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Abstract Providing partial preference information for multiple criteria ranking or sorting
problems results in the indetermination of the preference model. Investigating the influence
of this indetermination on the suggested recommendation, we may obtain the necessary,
possible and extreme results confirmed by, respectively, all, at least one, or the most and least
advantageous preference model instances compatible with the input preference information.
We propose a framework for answering questions regarding stability of these results. In
particular, we are investigating the minimal improvement that warrants feasibility of some
currently impossible outcome as well as the maximal deterioration by which some already
attainable result still holds. Taking into account the setting of multiple criteria ranking and
sorting problems, we consider such questions in view of pairwise preference relations, or
attaining some rank, or assignment. The improvement or deterioration of the sort of an
alternative is quantified with the change of its performances on particular criteria and/or
its comprehensive score. The proposed framework is useful in terms of design, planning,
formulating the guidelines, or defining the future performance targets. It is also important for
robustness concern because it finds which parts of the recommendation are robust or sensitive
with respect to themodification of the alternatives’ performance values or scores. Application
of the proposed approach is demonstrated on the problem of assessing environmental impact
of main European cities.
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1 Introduction

The concept of criterion plays a fundamental role in decision aiding. Serving as a tool
for evaluating and comparing alternatives, a criterion represents a specific point of view
on the impact and quality of alternative decisions. As noted by Hyde and Maier [17], the
performance values that are assigned to each alternative for every criterion are obtained from
models, available data, or by expert judgment based on previous knowledge or experience.

In the presence of multiple conflicting criteria, decision aiding is performed with the use
of some explicit usually formalized models and methods. A crucial element of these methods
concerns dealing with preferences of the Decision Maker (DM) in a way that ensures that a
recommended decision is as consistentwith theDM’s objectives and value system as possible.

Indirect and imprecise preference informationThemajority of the recently proposedMultiple
Criteria Decision Aiding (MCDA)methods admit partial preference information provided by
the DM at the input. In particular, onemay elicit holistic judgments, such as pairwise compar-
isons of alternatives or criteria (see, e.g., [12,29]), assignment-based pairwise comparisons
[19], assignment examples (see, e.g., [9,33]), rank-related requirements [22], or desired
class-cardinalities (see, e.g., [23,42]). Furthermore, one may also specify some imprecise
statements, like lower and upper bounds for comprehensive scores (see, e.g., [40]) or prefer-
ence ratios (see, e.g., [28]). In any case, elicitation of partial preferences requires less cognitive
effort on the part of theDMthanproviding precise values for the preferencemodel parameters.

Robustness analysis in multiple criteria decision aiding When using partial preference
information, the DM’s preference model is defined imprecisely. Depending on the selected
compatible model instance, the recommendation for the set of alternatives may vary signifi-
cantly. To investigate its robustness, several approaches have been proposed. In the context
of ranking problems, they indicate the range of ranks attained by each alternative (see [21]),
verify the possibility and necessity of the pairwise preference relations by checking if they
hold for at least one or all compatible preference model instances, respectively (see, e.g.,
[12,16,28]), or indicate various intensity measures of the dominance relation (see, e.g., [2]).
For multiple criteria sorting, analysis in terms of the possible and the necessary may be
referred to class assignments (see [13,27,33]) or assignment-based preference relations (see
[26]). Methods that employ the whole set of compatible preference model instances usually
admit incremental specification of preference information in the course of an interactive pro-
cedure. Indeed, analysis of the robust results provokes reaction of the DMwhomay add a new
or revise the old preference information. As noted by Corrente et al. [8], such an interactive
process ends when the yielded necessary, possible, or extreme recommendation is decisive
and convincing for the DM.

The core of post factum analysis In this paper, we propose a methodology of post factum
analysis that is designed for use once recommendation has been worked out. Without loss of
generality, we focus on an additive value function preference model which is of particular
interest in MCDA for an intuitive interpretation of numerical scores of alternatives and a
straightforward impact of pieces of preference information on the final result. Thus, in our
case, a single preference model instance is a value function composed of marginal value
functions with a precisely established course (shape).

Knowledge about the necessary, possible, and extreme consequences of the provided
preference information may stimulate further questions from the DM. Indeed, knowing the
performances of alternatives on considered criteria, as well as the ranges of their scores
on all compatible preference model instances, the DM may wonder how the improvement
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or deterioration of some performances or scores influences the sort of an alternative in the
obtained recommendation. On one hand, in case of falsity of some result concerning a given
alternative, the DM may wish to know the minimal improvement that would warrant feasi-
bility of the investigated part of the recommendation. On the other hand, if some result is
already attained by an alternative for the current set of compatible preferencemodel instances,
the DM may be interested in the maximal deterioration for which this outcome still holds.
Taking into account the setting of multiple criteria ranking and sorting, such questions may
concern pairwise preference relations, attaining a particular rank or assignment. Considering
the plurality of compatible preference model instances, reaching or preserving the target may
be investigated for all or at least one compatible model instance. In this way, post factum
analysis offers a rich framework addressing multivariate robustness and sensitivity concerns.
The exemplary questions that may be suitably dealt within this framework are the following:

– in case a is not even possibly preferred to b, what is the minimal improvement of perfor-
mances of a that guarantees the truth of the possible preference;

– in case a is possibly assigned to classes C2–C4, what is the minimal improvement of the
comprehensive value (score) of a that warrants that it is assigned to class at least as good
as C3 for all compatible value functions;

– in case a is ranked first for the most advantageous value function, what is the maximal
deterioration of its performances on criteria g1 and g2, such that a is still possibly ranked
at the very top;

– in case a is assigned to a class at least as good as b for at least one compatible value
function, what is the maximal deterioration of the comprehensive value (score) of a for
which this possible assignment-based preference relation is still satisfied.

The discovered modifications indicate the strategy for achieving or maintaining the target. It
may be useful in formulating the guidelines, design, planning, and defining the performance
targets. This kind of analysis is also important for robustness concern because it finds which
parts of the computed necessary, possible, and extreme results are robust.With small required
improvement or alloweddeterioration the recommendeddecision canbe regarded as sensitive,
whereas in case themodification of performance values is large theDMcan bemore confident
of the validity of result. It is very useful in the perspective of co-constructive decision aiding
[8]. Indeed, indication of the most or the least robust results may be used for stimulating the
DM for further analysis, revising/enriching her assessments, or re-evaluating the performance
values which are the most critical in the ranking or assignment of the alternatives. The latter
is important if uncertainties arise in the performances of some alternatives. Other approaches
in this spirit aim at justifying the suggested recommendation in terms of minimal pieces of
preference information that make them true (called preferential reducts) [20] or stochastic
analysis indicating an estimate of the probability of a possible preference relation, attaining
some rank [25] or assignment [37].

We perceive the proposed post factum analysis as a complementary methodology to
MCDA which, until now, concentrated mainly on providing a recommendation based on
a preference model compatible with preference information provided by the DM. While
robustness analysis of the obtained recommendations concerned validity of conclusions with
respect to allowed changes of either performances or preference model parameters, the post
factum analysis extends the concept of such analysis to other useful questions, like “what
improvement on all or some performances of a given alternative should be made, so that it
achieves a better result in the recommendation obtained with a set of compatible preference
models?”, or “what is the margin of safety in some or all performances of a given alternative,
within which it can maintain the same rank or class assignment as in the obtained robust
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recommendation?”. Answering this type of questions is very useful for the DMwho wants to
assess the opportunities and threats for particular alternatives. Such a preoccupation is typical
for environmental management, engineering design, business consult, marketing, and public
sector institutions.

Relation with data envelopment analysis Investigation of the improvement and deteriora-
tion of the alternative’s performances and/or comprehensive value that grants, respectively,
achievement or maintenance of some target result has received a limited attention in MCDA
(see [5,17,39,41], and a review in Sect. 4). Moreover, among these approaches there is none
that would investigate the impact of the change of alternatives’ performances or scores on
the robustness of delivered recommendation.

