [11] for an overview, we start our investigation by tackling
the discrete version.

2. The hardness in terms of tractability by practical algorithms of the AGPF lies in finding
the darkest point in intermediate solutions (in this paper referred to as primal separation
problem (PSP)). Generating good/optimal guard locations has emerged to be the hardest
part of the AGP with point guards [11]. So we refrain from entwining the PSP and guard
generation to obtain meaningful insights on the tractability of the (novel) PSP.

Staying in line with previous work and references therein, see [11] for an overview, it is safe
to assume G = V . Our algorithms, however, only require

⋃
g∈G V(g) = P , i.e., that the

instance is feasible at all.
This section proposes two algorithms forAGPF(G, P).Oneof them, seeSect. 5.1, replaces

the continuous fading function � by an appropriately chosen step function and yields an
FPTAS for AGPF(G, P). The other one, in Sect. 5.2, works directly on the continuous fading
function � and uses simplex partitioning to identify the darkest point for a given illumination
scheme.

5.1 Discrete approximation algorithm and FPTAS

In this section, we introduce Discrete, a discretized approximation algorithm for
AGPF(G, P) that yields an FPTAS. We achieve this by replacing the continuous fading
function � with a step function τ , compare Fig. 3. For a fixed ε > 0, τ is defined as follows:

τ(g, w) := ���(g, w)��1+ε, (9)

where ��·��b denotes the hyperfloor with base b, i.e., ��x��b := max{bz : bz ≤ x, z ∈ Z}.
Therefore, τ is piecewise constant and approximates �, i.e.,

1/(1 + ε) � < τ ≤ � . (10)
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1

1 2 4 8 distance

�

τ

Fig. 3 Fading function � and step function τ for ε = 1

We can use AGPFτ(G,W ) to obtain a (1 + ε)-approximation for AGPF(G,W ):

Lemma 4 A feasible solution for AGPFτ(G,W ) is also feasible for AGPF �(G,W ). An
optimal solution for AGPFτ(G,W ) is a (1 + ε)-approximation for AGPF �(G,W ).

Proof The proof follows from Inequality (10):

1. Since � ≥ τ , a solution fulfilling inequalities of type (3) with τ , does so too using �.
Hence every AGPFτ(G,W ) solution also solves AGPF �(G,W ).

2. Consider an optimal solution x∗ of AGPF �(G,W ) with objective value OPT. It follows
from (10) that xτ := (1+ ε)x∗, i.e., scaling every guard with a factor 1+ ε, is a feasible
solution to AGPFτ(G,W ). xτ has objective value (1 + ε)OPT, yielding the claimed
approximation factor.

Note that our arguments also hold for G = W = P . ��

5.1.1 An algorithm for AGPFτ

To solve AGPFτ (G, P), we consider the illumination function

TG,x (p) :=
∑

g∈G∩V(p)

τ (g, p)xg , (11)

which defines the amount of light received at any point p ∈ P w.r.t. to the fading function
τ , given a solution x ∈ RG≥0. x is feasible if and only if TG,x ≥ 1. It is easy to see that, for a
single guard g, T{g},x is a piecewise constant function over P , as shown in Fig. 4. It induces
an arrangement A({g}) within P with faces of constant value. P is split into two parts: One
is P \V(g), where T{g},x is constant 0. For the remaining part, note that τ is a monotonically
decreasing step function taking the values (1 + ε)−z for z = 0, 1, 2, . . ., each at distances
((1 + ε)z−1, (1 + ε)z] from g (exception: [0, 1] for z = 0). This introduces O(log1+ε D)

concentric bands of equal coverage value around g. Therefore, this part of the arrangement
is the intersection of concentric circles with V(g).