Nevertheless, this type of analysis is at the core of Data Envelopment Analysis (DEA) (see
[6]). DEA is a technique for measuring the relative efficiency of Decision Making Units
(DMUs) that use similar inputs to produce similar outputs where the multiple inputs and out-
puts are incommensurate in nature. On one hand, the basic algorithms for checking if DMU
is efficient, measure a “radial distance” of DMU from an efficient frontier. This distance can
be interpreted as the coefficient by which DMU’s outputs should be multiplied (or DMU’s
inputs need to be divided) in order to make it efficient (see [3]). In this way, DEA provides
a measure of efficiency for each DMU, at the same time indicating for the non-efficient ones
their “efficient peers”, i.e., the best practices to follow. Recently, DEA has been generalized
to Ratio-based Efficiency Analysis (REA) which derives its results from all feasible out-
put and input weights (see [34]). REA extends conventional efficiency scores by computing
efficiency bounds, pairwise dominance relations, ranking intervals, and specification of per-
formance targets. The latter is closely related to the necessary and possible improvements
that we consider in view of multiple criteria ranking. On the other hand, if some DMU is
efficient, neither an increase of any output nor the decrease of any input can change its effi-
ciency status. Nevertheless, it can afford a limited increase in input or decrease in output, still
remaining efficient after the change. Similar concerns have been raised with respect to uncer-
tain coefficients with computation of the stability intervals which guarantee that the results
do not change. Robustness analysis of this type has been conducted by, e.g., [11,35,43,44].

Organization of the paper The organization of the paper is the following. In the next section,
we introduce basic concepts and notation that will be used in the paper. In Sect. 3, we remind
selected value-basedmultiple criteria ranking and sortingmethods based on partial preference
information. In Sect. 4, we review the existing multiple criteria sensitivity analysis methods
investigating the impact of varying the performance values on the delivered recommendation.
Moreover, we refer to a few management and environmental applications to which our post
factum analysis can be applied. Section 5 introduces the framework for post factum analysis.
For the purpose of illustration, in Sect. 6,we consider the problemof evaluating environmental
impact of main European cities. The last section concludes the paper.

2 Notation

We shall use the following notation:

– A = {a1, a2, . . . , ai , . . . , an}—a finite set of n alternatives;
– G = {g1, g2, . . . , g j , . . . , gm}—a finite set of m performance (evaluation) criteria, g j :

A → R for all j ∈ J = {1, 2, . . . ,m};
– AR = {a∗, b∗, . . .}—a finite set of reference alternatives; in general, AR may consist

of past decision alternatives or fictitious alternatives, consisting of performances on the
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criteriawhich can be easily judged by theDMto express his/her comprehensive judgment;
we assume, however, that AR ⊆ A is a subset of alternatives relatively well-known to
the DM on which (s)he accepts to express holistic preferences;

– Ch, h = 1, . . . , p—pre-defined preference ordered classes such that Ch+1 is preferred
to Ch , h = 1, . . . , p − 1; H = {1, 2, . . . , p};

– X j = {x j ∈ R : g j (ai ) = x j , ai ∈ A}—the set of all different performance values
on g j , j ∈ J ; we assume, without loss of generality, that the greater g j (ai ), the better
alternative ai on criterion g j , for all j ∈ J ;

– x1j , x
2
j , . . . , x

n j (A)

j —the ordered values of X j , xkj < xk+1
j , k = 1, . . . , n j (A)− 1, where

n j (A) = |X j | and n j (A) ≤ n; consequently, X = ∏m
j=1 X j is the performance space;

– g j,∗ and g∗
j are, respectively, the worst and the best possible performances on g j ; g j,∗ =

x1j and g∗
j = x

n j (A)

j or, if provided, g j,∗ and g∗
j are, respectively, the lower and upper

bounds for the performance scale on g j .

In order to represent DM’s preferences, we shall use a model in the form of an additive value
function:

U (a) =
m∑

j=1

u j (g j (a)), (1)

where the marginal value functions u j , j ∈ J , are monotone, non-decreasing and their sum
is normalized, so that the additive value (1) is bounded within the interval [0, 1]. Note that
for simplicity of notation, one can write u j (a), j ∈ J , instead of u j (g j (a)). Consequently,
the basic set of constraints defining general additive value functions has the following form:

u j (xkj ) − u j (x
(k−1)
j ) ≥ 0, k = 2, . . . , n j (A), j = 1, . . . ,m,

u j (x1j ) ≥ u j (g j,∗), u j (x
n j (A)

j ) ≤ u j (g∗
j ),

u j (g j,∗) = 0, j = 1, . . . ,m,
∑m

j=1 u j (g∗
j ) = 1.

⎫
⎪⎬

⎪⎭
E AR

BASE

Instead of just monotone marginal value functions with all criteria values being their
characteristic points, we can use piecewise linear or even linear ones. As indicated by Spliet
and Tervonen [36], this is desirable for practical decision support. For formulation of the
monotonicity constraints for piece-wise linear marginal value functions, see, e.g., [20]. Of
course, the less linear pieces are permitted for such marginal value functions, the smaller the
capacity of representation of preferences by the value function (1).

3 Reminder on the necessary, possible, and extreme results

When using partial preference information, there is usuallymore than a singlemodel compat-
ible with the DM’s judgments. To avoid any arbitrary selection, the prevailing trend inMCDA
consists in taking into account the whole set of instances. Examination of its application on
the set of alternatives A leads to identifying the necessary and possible consequences con-
firmed by all or at least one compatible preferencemodel instance, respectively. Additionally,
one may also compute the extreme recommendation for each alternative indicating the result
observed for it in the most and least advantageous cases. While there are several methods
for generating partial preference information, without loss of generality, in this section we
will refer only to the basic holistic judgments. These are pairwise comparisons for multiple
criteria ranking and assignment examples for sorting problems. In this section, we recall the
basic ideas for multiple criteria ranking and sorting with a set of value functions.
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3.1 Multiple criteria ranking with a set of value functions

Pairwise comparisons When dealing with multiple criteria ranking problems, the basic
indirect preference information thatmaybe provided by theDMhas the formof pairwise com-
parisons for some reference alternatives. The comparison of a pair (a∗, b∗) ∈ BR ⊆ AR×AR

may state the strict preference, weak preference, or indifference denoted by a∗ �DM b∗,
a∗ �DM b∗, and a∗ ∼DM b∗, respectively. Let each pairwise comparison from BR be
denoted by BR

k , k = 1, . . . , |BR |. The transition from such a reference preorder to a value
function is done in the following way:

U (a∗) ≥ U (b∗) + ε if a∗ �DM b∗,
U (a∗) = U (b∗) if a∗ ∼DM b∗,
U (a∗) ≥ U (b∗) if a∗ �DM b∗,

⎫
⎬

⎭
BR
k , k = 1, . . . , |BR |

⎫
⎬

⎭
E AR

PI−RANK

where ε is an arbitrarily small positive value. Then, a set of value functions U AR

RANK that are
able to reconstruct these judgments is defined with the following set of constraints:

E AR

PI−RANK,

E AR

BASE,

}

E AR

RANK (2)

where E AR

BASE is the basic set of monotonicity and normalization constraints defining general

additive value functions (see Sect. 2). If ε∗ = max ε, s.t. E AR

RANK, is greater than 0 and E AR

RANK
is feasible, the set of compatible value functions is non-empty. Otherwise, the provided
preference information is inconsistent with the assumed preference model.

Necessary and possible preference relationsApplying all compatible value functions U AR

RANK,
we may define two binary relations in the set of alternatives A (see [12]):

– Necessary weak preference relation, �N , that holds for a pair of alternatives (a, b) ∈
A × A, in case U (a) ≥ U (b) for all compatible value functions;

– Possibleweak preference relation,�P , that holds for a pair of alternatives (a, b) ∈ A×A,
in case U (a) ≥ U (b) for at least one compatible value function.

The linear programs (LPs) that need to be solved to assess whether these relations hold are
given by Corrente et al. [8] and Greco et al. [12].

Extreme ranks By considering all complete preorders established by value functions com-
patible with the preference information, we may also determine the best P∗(a) and the worst
P∗(a) ranks attained by each alternative a ∈ A. Identification of these extreme ranks requires
solving some Mixed-Integer Linear Programming (MILP) problems presented by [21].

3.2 Multiple criteria sorting with a set of value functions

When it comes to methods designed for dealing with multiple criteria sorting problems,
let us focus on a threshold-based sorting procedure, where the limits between consecutive
classes Ch , h = 1, . . . , p, are defined by a vector of thresholds t = {t1, . . . , tp−1} such that
0 < t1 < . . . < tp−1 < 1, and th−1 and th are, respectively, the lower and the upper threshold
of class Ch, h = 2, . . . , p−1 (see, e.g., [45]). These thresholds concern the scores assigned
to alternatives by a value function. Note that t1 is an upper threshold of class C1 while the
lower threshold is 0, and tp−1 is a lower threshold of class Cp while the upper threshold
is >1. Thus, the DM preferences are represented with a pair (U, t), where U is an additive
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value function and t is a vector of thresholds delimiting the classes. Alternative a is assigned
to class Ch (a → Ch) iff U (a) ∈ [th−1, th].
Assignment examples The basic indirect preference information that may be provided by the
DM dealing with multiple criteria sorting has the form of possibly imprecise assignment
examples. Each assignment example consists of a reference alternative a∗ ∈ AR and its
desired assignment [LDM (a∗), RDM (a∗)], with LDM (a∗) ≤ RDM (a∗). Let each assignment
example be denoted by AR

k , k = 1, . . . , |AR |. These assignment examples are translated to
the following constraints:

U (a∗) ≥ tLDM (a∗)−1,

U (a∗) + ε ≤ tRDM (a∗),

}

AR
k , k = 1, . . . , |AR |

}

E AR

PI-SORT

t1 ≥ ε, tp−1 ≤ 1 − ε,

th − th−1 ≥ ε, h = 2, . . . , p − 1,

E AR

BASE.

⎫
⎬

⎭
E AR

BASE-SORT

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

E AR

SORT (3)

The set of pairs (U, t)A
R

SORT compatible with the provided assignment examples is non-empty,

if ε∗ = max ε, s.t. E AR

SORT, is greater than 0 and E AR

SORT is feasible.

Necessary and possible assignments Given a set AR of assignment examples and a corre-
sponding set of compatible pairs (U, t)A

R

SORT, for each alternative a ∈ A (see [13,26]):

– The possible assignment CP (a) = [LP (a), RP (a)] is defined as the set of indices of
classes Ch for which there exists at least one compatible pair (U, t) assigning a to Ch

(denoted by a →P Ch);
– The necessary assignment CN (a) = [LN (a), RN (a)] as the set of indices of classes Ch

for which all compatible pairs (U, t) assign a to Ch (denoted by a →N Ch).

The linear programs for computing the possible and necessary assignments are given by
Greco et al. [13] and Kadziński and Tervonen [26].

Necessary and possible assignment-based preference relations Given a set of compatible
preference model instances, the possible assignment-based preference relation a �→,P b
holds if a is assigned to a class at least as good as class of b for at least one compatible model,
and the necessary assignment-based preference relation a �→,N b is true if a is assigned
to a class at least as good as class of b for all compatible models. To verify the truth or
falsity of these relations, we need to consider the MILP problems presented by Kadziński
and Tervonen [26].

4 Review of multiple criteria sensitivity analysis methods investigating the
impact of varying the performance values on the delivered
recommendation

Themajority of multiple criteria sensitivity analysis methods assess the impact of uncertainty
in the preference model parameters (e.g., criteria weights) on the delivered recommendation
[7]. In this section, we review few existing approaches which investigate the influence of
variability in the performance values on the ranking of alternatives. Then, we refer to their
real-world applications.

The early sensitivity analysis methods in this stream are limited to varying the alternative’s
performance value on a single criterion. In particular, when using the PROMETHEEmethod,
[41] verified howmuch a selected value needs to be improved to make the considered alterna-
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tive ranked first. While considering three different multiple criteria aggregation procedures
(the weighted sum model, the weighted product model, and the Analytic Hierarchy Process
(AHP)), Triantaphyllou and Sanchez [39] investigated what is the minimum change in the
performance value leading to an inversion of the currently observed preference relation for
a pair of alternatives. These results were further used to indicate how critical the various
performance values (in terms of a single criterion at a time) are in the ranking attained by
the alternative.

The more recent methods for sensitivity analysis admit simultaneous variation of several
performance values. Hyde and Maier [17,18] verified what is the minimum modification of
the performances to improve score of the alternative so that it becomes weakly preferred to
another alternative. Such result is derived from solving an optimization problem which min-
imizes the distance between the original and optimized performance values. In the proposed
setting, one considered both PROMETHEE and the weighted sum method. Moreover, the
user was asked to choose between different distancemetrics including a Euclidean distance, a
Manhattan distance, and a Kullbacke-Leibler distance. In the same spirit, Beynon and Barton
[4] and Beynon andWells [5] identified the minimum (lean) changes necessary to the criteria
values of a considered lower ranked alternative that improve its rank to that of a compara-
tively higher ranked alternative. Precisely, they considered the problem of minimization of
a Euclidean distance in the context of PROMETHEE.

Yet another stream of algorithms admits variation of original performance values and
investigates the consequence of thus imposed uncertainty usingMonte Carlo simulation (see,
e.g., [17,32]). In this way, one can check the synthetic effect of varying different performance
values (within some admissible pre-defined range or with respect to an assumed distribution)
on attaining some target rank or comprehensive score.

The above-mentioned approaches have been used in a fewmanagement and environmental
applications. These can be treated as exemplary real-world problems towhich our post factum
analysis can be applied. We divide these applications into two groups depending on the type
of a ranking-specific target they considered:

– Attaining a particular rank (either the top rank or an arbitrarily selected position):

– Wolters andMareschal [41] considered different designs of a heat exchanger network
in terms of modifying the underlying investment costs. The results were used for
granting additional funds on a specific alternative.

– Beynon and Wells [5] considered a set of motor vehicles in terms of the minimum
necessary engineering performance modification in their emission levels. The results
were interpreted as the guidelines to be attained by future engineering work in the
process of engine calibration and other adjustments.

– Beynon and Barton [4] considered a set of individual police forces in the United
Kingdom in terms of the minimum changes to sanction detection levels (clear up
rates) that need to be attained. The outcomes were useful for strategy planning,
offering quantitative evidence of course.

– Inversion of a pairwise preference relation (attaining a rank equivalence):

– Hyde and Maier [17] considered alternative water management options in terms of
changing their environmental (e.g., efficient water use and reuse), social (e.g., clean
industry and employment), and economic (e.g., true or full cost pricing) factors.
Their results were helpful in determining the development strategy that offers a more
sustainable future for the area.
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– Ravalico et al. [31] considered different locations of a salt interception scheme (SIS)
in the Murray river in terms of changing the parameters related to the travel time
and dead storage in the reaches of the river between some locks. This allowed to
assess the sensitivity of the preferred location of each SIS and give the DMs a level
of confidence in the ranking of these alternatives.

– Chen et al. [7] considered a set of management options of diffuse pollution in the
Taman river catchment in terms of adjusting the application of fertilisers, stocking
density, and land use distribution, restoring wetland area, and increasing the area of
non-farmed land. The outcomes were used to judge the robustness of the original
results with respect to variation of performance values.

– Rocco and Tarantola [32] considered a set of public investments in refineries, bridges,
or petroleum exploration in terms of modifying their financial, economic, and social
aspects (e.g., benefit-cost ratio, compensation of employees or remunerations, and
employment).