Now consider the arrangement A(G) defined by overlaying the individual arrangements
for all g ∈ G. Then, TG,x is constant over each face, edge, and vertex of this arrangement.
This arrangement has a bounded complexity:

Lemma 5 The complexity of A(G) is O((n + log1+ε D)2|G|2).
Proof The arrangement A(G) is constructed from

– n straight line segments defining P ,
– O(n) straight line segments defining V(g) per g ∈ G, and
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00
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Fig. 4 The visibility arrangement A({g}) induced by T{g},x for a point g with value xg , assuming α = 1

– O(log1+ε D) circles per g ∈ G,

therefore, O((n + log1+ε D)|G|) straight line segments and circles in total. Squaring this
figure accounts for intersections in A(G). ��

We are ready to present the overall algorithm (referred to as Discrete):

Step 0 (Visibility Arrangement). First compute the overlay of all guards’ visibility step-
functions, A(G). It has polynomial complexity by Lemma 5.
Step 1 (Witness Points). Place one witnessw in each feature (vertex, edge, and face interior
of A(G)). Let W denote the set of these witnesses, which is polynomial in cardinality.
Step 2 (Solve LP). Solve AGPFτ(G,W ), which is possible in polynomial time. The solution
x is feasible and optimal for AGPFτ(G, P).

AGPFτ(G, P), our original LP, has a finite number of variables, and an infinite number
of constraints since every point in P has to be illuminated. But we can exploit that TG,x is
constant in each feature of the overlay in our LP formulation: An arbitrary witness point in
an arrangement feature f is sufficiently lit if and only if all of f is sufficiently lit as well.
Hence, we can solve the finite LP AGPFτ(G,W ), where W contains one witness point in
every feature of A(G).

Putting everything together, we get

Theorem 1 AGPF(G, P) admits a fully polynomial-time approximation scheme.

Proof Given an ε > 0, the arrangement A(G) has polynomial complexity due to Lemma 5
and the fact that log1+ε D is polynomially bounded in the encoding size of ε and P . Hence
the LP AGPFτ(G,W ) in the discrete algorithm can be solved in polynomial time. According
to Lemma 4, the result is a (1 + ε)-approximation to AGPF(G, P). ��

5.1.2 Implementation issues and approximation of circular arcs

AlthoughA(G) andW are polynomial in size, they become very large from a practical point
of view. Therefore, it is more efficient to solve this with the technique of iterative primal
separation (compare [9,11,20] for the classical AGP), i.e., to leave out some constraints of
the LP and start with a small set W , then solve AGPFτ(G,W ), and then check the A(G)

for insufficiently lit points. If no such points exist, the solution is feasible. Otherwise, we
add representative witness points for insufficiently lit features toW and re-iterate the process
until the solution is feasible. We know this approach terminates because in each iteration at
least one new feature of A(G) is covered.

It should be noted that by introducing circular arcs in the arrangement A(G), we have
to deal with irrational numbers—to be precise, with algebraic numbers of degree 2. This is
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known to result in computationally expensive operations. Hence, we can replace the circular
arcs by regular octagons. They still have irrational coordinates: For example, consider a
regular octagon centered at the origin with its vertices on a circle of radius r . It has a vertex
at r(cos π

4 , sin π
4 ) = r(1/

√
2, 1/

√
2). However, intersection tests in the arrangement only

use linear functions, which are expected to be less expensive. The octagon-based approach
somewhat reduces the approximation guarantees—octagons only approximate circles—but
still yields an FPTAS. However, our experimental evaluation shows that using the exact
support for circular arcs of CGAL [2,10] outperforms the octagon-based approach.

5.2 Continuous optimization approach

In this section, we introduce Continuous, an alternative algorithm for AGPF(G, P). Con-
tinuous directly uses the continuous fading function � instead of an approximate step
function. It iteratively solves AGPF �(G,W ), starting with W = ∅ and checks if its solution
is feasible for AGPF(G, P). If a point w ∈ P \ W that currently does not receive sufficient
light can be found, it is added to W ; the process is repeated until P is sufficiently lit.

This requires a subroutine for finding insufficiently lit points and can obviously be
answered by a routine that finds the darkest point. Hence, we seek an algorithm solving
the primal separation problem (PSP), i.e., given a current solution x , for finding:

argmin
w∈P

TG,x (w) = argmin
w∈P

∑

g∈G∩V(w)

�(g, w)xg . (12)

For the sake of presentation, we simplify T (w) := TG,x (w).
We solve the PSP in two steps. First, we triangulate the overlay of all visibility polygons

V(g) for all g ∈ G which yields a collection of triangles, each of which seen by a fixed subset
of guards. In Sect. 5.2.1, we present an algorithm to solve (12) in such a triangle S ⊆ P . The
algorithm requires a function 
 that provides a lower bound on the minimum brightness of
TG,x in S, i.e., 
(S) ≤ T (p) ∀p ∈ S. We discuss two such functions in Sects. 5.2.2 and 5.2.3.

5.2.1 Simplex partitioning algorithm

Continuous employs a global optimization approach based on simplex (here: triangle)
partitioning [24] to solve the PSP. It iteratively keeps track of

– S0, the triangle to be searched for a darkest spot (the input),
– k = 1, 2, 3, . . ., the iteration counter,
– Uk , a set of triangles with

⋃
S∈Uk

S ⊆ S0 (the remaining search region),
– Sk , the next triangle to be partitioned,
– x∗

k , the darkest point found so far (the incumbent solution), and
– βk , the current lower bound on the minimum brightness in S0.

Step 0 (Initialization). Set U0 = {S0} as the current set of triangles. Set the current best
solution to x∗

0 = argminv∈V (S0) T (v) (the darkest vertex of S0). Compute a lower bound
β0 = 
(S0) for the minimum brightness in S0.

In each iteration k ∈ N, we do the following steps:

Step 1 (Eliminating bright triangles). Let Rk be the collection of triangle candidates
remaining after discarding all triangles with 
(S) > T (x∗

k−1) from Uk−1, i.e., after removing
the triangles that cannot contain a darkest point due to their lower bound.
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Step 2 (Selecting a triangle). Consider the current collection of triangles Rk and select

Sk = argmin
S∈Rk


(S) , (13)

the triangle with the smallest lower bound, to be partitioned.
Step 3 (Refining the search region). Divide Sk into two smaller triangles by applying a
bisection on its longest edge such that

Sk = Sk1 ∪ Sk2 . (14)

Step 4 (Updating the incumbent). At this point, we obtain the search region

Uk = (Rk \ {Sk}) ∪ {Sk1 ,Sk2}. (15)

Evaluate T at the common new vertex vk of the triangles Sk1 and Sk2 . Update
x∗
k = argmin

v∈{vk ,x∗
k−1}

T (v) , (16)

βk = min
S∈Uk


(S) . (17)

Then increase k and continue at Step 1.
Stopping criterion. Stop when there is no triangle to be partitioned. Alternatively, stop after
a certain number of iterations or when a δ-estimation of the optimal solution is found, i.e.,
when T (x∗

k ) ≤ βk + δ.

We propose two approaches for computing the lower bounds, i.e., 
(·), in Sects. 5.2.2
and 5.2.3. The first exploits geometric properties and the second the fact that T is Lipschitzian.

5.2.2 Geometric lower bound

Regarding a lower bound used to prune triangles in the simplex-partitioning algorithm in
Sect. 5.2.1, observe that �(g, w)monotonically decreases with increasing ‖g−w‖, i.e., light
decreases with increasing distance. Fix a triangle S, a finite set of guards G scattered in P ,
and x ∈ RG≥0. According to the definition of �(g, w), T{g},x attains its minimum at a vertex
of S. Therefore,


(S) :=
∑

g∈G
min

p vertex of S
T{g},x (p) (18)

is a lower bound for minp∈S TG,x (p).

5.2.3 Lipschitz lower bound

As an alternative approach to the geometric estimation of the lower bound, one may use
the analytical properties of T . For example, if T is a Lipschitzian with a known Lipschitz
constant L , then one can use the following result (see [24]):

Lemma 6 Let V (S) = {v0, v1, . . . , vm} be the vertex set of the simplex S. Let f be a
Lipschitzian on S with the Lipschitz constant L. Denote by z j the function values T (vm) (for
j = 0, . . . ,m), then we have:

z∗ ≥ 1

m + 1

⎛

⎝
m∑

j=0

z j − L max
0≤i≤m

m∑

j=0

‖vi − v j‖
⎞

⎠ (19)
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Proof The proof can be found in [24]; however, for the sake of completeness, we provide the
complete proof. Let x be an arbitrary point of the simplex S. Since T is a Lipschitz function
(see Lemma 7)

|T (x) − z j | ≤ L‖x − v j‖, j = 0, 1, . . . ,m. (20)

We know that this inequality is true for any point in S, particularly for the optimal point x∗;
consequently, we have

z∗ = T (x∗) ≥ z j − L‖x∗ − v j‖, j = 0, 1, . . . ,m.