5 Post factum analysis

As said before, exploitation of the set of preference model instances compatible with DM’s
preferences results in the necessary, possible, and extreme recommendations. Their analysis
may stimulate questions concerning the stability of the provided outcomes and conditions
under which some parts of the considered recommendation become or remain true. We will
call the proposed framework by “post factum analysis”, because it should be employed when
some recommendation has been already produced in result of an interaction between the DM
(possibly assisted by an analyst) and the method.

In this section, we will discuss different elements of this framework corresponding to a
variety of targets to be achieved by the alternatives. These targets are distinguished by the type
of considered recommendation, certainty level for the accounted results as well as currently
observed outcomes. When it comes to the first aspect, we propose to analyze conditions
granting the following targets:

– in case of multiple criteria ranking:

– the truth of a preference relation for an ordered pair of alternatives: a � b,
– the truth of a preference of an alternative with respect to a group of at least two other

alternatives: a � b,∀b ∈ A′,
– attaining a particular rank: P∗(a) ≤ k or P∗(a) ≤ k,

– in case of multiple criteria sorting:

– the truth of an assignment-basedpreference relation for anorderedpair of alternatives:
a �→ b,

– attaining a particular class assignment: LP (a) ≥ k or RP (a) ≥ k.

As far as certainty level for the results is concerned, we will consider the above five targets in
view of their achievement for at least one or all preference model instances compatible with
DM’s preference information. Obviously, achieving a certain target in the possible sense is
easier than in the necessary setting. Finally, depending on the currently delivered recommen-
dation, real-world experience indicates interest in two types of questions. The first one deals
with quantifying either improvement that needs to be made or a gap that has to be covered to
reach a certain target. The other one is about estimating potential deterioration that could be
afforded, or about measuring an existing redundancy in case some target is already acquired.
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Wewill analyze conditions that need to be satisfied to achieve or preserve some target from
two perspectives. Firstly, we will take into account performances of alternatives. Secondly,
we will investigate the change of a comprehensive value (score) of an alternative rather than
direct improvement or deterioration of its performances. These complementary perspectives
offer a diverse view on the robustness of the delivered recommendation.

In this section, we formalize the framework of post factum analysis by introducing the
notions of the possible and necessary improvement, deterioration,missing and surplus values.
Let us emphasize that all definitions are conditioned by the use of both a particular preference
model and preference information provided by the DM. We will also present the procedures
for computing these measures for each out of five accounted targets referring to the truth
of a preference relation or assignment-based preference relation or a group of preference
relations as well as to attaining some rank or assignment.

Byproposing the frameworkof post factumanalysis,wegeneralize the existing approaches
which investigate the impact of a change in performance values on the delivered recommen-
dation (see Sect. 4) in the following aspects:

– We consider a set of preference model instances compatible with the DM’s indirect pref-
erence information for deriving the base recommendation (see Sect. 3) and subsequent
formulation of the targets to be attained. On the contrary, the vast majority of existing
approaches employ just a single preference model instance with precise parameter val-
ues, thus failing to investigate the impact of varying the alternatives’ performances or
scores on the robustness of the delivered recommendation.

– We formulate a wide spectrum of targets taking into account the specificity of both
multiple criteria ranking and sorting problems. We extend the types of targets that can be
considered in context of the former, and propose the targets that are of interest in terms
of the latter.

– Apart from investigating the improvement that needs to be made so that to attain some
target (see Sects. 5.2.1, 5.3.1), we enrich the existing methods for sensitivity analysis by
considering admissible deterioration by which some already attained target is maintained
(see Sects. 5.2.3, 5.3.2).

– We investigate two scenarios of attaining/maintaining the targets in terms of the neces-
sary (for all compatible preference model instances) and the possible (for at least one
compatible preference model instance). A related setting has been discussed in [31],
where the question of changing the rank of an alternative is considered by dividing the
space of compatible preference model instances into the three regions where the prefer-
ence relation is, respectively, unaffected, inverse, and the boundary region separating the
previous ones.

– We discuss different procedures for changing the alternative’s performance values (see
Sect. 5.2.2), primarily focusing on adapting the approach postulated in DEA which con-
sists in multiplying the performances by a common factor (see Sects. 5.2.1, 5.2.3).

– Apart from assessing the impact of varying the performance values (see Sect. 5.2), we
show how to attain/maintain some target by changing directly the alternative’s compre-
hensive score (value) (see Sect. 5.3). Such change may be either treated as the result per
se or further decomposed into the required/admissible variation of performance values.
A related algorithm which admits varying a marginal score on a single criterion only, has
been proposed in [7].

5.1 Notation used in post factum analysis

We will use the following notation w.r.t. the results of post factum analysis:
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WX
Y (Z),

where:

– W ∈ {ρ, u}, with ρ representing the change of alternative’s performances and u repre-
senting the change of alternative’s comprehensive value;

– X ∈ {P, N }, with P and N representing, respectively, the possibility or the necessity of
achieving/preserving a target;

– Y ∈ {>,<}, with > representing investigation of an improvement that needs to be made
in case some target has to be achieved, and< representing investigation of a deterioration
that can be afforded in case some target needs to be preserved;

– Z ∈ {(a � b), (a � b,∀b ∈ A′), (P∗(a) ≤ k), (P∗(a) ≤ k), (RP (a) ≥ k), (LP (a) ≥
k), (a �→ b)} represents the target under consideration.

For example:

– ρP
>(P∗(a) ≤ k) is the rank-related possible improvement, i.e., the improvement (>) of

the performances of a (ρ) that is required so that its best rank (P∗(a)) is not worse than
k for at least one compatible value function (P);

– uN
<(a � b) is the preference-related necessary surplus value, i.e., the maximal value (u)

that when subtracted (<) from the comprehensive value of a still admits a to be preferred
by b (a � b) for all compatible value functions (N ).

5.2 Changing performances of an alternative

In this subsection, we will analyze the change of alternative’s performances that needs to
be made to achieve or preserve some target. On one hand, when a certain target needs to
be achieved, it means that current performances of an alternative on all or some criteria are
not sufficiently good and should be improved. Obviously, we are interested in the minimal
improvement that guarantees achieving a designated target. On the other hand, if some tar-
get has been already acquired, an alternative can possibly afford some deterioration of its
performances not exerting an influence on the target maintenance. In this case, the maximal
deterioration for which a target is still preserved is of interest to the DM.

Although, in general, one may consider different means for quantifying the improvement
or deterioration, we believe that the answer provided to the DM should be as simple as
possible. Thus, we focus on considering radial increases and decreases of the performances
on different criteria by multiplying them by a common factor, respectively, greater or less
than one. This approach has been postulated in DEA where the DMU’s outputs or inputs are
multiplied by the common coefficient. Its value indicates whether the unit is efficient, i.e., if
it is ranked first for some feasible output and input weights. Nevertheless, we also discuss
some other distance metrics that can be employed within the proposed framework.

5.2.1 Possible and necessary improvement

Definition 1 Assume that some target is not attained by an alternative a ∈ A in the set of
preference model instances compatible with DM’s preference information. A comprehensive
possible (necessary) improvement for a in view of acquiring this target is the minimal real
number greater than one by which the performances of a on all criteria need to be multiplied
so that the target is achieved for at least one (all) compatible preference model instance.
Depending on the type of considered target, we distinguish:
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– preference-related possible (necessary) improvement ρP
>(a � b) (ρN

> (a � b)) in case
not (a �P b) (not (a �N b)), i.e., a is not possibly (necessarily) preferred to b, and it
needs to improve its performances so that a �P b (a �N b);

– group preference-related possible (necessary) improvement ρP
>(a � b,∀b ∈ A′)

(ρN
> (a � b,∀b ∈ A′)) in case ∃b ∈ A′ ⊆ A, not (a �P b) (not (a �N b)), i.e.,

a is not possibly (necessarily) preferred to at least one alternative b from a subset of
alternatives A′ ⊆ A, and it needs to improve its performances so that ∀b ∈ A′, a �P b
(a �N b);

– rank-related possible (necessary) improvement ρP
>(P∗(a) ≤ k) (ρN

> (P∗(a) ≤ k)) in
case P∗(a) > k (P∗(a) > k), i.e., the best (worst) rank of a is worse than k, and a needs
to improve its performances so that P∗(a) ≤ k (P∗(a) ≤ k);

– assignment-related possible (necessary) improvement ρP
>(RP (a) ≥ k) (ρN

> (LP (a) ≥
k)) in case RP (a) < k (LP (a) < k), i.e., the best (worst) possible class of a is worse
than Ck , and a needs to improve its performances so that RP (a) ≥ k (LP (a) ≥ k),

– preference-related assignment-based possible (necessary) improvement ρP
>(a �→ b)

(ρN
> (a �→ b)) in case not (a �P,→ b) (not (a �N ,→ b)), i.e., a is not possibly (neces-

sarily) assigned to a class at least as good as b, and it needs to improve its performances
so that a �P,→ b (a �N ,→ b).

Computation of the comprehensive possible improvement requires solving the following
non-linear optimization problem:

Minimize : ρ (4)

s.t.:

E(Aρ
a ),

gρ
j (a) = g j (aρ) = ρ · g j (a), for all j = 1, . . . ,m,

for preference-related possible improvement:
∑m

j=1 u j (g
ρ
j (a)) ≥ ∑m

j=1 u j (g j (b)),

for group preference-related possible improvement:
∑m

j=1 u j (g
ρ
j (a)) ≥ ∑m

j=1 u j (g j (b)),

for all b ∈ A′ ⊆ A \ {a},
for rank-related possible improvement:
∑m

j=1 u j (g
ρ
j (a)) ≥ [∑m

j=1 u j (g j (b))] − M · vb,

for all b ∈ A \ {a},
∑

b∈A\{a} vb ≤ k − 1,

vb ∈ {0, 1}, for all b ∈ A \ {a},
for assignment-related possible improvement:
∑m

j=1 u j (g
ρ
j (a)) ≥ bk−1,

for preference-related assignment-based

possible improvement:

for h = 1, . . . , p :
∑m

j=1 u j (g
ρ
j (a)) ≥ bh−1 − Mvh(a, b),

[∑m
j=1 u j (g j (b))] + ε ≤ bh + Mvh(a, b),

∑p
h=1 vh(a, b) ≤ p − 1,

vh(a, b) ∈ {0, 1}, h = 1, . . . , p,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E possible
improvement (a, ρ)
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where E(Aρ
a ) is the constraint set defining compatible preference model instances when con-

sidering the set of alternatives Aρ
a = A∪{aρ}\{a}, such that aρ is obtained bymultiplying the

performances of a on all criteria by ρ. We need to consider E(Aρ
a ) instead of E(A), because

a is replaced with a new alternative aρ , whose performances need to satisfy monotonicity and
normalization constraints as well as constraints corresponding to the DM’s preference infor-
mation. Thus, the non-linearity of the above optimization problem is related to the fact that
we multiply performances of a which are subsequently transformed into respective marginal
values. Constraints related to achieving particular targets are the following:

– for preference-related possible improvement: U (aρ) ≥ U (b), which guarantees aρ �P

b;
– for group preference-related possible improvement: for all b ∈ A′,U (aρ) ≥ U (b), which

guarantees aρ �P b for all b ∈ A′;
– for rank-related possible improvement: constraint U (aρ) ≥ U (b) can be relaxed only

for up to k − 1 alternatives b ∈ A \ {a}, which guarantees that at most k − 1 alternatives
are at the same time ranked better than aρ , i.e., aρ attains at least k-th rank;

– for assignment-related possible improvement: U (aρ) ≥ bk−1, which guarantees that a
is assigned to a class not worse than Ck ;

– for preference-related assignment-based possible improvement: U (aρ) ≥ bh−1 and
U (b) < bh for some h ∈ {1, . . . , p}, which guarantees aρ �P,→ b.

Problem (4), being non-linear, cannot be solved efficiently with the use of contemporary
solvers. Nevertheless, it can be easily solved using the binary search (bisection) method (see
Algorithm 1 for the pseudo-code). It repeatedly bisects interval [1,max j∈J {g∗

j /g j (a)}] and
then selects a subinterval in which a sought minimal ρP

> must lie for further processing. This

is achieved by testing if E possible
improvement (a, ρP

>) is feasible. If so, the last tested ρP
> is too great,

which indicates the need for exploiting the lower subinterval. The binary search identifies
the solution with the required precision γ . For some recent uses of the binary search in
optimization, see, e.g., [14,15].

Require: a ∈ A, an alternative for which the improvement should be computed.
Require: γ , the precision of the obtained result (e.g., γ = 0.0001).
Ensure: ρP

> , minimal possible improvement.
1: ρdown = 1.
2: ρup = max j∈J {g∗

j /g j (a)}.
3: while ρup − ρdown ≥ γ do
4: ρP

> = (ρup − ρdown)/2.

5: if E possible
improvement (a, ρP

>) is feasible then

6: ρup = ρP
> .

7: else
8: ρdown = ρP

> .
9: end if
10: end while

Algorithm 1: Computing minimal possible improvement ρP
> using the binary search

method.

Although different methods can be used to solve this problem, the binary search has
been selected because it is guaranteed to converge, the error of identified solution can be
controlled, and the algorithm can be easily explained to non-specialists in computer science
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and mathematics. Moreover, its application is supported by the specific characteristics of
considered problem. First, if the target under consideration can be achieved, there exists only
a single solution. As a result, the binary search is guaranteed to identify it, and there is no
need to use methods that detect multiple solutions. Secondly, even though the convergence
of binary search is generally slow, in post factum analysis the targets to be analyzed should
be indicated by the DM and in most real-world problems a limited number of such targets
would be of particular interest to her/him.

Let us provide a few important remarks concerning computation of the possible compre-
hensive improvement. First of all, the need for identifying the improvement exists iff some
target is not attained with the current performance vector. That is why, the lower bound
for the search can be set to one, and we are guaranteed indication of ρP

> > 1 as the solu-
tion. Secondly, when multiplying an evaluation g j (a) by a value ρP

> > 1, it is possible that
ρP

> · g j (a) > g∗
j . We assume, however, that an alternative cannot reach an evaluation greater

than g∗
j . Thus, when ρP

> · g j (a) > g∗
j , we assume that u j (ρ

P
> · g j (a)) is equal to the maximal

marginal value on criterion g j , u j (g∗
j ).

Apart from considering comprehensive improvement of the performances on all criteria, it
may be interesting for the DM to compute a partial possible improvement ρP

>,Gρ
on a selected

subset of criteria Gρ ⊆ G only. The algorithm for identifying such partial improvement is
the same as for the comprehensive one, with the proviso that comprehensive value of aρ is
expressed as:

U (aρ) =
∑

g j∈Gρ

u j (g
ρ
j (a)) +

∑

g j∈G\Gρ

u j (g j (a)).

Obviously, there is no guarantee that improving performances only on criteria from subsetGρ

would be sufficient for achieving the target. In this case, it may be interesting to indicate all
minimal subsets of criteria which guarantee such an achievement. Let us call them possible
improvement reducts. They can be identified with Algorithm 2. It progressively tests all
possible subsets of criteria, starting from the minimal ones, and eliminates from the test list
the proper supersets of these subsets that already implied the achievement of the target.

Require: a ∈ A, an alternative for which improvement should be computed.
Ensure: P I Rs, all possible improvement reducts.
1: P I Rs = ∅
2: 2G = all subsets of G ordered with respect to the increasing cardinality.
3: for each G j ∈ 2G do

4: Test the feasibility of E possible
improvement (a, ρ) for ρ = max j∈G j {g∗

j /g j (a)}
and U (aρ) = ∑

j∈G j
u j (g

ρ
j (a)) + ∑

j∈G\G j
u j (g j (a)).