By summing up these inequalities, we arrive at the following inequality

z∗ ≥ 1

m + 1

⎛

⎝
m∑

j=0

z j − L
m∑

j=0

‖x∗ − v j‖
⎞

⎠ . (21)

Due to the fact that x∗ is unknown, we need to provide an estimation of the second sum in
(21). Define the function Q as follows:

Q(x) :=
m∑

j=0

‖x − v j‖: x ∈ S.

Since S is a convex set and Q is a convex function, the maximum of Q is attained at one of
the vertices of S. Consequently,

m∑

j=0

‖x∗ − v j‖ ≤ max
0≤i≤m

m∑

j=0

‖vi − v j‖.

Using this inequality in (21) completes the proof. ��
Fortunately, this bound can be used in the PSP:

Lemma 7 T is Lipschitzian.

Proof We provide the proof for α = 2. The other cases can be proved in a similar way. For
the sake of simplicity in the notation, let us define for any i (such that i = 1, . . . ,m):

– �i (w) := �(gi , w).
– (x0, y0) := (xi , yi ) as the coordinates of the point gi .
– (x, y) as the coordinates of the witness point w and (x1, y1) as the coordinates of the

witness pointwx and (x2, y2) as the coordinates of the witness point wy (where (through
the primal-dual procedure) wx and wy are the potential points that will be chosen to be
added into the set of the witness points).

Thus

�i (w) :=
⎧
⎨

⎩

1√
(x−x0)2+(y−y0)2

if ‖w − gi‖ ≥ 1,

1 otherwise.
(22)

We want to show that ∃L > 0 s.t. ∀wx , wy : |�i (wx ) − �i (wy)| ≤ L‖wx − wy‖. We need
to consider three different cases:

(i) ‖wx − gi‖ ≥ 1 and ‖wy − gi‖ ≥ 1,
(ii) ‖wx − gi‖ < 1 and ‖wy − gi‖ < 1, and
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(iii) ‖wx − gi‖ ≥ 1 and ‖wy − gi‖ < 1.

Case (i): In this case, the following definition of �i (·) is applied:

�i (w) = 1
√

(x − x0)2 + (y − y0)2
: w ∈ {wx , wy}.

It is sufficient to show that the partial derivatives of �i (w) are bounded by a positive number
L . The partial derivatives of �i (w) are computed as follows

∂

∂x
�i (w) = x0 − x

[(x − x0)2 + (y − y0)2]3/2 ,

and

∂

∂y
�i (w) = y0 − y

[(x − x0)2 + (y − y0)2]3/2 .

We will show that | ∂
∂x �i (w)| ≤ L (where L > 0 is a constant). The proof of the other case,

i.e., | ∂
∂y �i (w)| ≤ L , is quite similar.

Since (x, y) is located within a triangle of vertices with finite coordinates, we have ‖x‖ <

∞ and ‖y‖ < ∞. Furthermore,
√

(x − x0)2 + (y − y0)2 ≥ |x − x0| ≥ 0, and, hence,
[√(x − x0)2 + (y − y0)2]3 ≥ |x − x0|3. This yields:

0 ≤ 1

[√(x − x0)2 + (y − y0)2]3
≤ 1

|x − x0|3 .

Consequently, we have:

0 ≤ |x − x0|
[√(x − x0)2 + (y − y0)2]3

≤ 1

|x − x0|2 .

The latter inequality reads as follows:

0 ≤ | ∂

∂x
�i (w)| ≤ 1

|x − x0|2 .

Because |x − x0| ≥ 1 we have 1
|x−x0|2 ≤ 1. Altogether, we showed that | ∂

∂x �i (w)| ≤ 1. In

a similar way, one can show that | ∂
∂y �i (w)| ≤ 1. These inequalities prove that �i (w) is a

Lipschitz function.
Case (ii): In this case, the function �i (w) is a constant function; consequently, it is a Lip-
schitzian.
Case (iii): This case corresponds to

‖wx − gi‖ ≥ 1 and ‖wy − gi‖ < 1

and we want to show that

∃L > 0 s.t. |�i (wx ) − �i (wy)| ≤ L‖wx − wy‖.
As ‖wy − gi‖ < 1, Eq. (22) yields �i (wy) = 1; in addition, we have:

�i (wx ) = 1
√

(x1 − x0)2 + (y1 − y0)2
.