5: if feasible then
6: P I Rs = P I Rs ∪ G j .

7: Remove all supersets of G j from 2G .
8: end if
9: end for

Algorithm 2: Additive method for identifying all possible improvement reducts.

Remark 1 For any subsets of criteria G1 ⊂ G2 ⊆ G allowing achievement of the target,
ρP

>,G1
≥ ρP

>,G2
.
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Computation of the comprehensive necessary improvement requires identification of the
minimal real number greater than one by which we need to multiply the performances of a
on all criteria so that the target is achieved for all compatible preference model instances.
However, when there exists at least one compatible preference model instance, there are, in
general, infinitely many compatible instances, which cannot be checked one by one. To find
a way around, we need to compute the maximal multiplier for which the opposite target is
not attained. This can be done by solving the following non-linear optimization problem:

Maximize : ρ (5)

s.t.:

E(Aρ
a ),

gρ
j (a) = g j (aρ) = ρ · g j (a), for all j = 1, . . . ,m,

for preference-related necessary improvement:

[∑m
j=1 u j (g

ρ
j (a))] + ε ≤ ∑m

j=1 u j (g j (b)),

for group preference-related necessary improvement:

[∑m
j=1 u j (g

ρ
j (a))] + ε ≤ M · vb + ∑m

j=1 u j (g j (b)),

for all b ∈ A′ ⊆ A \ {a},
∑

b∈A′ vb = |A′| − 1,

vb ∈ {0, 1}, for all b ∈ A′,
for rank-related necessary improvement:

[∑m
j=1 u j (g

ρ
j (a))] + ε ≤ [∑m

j=1 u j (g j (b))] + M · (1 − vb),

for all b ∈ A \ {a},
∑

b∈A\{a} vb ≥ k,

vb ∈ {0, 1}, for all b ∈ A \ {a},
for assignment-related necessary improvement:

[∑m
j=1 u j (g

ρ
j (a))] + ε ≤ bk−1,

for preference-related assignment-based
necessary improvement:

for h = 1, . . . , p − 1 :
[∑m

j=1 u j (g
ρ
j (a))] + ε ≤ bh + M · vh(a, b),

∑m
j=1 u j (g j (b)) ≥ bh − M · vh(a, b),

∑p−1
h=1 vh(a, b) ≤ p − 2,

vh(a, b) ∈ {0, 1}, h = 1, . . . , p − 1.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Enecessary
improvement (a, ρ)

Using the suitably adapted binary search method (see Algorithm 1), we need to identify
the minimal ρ by which Enecessary

improvement (a, ρ) is infeasible (it is just greater than the maximal

ρ by which Enecessary
improvement (a, ρ) is feasible). Infeasibility of Enecessary

improvement (a, ρ) ensures that
the opposite target cannot be attained for any compatible preference model instance, which
implies the necessary achievement of the target under consideration. Constraints modeling
the targets opposite to the ones that should be acquired are the following:

– for preference-related necessary improvement,U (aρ) < U (b); if this cannot be satisfied,
aρ �N b;

– for group preference-related necessary improvement, ∃b ∈ A′,U (aρ) < U (b); if this
cannot be satisfied, aρ �N b for all b ∈ A′;
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– for rank-related necessary improvement, constraint U (aρ) < U (b) holds for at least k
alternatives b ∈ A \ {a}; if this cannot be satisfied, there are at most k − 1 alternatives
b ∈ A \ {a} ranked better than aρ , i.e., aρ attains rank not worse than k for all compatible
preference model instances;

– for assignment-related necessary improvement,U (aρ) < bk−1; if this cannot be possibly
satisfied, a is assigned to a class at least as good asCk for all compatible preferencemodel
instances;

– for preference-related assignment-based necessary improvement, U (b) ≥ bh and
U (aρ) < bh and for some h ∈ {1, . . . , p − 1}; if U (b) ≥ bh > U (aρ) cannot be
satisfied for any considered h, then aρ �N ,→ b.

Remark 2 For any target under consideration, the necessary comprehensive improvement is
not less than the corresponding possible improvement, i.e., ρN

> ≥ ρP
>.

5.2.2 Remarks on standardization of performance values, distance measures, and
performance scales

Standardization Note that before using post factum analysis aiming at changing the perfor-
mances of an alternative, to ensure that the scales of different criteria do not influence the
optimization, if required, one needs to perform standardization of the performance values to
commensurable units. Such standardization may consist in dividing each performance value
by the standard deviation σ j of the set of performances on g j , i.e.:

gst1j (a) = g j (a)/σ j . (6)

This approach has been used in [5,17]. Another approach, called feature scaling or unity-
based normalization, has been employed in [7,31]. It relates each performance value g j (a)

to the difference between extreme performances observed/allowed on g j , i.e.:

gst2j (a) = (g j (a) − g j,∗)/(g∗
j − g j,∗). (7)

Thus transformed, gst2j (a) can be interpreted in terms of the achievement level (e.g., when
considering scale [2, 10], g j (a) = 4 corresponds to 25% achievement level on g j ).

Measures of required improvement When multiplying the original or standardized perfor-
mance values by a common factor ρ, we investigate what is the minimal relative change
needed for reaching the target. Then:

g j (a
ρ) = ρ · g j (a) �⇒ ρ = g j (a

ρ)/g j (a). (8)

Alternatively, we may verify what is the minimal absolute improvement ρabs of each
performance value that is required for achieving the pre-defined target:

g j (a
ρ) = g j (a) + ρabs . (9)

Obviously, onemaydifferentiate the improvements that need to bemade on each individual
criterion. Let us denote the relative (absolute) improvement of a ∈ A on g j ∈ G by ρ j =
g j (aρ)/g j (a) (ρabs

j = g j (aρ) − g j (a)). Then, one may consider the minimization of the
following distance measures:

– the Euclidean distance dE,ρabs

a (used, e.g., in [5,17,31]):

dE,ρabs

a =
√∑m

j=1
(ρabs

j )2; (10)
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– the Manhattan distance dM,ρabs

a (used, e.g., in [17]; note that in our case ρabs
j is always

greater than zero):

dM,ρabs

a =
m∑

j=1

ρabs
j ; (11)

– the Chebyshev distance dCh,ρabs

a :

dCh,ρabs

a = max j=1,...,mρabs
j ; (12)

– the sum of relative improvements dR,ρ
a :

dR,ρ
a =

m∑

j=1

ρ j ; (13)

– the Kullbacke-Leibler distance dK L ,ρ
a (i.e., a relative entropy; used, e.g., in [17]):

dK L ,ρ
a =

m∑

j=1

g j (a
ρ) · ln(ρ j ). (14)

Criteria scalesThe use of the proposed framework for post factum analysis is straightforward
in case performances are expressed on a ratio scale.Wemay account for the interval scales by
considering the objective functions (9–12). Moreover, these functions need to be considered
when at least one of the performances to be improved is equal to zero. Since in this case it is
impossible to determine the relative improvement, only the absolute one may be of interest
to the DM.

Note, however, that the optimization problems with non-linear objective functions (10–
14) are even more difficult to solve than these discussed in Sect. 5.2.1. Thus, to differentiate
the improvements that need to be made on each criterion, one needs to use more advanced
heuristic optimization methods than the binary search. For a discussion on employing the
genetic algorithms in this particular context see, e.g., [5,17].