The triangle inequality yields:

‖wx − wy‖ = ‖wx − gi + gi − wy‖ ≥ ‖wx − gi‖ − ‖gi − wy‖.
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Using ‖wy − gi‖ < 1 and ‖wx − gi‖ ≥ 1, we obtain:

‖wx − wy‖ > ‖wx − gi‖ − 1 ≥ 0.

Because ‖wx − gi‖ ≥ 1 holds, we can conclude:

‖wx − gi‖ − 1

‖wx − gi‖ <
‖wx − wy‖
‖wx − gi‖ ≤ ‖wx − wy‖.

To sum up:
‖wx − gi‖ − 1

‖wx − gi‖ < ‖wx − wy‖. (23)

In addition, we have:

|�i (wx ) − �i (wy)| =
∣∣
∣
∣

1

‖wx − gi‖ − 1

∣∣
∣
∣ =

∣∣
∣
∣
1 − ‖wx − gi‖

‖wx − gi‖
∣∣
∣
∣ .

Using ‖wx − gi‖ ≥ 1, this yields:

|�i (wx ) − �i (wy)| = ‖wx − gi‖ − 1

‖wx − gi‖ ,

and in combination with (23), we obtain:
∣∣�i (wx ) − �i (wy)

∣∣ < ‖wx − wy‖.
This shows that �i (·) is a Lipschitz function. Since any finite sum of Lipschitz functions is
a Lipschitz function too, we conclude that the objective function of the PSP is a Lipschitz
function. ��

6 Experiments

We evaluate the Discrete and the Continuous algorithms from Sects. 5.1 and 5.2
experimentally. The Discrete algorithm comes in two variants: DiscreteCircle and
DiscreteOctagon, the former uses circular arcs and the latter uses octagons to approx-
imate the fading function, compare Sect. 5.1.2. Regarding the Continuous algorithm, we
focus on the geometric bound from Sect. 5.2.2. The reason is that computing the geomet-
ric bound is simple and efficient, whereas for the Lipschitz bound (Sect. 5.2.3), we cannot
achieve comparable guarantees since we do not know a tight value for the Lipschitz constant
L in Eq. (20).

In order to evaluate the efficiency and solution quality of the two algorithms fromSects. 5.1
and 5.2, we conducted a series of experiments with implementations for both. The experi-
mental setup is described in Sect. 6.1 and the results are analyzed in Sect. 6.2.

6.1 Experimental setup

6.1.1 Instances

Our test set is formed by 50 instances from the art gallery problem instance library [5], see
Fig. 5. We test five instance classes (NonSimpleOrtho, Spike, VonKoch, Simple, and
NonSimple) with polygons of 50–700 vertices. As an example for a solved instance, see the
VonKoch-type instance in Fig. 6a.
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(a) (b)

(c) (d)

(e)

Fig. 5 Our test polygon classes. Some classes (NonSimpleOrtho, Spike, and NonSimple) have holes,
others (VonKoch and Simple) do not. The number of vertices ranges from 50 to 700. a NonSimpleOrtho
polygons are orthogonal polygons with holes. b Spike polygons comprise few positions that see much of the
polygon. c VonKoch polygons are inspired by the von Koch curve. d Simple polygons are non-orthogonal
polygons without holes. e NonSimple polygons comprise non-orthogonal polygons with holes
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Fig. 6 AGPF solutions obtained by the Continuous approach. The color scales show values of coverage:
Dark blue points are lit with exactly the necessary threshold of 1, lighter points obtain more coverage. a A
VonKoch polygon with 100 vertices. b A 94-vertex office environment. (Color figure online)

Furthermore, we present a Continuous solution for a 94-vertex office environment
(Fig. 6b), and a DiscreteCircle solution for a 1185-vertex cathedral (Fig. 7). These
instances, however, are a demonstration and as such not included in the regular test set.
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Fig. 7 An AGPF solution of a 1185-vertex cathedral polygon obtained by the DiscreteCircle algorithm.
The color scale in the upper left indicates the value of coverage: A gray point is covered with exactly the
necessary value of 1, blue indicates that a point obtains light with a value of more than 1 (largest value for
light blue); yellow and green points are insufficiently lit (not present in this figure). (Color figure online)

6.1.2 Polygon scaling

Solutions for the classical AGP are invariant under scaling of the input; as a result, the input
complexity of algorithms solving the AGP is the number of vertices in the polygon. In the
presence of fading, this is no longer the case. Especially the cutoff of � at distance 1, see
Eq. (5), becomes an issue: If everymutually visible pair of points in a polygon is at distance at
most 1, the problem becomes equivalent to the AGP without fading. As an example, consider
a convex polygon P: If P is small enough, one guard placed anywhere in P suffices, but
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if P is scaled up the structure of an optimal solution becomes non-obvious. The polygons
in the art gallery problem instance library [5] have no natural or even consistent spatial
size.

The impact of the input polygons’ number of vertices on the solution time in the classical
AGP, in the form of visibility calculations and arrangement complexity, has been studied
extensively [1,4,6–9,11,15,20,26]. Given that fading introduces spatial size as a new source
of complexity, we confine our experiments to polygons with up to 700 vertices and focus on
the impact of spatial extent.

We scale the input polygons P as follows: First, we compute an estimate for the spatial
complexity of P . Here, different measures could be used, for example the diameter of P ,
the area of P , or local feature size. Pre-experiments have shown that the average edge length
of P , denoted byμ(P), provides an intuitively consistent measure for our test set. Hence, we
scale P by a factor (�μ(P))−1, for a parameter �. Therefore, � = 2 corresponds to having
the cutoff in � at twice the average edge length of P . We scaled our 50 input polygons using
0.2, 0.5, 1, and 2 as possible values for �, yielding 200 scaled instances.

6.1.3 Parameterization

The algorithms are parameterized. Both algorithms account for the fading exponent α; we
selected the two practically relevant values of 1 (laser scanner) and 2 (light).

The Discrete algorithm takes the desired approximation factor 1 + ε as an input, we
selected 1.2, 1.6, and 2. Furthermore, we test the Discrete algorithm using circles as well
as octagons, DiscreteCircle and DiscreteOctagon, to approximate the fading function;
this is discussed in Sect. 5.1.2.

The Continuous algorithm is parameterized in its stopping criterion: A triangle with a
difference of δ between lower and upper bound is no longer partitioned. We pick 0.01, 0.001,
and 0.0001 as values for δ.

In total, this yields nine configurations, six Discrete and three Continuous, each with
two choices for α. Together with the 200 scaled inputs, we run 3600 configuration-instance
pairs.

6.1.4 Hardware and implementation

Our implementation of the algorithms from Sects. 5.1 and 5.2 is based on our implementation
for solving the classical AGP [15,20]. We used CPLEX-12.6 [18] to solve LPs and CGAL-
4.4 [2,10,17] for geometric subroutines. All experiments were carried out on a Linux-3.18.27
server with two Intel Xeon E5-2680 CPUs, i.e., 16 cores and 32 threads, and 258GiB of
RAM. We ran 15 instances in parallel, each limited to 20 minutes of CPU time and 16GB
of RAM, aborting every run which did not finish within these limits. Our implementation is
not parallelized.

6.2 Results

Tables 1–3 depict the results of our experiments. For each algorithm configuration, Table 1
addresses its success rate, Table 2 its objective values, and Table 3 the required CPU time.
We discuss these aspects in Sects. 6.2.1, 6.2.2, and 6.2.3, respectively. Note that each table
cell corresponds to 50 test runs, i.e., one per instance.
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Table 1 Success rates in percent