When ordinal performance scale is employed, neither ratios nor differences between the
performances or their codifications can be interpreted. Since in this case the linear interpo-
lation between the characteristic points is not meaningful, these criteria should be modeled
with the general marginal value functions with the characteristic points corresponding to all
different performances values. Moreover, they need to be excluded from changing the perfor-
mances by means of multiplication or addition. Instead, one can quantify the modification of
performance values only in terms of the required change of performance levels (rank orders
by which the performances are sorted). A single “shift” in performance corresponds to a
change of alternative’s evaluation to a performance above the original one. In this setting,
post factum analysis may indicate, e.g., the need for increasing the criteria values by one
performance level (e.g., from “average” to “good”) on g1 and g2 for reaching the first rank.
This is a rough measure, because the shifts between different performance values (e.g., from
“bad” to “medium” and from “medium” to “good” on g1) and criteria (e.g., from “bad” to
“medium” on g1 and g2) are not comparable. Alternatively, one can focus on computing the
missing value. This technique is described in Sect. 5.3.1.

All remarks presented in this subsection can be formulated analogously for the case of
deteriorating the performance values so that to maintain the already achieved target.
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5.2.3 Possible and necessary deterioration

Definition 2 Assume that some target is attained by an alternative a ∈ A in the set of
preference model instances compatible with DM’s preference information. A comprehensive
possible (necessary) deterioration for a in view of maintaining this target is the minimal real
number not greater than one by which the performances of a on all criteria need to be
multiplied so that the target is still achieved for at least one (all) compatible preference
model instance.

Comprehensive possible and necessary deteriorations in view of some specific targets are
defined analogously to the corresponding improvements in Definition 1. For example,
preference-related possible (necessary) deterioration ρP

<(a � b) (ρN
< (a � b)) is consid-

ered in case a �P b (a �N b), i.e., a is possibly (necessarily) preferred to b, and a can
afford deteriorating its performances while still a �P b (a �N b). The formulation of algo-
rithms for computing the possible and necessary deteriorations are the same as in case of
the improvements. Obviously, the upper bound for the search can be set to one (thus, we
are guaranteed that ρ ≤ 1 will be indicated as the solution) and the lower bound can be
set to min j∈J {g j,∗/g j (a)}. We also assume that in case ρ · g j (a) < g j,∗, u j (ρ · g j (a)) is
equal to the minimal marginal value on criterion g j equal to u j (g j,∗). Apart from consid-
ering comprehensive deteriorations, we can also refer to the partial necessary and possible
deteriorations defined analogously to the partial improvements.

Remark 3 For any subsets of criteria G1 ⊂ G2 ⊆ G which admit deterioration of the
performances not exerting an influence on the target maintenance, ρP

<,G1
≤ ρP

<,G2
.

Remark 4 For any target under consideration, the necessary comprehensive deterioration is
not less than the corresponding possible deterioration, i.e., ρN

< ≥ ρP
<.

5.3 Changing comprehensive value of an alternative

In this subsection,we investigate the change of a comprehensive value (score) of an alternative
rather than direct improvement or deterioration of its performances. In particular, we may
analyze what minimal value is missing to attain some target or what maximal value an
alternative has in stock when this target is already acquired. Let us emphasize that such
investigation is meaningful for the considered additive representation of preference, because
the scale of the marginal value functions is a conjoint interval scale. Consequently, the
difference between two values has the meaning of preference intensity. Thus, for example,
a low missing or surplus value indicates the need for small improvement or a small margin
for deterioration, respectively. In any case, such analysis aims at indicating the most (least)
favorable compatible value function for an alternative in view of achieving (preserving)
a target under consideration with the least improvement (the greatest deterioration) of its
comprehensive value.

Note that the possible and necessary missing or surplus values may be treated per se as
outcomes of post factum analysis. Nevertheless, the most (least) favorable compatible value
functions can be further analyzed to derive the underlying required improvement (allowed
deterioration) in the performance values for reaching (maintaining) the target. To decompose
the missing or surplus values, one can apply the approaches discussed in Sect. 5.2. Then,
the necessary and possible outcomes derived from the analysis of a single compatible value
function would be equivalent.
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5.3.1 Possible and necessary missing value

Definition 3 Assume that some target is not attained by an alternative a ∈ A in the set
of preference model instances compatible with DM’s preference information. A possible
(necessary) missing value for a in view of achieving this target is the minimal positive value
(score) that added to the comprehensive value (score) of a allows achieving the target for at
least one (all) compatible preference model instance.

Possible and necessary missing values for some specific targets are defined analogously to
the possible and necessary improvements in Definition 1. For example, preference-related
possible (necessary) missing value uP

>(a � b) (uN
>(a � b)) is considered in case not (a �P

b) (not (a �N b)), i.e., a is not possibly (necessarily) preferred to b, and a needs to increase
its comprehensive value so that a �P b (a �N b). Computation of the possible missing
value requires solving the following linear optimization problem:

Minimize : uP
> (15)

s.t.:

E(A),

for preference-related possible missing value:

[∑m
j=1 u j (g j (a))] + uP

> ≥ ∑m
j=1 u j (g j (b)),

for group preference-related possible missing value:

[∑m
j=1 u j (g j (a))] + uP

> ≥ ∑m
j=1 u j (g j (b)),

for all b ∈ A′ ⊆ A \ {a},
for rank-related possible missing value:

[∑m
j=1 u j (g j (a))] + uP

> ≥ [∑m
j=1 u j (g j (b))] − M · vb,

for all b ∈ A \ {a},
∑

b∈A\{a} vb ≤ k − 1,

vb ∈ {0, 1}, for all b ∈ A \ {a},
for assignment-related possible missing value:

[∑m
j=1 u j (g j (a))] + uP

> ≥ bk−1,

for preference-related assignment-based possible

missing value:

for h = 1, . . . , p :
[∑m

j=1 u j (g j (a))] + uP
> ≥ bh−1 − Mvh(a, b),

[∑m
j=1 u j (g j (b))] + ε ≤ bh + Mvh(a, b),

∑p
h=1 vh(a, b) ≤ p − 1,

vh(a, b) ∈ {0, 1}, h = 1, . . . , p.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E possible
missing−value(a)

Note that E(A) in the above constraint set implies that we exploit the original set of com-
patible value functions. The explanation of constraints related to achieving particular targets
is analogous to E possible

improvement (a, ρ). The analysis aims at identifying the most advantageous
value function in terms of satisfying the target in a possible sense. Subsequently, the DM
may analyze both the comprehensive values for judging how great is the missing gap and the
shape of marginal value functions for examining the conditions under which a is the closest
to achieving the target.
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Computation of the necessary missing value requires solving the following linear opti-
mization problem:

Maximize : uN
> (16)

s.t.:

E(A),

for preference-related necessary missing value:

[∑m
j=1 u j (g j (a))] + uN

> ≤ ∑m
j=1 u j (g j (b)),

for group preference-related necessary missing value:

[∑m
j=1 u j (g j (a))] + uN

> ≤ M · vb + ∑m
j=1 u j (g j (b)),

for all b ∈ A′ ⊆ A \ {a},
∑

b∈A′ vb = |A′| − 1,

vb ∈ {0, 1}, for all b ∈ A′,
for rank-related necessary missing value:

[∑m
j=1 u j (g j (a))] + uN

> ≤ [∑m
j=1 u j (g j (b))] + M · (1 − vb),

for all b ∈ A \ {a},
∑

b∈A\{a} vb ≥ k,

vb ∈ {0, 1}, for all b ∈ A \ {a},
for assignment-related necessary missing value:

[∑m
j=1 u j (g j (a))] + uN

> ≤ bk−1,

for preference-related assignment-based necessary
missing value:

for h = 1, . . . , p − 1 :
[∑m

j=1 u j (g j (a))] + uN
> ≤ bh + M · vh(a, b),

∑m
j=1 u j (g j (b)) ≥ bh − M · vh(a, b),

∑p−1
h=1 vh(a, b) ≤ p − 2,

vh(a, b) ∈ {0, 1}, h = 1, . . . , p − 1.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Enecessary
missing−value(a)

It identifies the most advantageous value function in terms of satisfying the target in a
necessary sense. Again, the underlying idea is that the necessary missing value is equal to
the minimal value by which the target opposite to the one under consideration is not attained.