Falloff α 1 2

Scaling � 2 1 0.5 0.2 2 1 0.5 0.2

Continuous 0.01 98 98 94 92 98 98 90 88

Continuous 0.001 98 96 88 86 96 88 84 66

Continuous 0.0001 98 88 84 68 96 86 72 42

DiscreteCircle 2 100 100 98 94 100 98 88 80

DiscreteCircle 1.6 100 100 98 84 100 98 84 60

DiscreteCircle 1.2 100 98 88 60 98 92 58 40

DiscreteOctagon 2 100 100 96 82 100 98 90 72

DiscreteOctagon 1.6 100 100 96 76 100 98 84 60

DiscreteOctagon 1.2 98 96 78 48 84 32 10 4

Table 2 Median of relative objective values

Falloff α 1 2

Scaling � 2 1 0.5 0.2 2 1 0.5 0.2

Lower bound 0.85 0.88 0.90 0.93 0.85 0.88 0.91 0.87

Continuous 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Continuous 0.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Continuous 0.0001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ∞
DiscreteCircle 2 1.10 1.22 1.37 1.52 1.10 1.31 1.52 1.59

DiscreteCircle 1.6 1.07 1.14 1.24 1.34 1.06 1.19 1.33 1.41

DiscreteCircle 1.2 1.02 1.05 1.09 1.13 1.02 1.06 1.14 ∞
DiscreteOctagon 2 1.11 1.23 1.38 1.53 1.09 1.30 1.49 1.60

DiscreteOctagon 1.6 1.07 1.15 1.25 1.35 1.07 1.17 1.32 1.40

DiscreteOctagon 1.2 1.02 1.06 1.09 ∞ 1.02 ∞ ∞ ∞

6.2.1 Success rate

We report the success rate of each algorithm configuration in Table 1 w.r.t. the imposed CPU
time and memory limits described in Sect. 6.1.4. Out of the 3600 test runs, 84.9% succeeded,
12.3% did not meet the CPU-time limit of 20 minutes, and only 2.9% exceeded the 16GB
memory limit (compare Sect. 6.1.4).

In the following, we account for the times and objective values of failed runs with infinity
and report median values.

6.2.2 Objective value

Table 2 compares the objective values determined by the different algorithm configurations.
Per instance, we consider the objective value relative to the best known solution (w.r.t. the
same choice for α and �) and report, per cell, their median. For example, the 1.02 in the
lower left corner encodes that, with α = 1 and � = 2, the DiscreteOctagon algorithm
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Table 3 Median of relative CPU times

Falloff α 1 2

Scaling � 2 1 0.5 0.2 2 1 0.5 0.2

Continuous 0.01 1.89 2.45 4.53 8.87 2.45 3.36 8.55 19.49

Continuous 0.001 1.98 3.20 7.91 19.16 2.37 5.17 18.10 173.97

Continuous 0.0001 1.94 4.63 14.02 110.47 2.68 7.90 74.81 ∞
DiscreteCircle 2 1.00 1.91 3.70 6.97 1.15 2.82 7.58 17.48

DiscreteCircle 1.6 1.05 2.07 4.62 9.88 1.23 3.44 11.23 36.96

DiscreteCircle 1.2 1.22 3.12 9.70 39.80 1.67 7.33 72.96 ∞
DiscreteOctagon 2 1.13 1.91 3.45 6.59 1.38 3.08 8.26 22.27

DiscreteOctagon 1.6 1.14 2.19 4.36 11.59 1.62 4.70 16.62 65.52

DiscreteOctagon 1.2 1.80 4.76 20.69 ∞ 13.62 ∞ ∞ ∞

with 1 + ε = 1.2 produced solutions at 1.02 times the objective value of the best algorithm
(Continuous with δ = 0.01).

Table 2 indicates that, where applicable, the median solution quality of the Continuous
algorithm does not vary w.r.t. the choice of δ. Observe, however, that this does not mean that
the solutions are optimal: The Continuous algorithm does not guarantee an approximation
ratio.

For guaranteed bounds we include the row “Lower Bound.” Each Discrete algorithm,
configured as (1+ ε)-approximation, terminating with an objective value of z yields a lower
bound of (1 + ε)−1z. We present the median of the largest lower bound per instance (if
applicable). Even with these conservative bounds, it is clear that the Continuous algorithm
consistently produces good solutions.

The Discrete algorithm (DiscreteOctagon as well as DiscreteCircle) usually pro-
duces more expensive solutions than Continuous, but comes with the benefit of a proven
approximation factor. Assuming theContinuous solutions to be near-optimal, it can be seen
that the actual optimality gap (i.e., the gap between Discrete and Continuous) improves
with larger values for �, i.e., when scaling down polygons. This might be due to the fact that
more space is covered with 1-disks around guards, where � and τ are equal.

6.2.3 Efficiency

We compare the CPU time of the different algorithm configurations in Table 3. Per instance,
we normalize the run time to that of DiscreteCircle with 1 + ε = 2 for α = 1 and
� = 2, the fastest configuration. In each cell we report the median relative run time over
all instances. For example, the 1.80 in the lower left corner encodes that, with α = 1 and
� = 2, the DiscreteOctagon algorithm with 1 + ε = 1.2 took 1.8 times as long as the
DiscreteCircle configuration specified above.

For small �, i.e., scaled-up polygons, it can be seen that the choice of δ has a substantial
impact on the CPU time of Continuous. It has, however, no measurable impact on the
solution quality as discussed in Sect. 6.2.2.

Increasing � narrows the speed gap between Discrete and Continuous, as the former
profits from a large� by using fewer steps in τ—and hence fewer arcs in the arrangements—
whereas it makes little difference to Continuous.
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Furthermore, in most configurations,DiscreteCircle is faster thanDiscreteOctagon,
especially for α = 2. This means that the issue discussed in Sect. 5.1.2 is settled: Using
octagons instead of circles in order to exclude circular arcs from the arrangements does not
pay off, especially since it takesmore octagons than circles to achieve the same approximation
factor w.r.t. the continuous fading function �.

6.3 Choosing an algorithm

Clearly, DiscreteCircle should be preferred over DiscreteOctagon as it has higher suc-
cess rates, smaller objective values, and, in most configurations, lower run times.

As for Continuous, observe that in our experiments the choice of δ does not influence the
objective value. Hence, we compare DiscreteCircle to Continuous with δ = 0.01. The
only configuration of DiscreteCircle yielding comparable objective values uses 1 + ε =
1.2, but even in that case Continuous usually produces better solutions and has higher
success rates.

However, Continuous does not guarantee any bounds on the approximation quality.
Hence, if an approximation guarantee is required, DiscreteCircle must be preferred. Fur-
thermore,DiscreteCircle is faster for large�, i.e., on polygons with a small spatial extent.

7 Future work: AGPF with point guards

Sections 5 and 6 demonstrate that AGPF(G, P) can be solved efficiently with the proposed
algorithms. Hence, solving AGPF(P, P) is a natural candidate for future work.

In previous work [20], we successfully used the doubly-infinite LP formulation for
AGP(P, P), together with separation routines for both the primal and the dual LP, in a
practically efficient algorithm. The same could be applied here. As can be easily confirmed,
the dual separation problem asks for a point g ∈ P with

∑

w∈V(g)

�(g, w)yw > 1, (24)

given a dual solution y. Primal and dual separation problems are very similar: Given a
solution x (y, respectively), they ask for the darkest (respectively brightest) point in the
corresponding arrangement.

If those two problems can be solved efficiently, a possible strategy is to switch between
primal and dual separation. This strategy is not guaranteed to converge, but if it does it
converges to an optimal solution—and it has been shown to perform well in practice [20].
Thus, the interesting question is whether this holds true for AGPF(P, P). Both approaches
from this paper allow for such a strategy.

Another possibility is to use the approach by Tozoni et al. [26] for the AGP with point
guards, which uses inclusion-maximal features of a witness visibility-arrangement for guard
placement. This generalizes to AGPFτ : A feature of the witness overlay dominates another
if it is seen by at least the same set of guards and their coefficients �(g, w) are not smaller.

8 Conclusions

We introduce the art gallery problem with fading (AGPF), which is a generalization of
both, the well-established art gallery problem [11,23] and the Stage Illumination Problem

123



44 J Glob Optim (2017) 68:23–45

by Eisenbrand et al. [14]. For the AGPF, we present two efficient algorithms for the case
with fixed guard positions stemming from an infinite LP formulation. While one of them is
faster in practice and generally provides a good solution quality, the other provides a fully
polynomial-time approximation scheme, i.e., guaranteed bounds on the solution quality. We
evaluate both approaches experimentally.
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