5.3.2 Possible and necessary surplus value

Definition 4 Assume that some target is attained by an alternative a ∈ A in the set of prefer-
ence model instances compatible with DM’s preference information. A possible (necessary)
surplus value for a in view of achieving this target is the maximal positive value (score) that
subtracted from the comprehensive value (score) of a still allows achieving the target for at
least one (all) compatible preference model instance.

The possible surplus value can be computed by solving problem (15) with the target function

Maximize : uP
< (instead of Minimize : uP

>),

and inverse sign before subtracted value in the constraints corresponding to the targets, i.e.,
(−uP

<) rather than (+uP
>).
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The necessary surplus value requires solving problem (16) with the target function

Minimize : uN
< (instead of Maximize : uN

>),

and inverse sign before subtracted value in the constraints corresponding to the targets, i.e.,
(−uN

<) rather than (+uN
>).

6 Illustrative study: application of post factum analysis for assessing the
environmental impact of cities

To illutrate the use of post factum analysis, we will refer to the problem of assessing environ-
mental impact of cities, which has been originally considered by the Economist Intelligence
Unit [10]. The proposed European Green City Index aims at measuring and rating the envi-
ronmental performance of 30 leading European cities both overall and across a range of
specific areas. By doing so, it offers a tool to enhance the understanding and decision making
abilities of all those interested in environmental performance. The index takes into account
individual indicators per city concerning a wide range of environmental areas. The perfor-
mances allow for direct comparison between cities. We will reconsider this problem, taking
into account the following four criteria with an increasing direction of preference:

– CO2 (g1), representing the intensity of CO2 emissions (the observed performances are
between 2.49 and 9.58);

– energy (g2), representing the intensity of energy consumption (the observed perfor-
mances are between 1.50 and 8.71);

– water (g3), representingwater efficiency and treatment policy (the observedperformances
are between 1.83 and 9.21);

– waste and land use (g4), representing waste reduction and treatment policy (the observed
performances are between 1.43 and 8.98).

Cities’ performances on these criteria are provided in Table 1. All criteria are expressed
on a ratio scale. A detailed description of indicators used to assign performance values to
the considered cities is provided in [10] (p. 20). For example, g1 involves CO2 emissions,
intensity, and reduction strategy. In what follows, we assume the use of linear marginal value
functions.

Since all applications mentioned in Sect. 4 focus on attaining the ranking-specific targets,
for illustrative purpose, we will formulate our problem in terms of multiple criteria sorting
with the aim of assigning the cities to one of four classes C1-C4, such that C1 is the worst
class and C4 is the best one. We assume that the DM provided preference information in
form of 12 assignment examples (3 per each class) given in Table 2.

The possible and the necessary results

The possible assignments and Hasse diagram of the necessary assignment-based preference
relation are presented in Fig. 1. Let us remind that—when using a threshold-based sort-
ing procedure—in case the possible assignment is precise, it is equivalent to the necessary
assignment; otherwise, the necessary assignment is empty (see [26]). Obviously, the 12 ref-
erence alternatives are assigned to their desired classes by all compatible preference model
instances. Another 6 cities (Zurich, Bucharest, Tallinn, Belgrade, Sofia, and Kiev) are nec-
essarily assigned to a single class. For the remaining 12 cities, the necessary assignment
is empty, and the possible assignment is imprecise. There are 3 cities possibly assigned to
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Table 1 Cities’ performances City g1 g2 g3 g4

Oslo 9.58 8.71 6.85 8.23

Stockholm 8.99 7.61 7.14 7.99

Zurich 8.48 6.92 8.88 8.82

Copenhagen 8.35 8.69 8.88 8.05

Brussels 8.32 6.19 9.05 7.26

Paris 7.81 4.66 8.55 6.72

Rome 7.57 6.40 6.88 5.96

Vienna 7.53 7.76 9.13 8.60

Madrid 7.51 5.52 8.59 5.85

London 7.34 5.64 8.58 7.16

Helsinki 7.30 4.49 7.92 8.69

Amsterdam 7.10 7.08 9.21 8.98

Berlin 6.75 5.48 9.12 8.63

Ljubljana 6.67 2.23 4.19 5.95

Riga 5.55 3.53 6.43 5.72

Istanbul 4.86 5.55 5.59 4.86

Athens 4.85 4.94 7.26 5.33

Budapest 4.85 2.43 6.97 6.27

Dublin 4.77 4.55 7.14 6.38

Warsaw 4.65 5.29 4.90 5.17

Bratislava 4.54 4.19 7.65 5.60

Lisbon 4.05 5.77 5.42 5.34

Vilnius 3.91 2.39 7.71 7.31

Bucharest 3.65 3.42 4.07 3.62

Prague 3.44 3.26 8.39 6.30

Tallinn 3.40 1.70 7.90 6.15

Zagreb 3.20 4.34 4.43 4.04

Belgrade 3.15 4.65 3.90 4.30

Sofia 2.95 2.16 1.83 3.32

Kiev 2.49 1.50 5.96 1.43

Table 2 Assignment examples
C1 Lisbon, Prague, Zagreb

C2 Athens, Budapest, Vilnius

C3 Rome, Helsinki, Berlin

C4 Oslo, Stockholm, Brussels

three consecutive classes (Madrid, Bratislava, and Ljubljana), and 9 cities with a possible
assignment to two classes (e.g., Copenhagen, Dublin, and Istanbul).

When it comes to the necessary assignment-based preference relation, cities necessarily
assigned to the same class are indifferent. Thus, they are grouped within a single node in
Fig. 1 (e.g., Oslo, Stockholm, Zurich, and Brussels are all assigned to C4 with all compatible
preferencemodel instances).Moreover,�→,N is transitive, and, thus, e.g., Amsterdam�→,N
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Vienna [C3,C4]

Amsterdam [C3,C4]London [C3,C4]

Copenhagen [C3,C4]

Stockholm [C4,C4] Zurich [C4,C4]Oslo [C4,C4] 

Berlin [C3,C3]

Brussels [C4,C4]

Paris [C3,C4]

Helsinki [C3,C3]Rome [C3,C3]

Athens [C2,C2]Bratislava [C1,C3]

Warsaw [C1,C2] Istanbul [C1,C2]

Madrid [C2,C4]

Dublin [C2,C3]Riga [C2,C3]

Ljubljana [C1,C3]

Lisbon [C1,C1]

City (a) [LP(a),RP(a)]

Budapest [C2,C2] Vilnius [C2,C2]

Bucharest [C1,C1] Prague [C1,C1] Tallinn [C1,C1]

Zagreb [C1,C1] Belgrade [C1,C1] Sofia [C1,C1] Kiev [C1,C1]

Fig. 1 Possible assignments and Hasse diagram of the necessary assignment-based preference relation

Rome and Rome �→,N Dublin implicates Amsterdam �→,N Dublin (note that the arcs
obtainable by the transitive closure are omitted in the figure). On one hand, for pairs of cities
(a, b) connected by an arc in Fig. 1 there is the necessary assignment-based strict preference
relation, i.e., a �→,N b iff a �→,N b and not (b �→,N a). Note that it does not exclude
that b �→,P a. On the other hand, pairs of alternatives which are not connected by arcs in
the figure are incomparable in terms of �→,N . This means that with some compatible value
functions and class thresholds one of them is assigned to a class strictly better than the other,
while with some other compatible preference model instances, the order of classes is inverse.
This holds for, e.g., Paris and Vienna or Amsterdam and London.

Within the framework of post factum analysiswe offer a set of tools for answering different
questions regarding robustness of the provided recommendation. In our view, the targets to
be analyzed should be indicated by the DM. This means that we shall rather not analyze all
possible targets, but only take into account these preference relations, ranks, or assignments
which are of particular interest to the DM. Let us illustrate the type of questions that can be
answered within the framework of post factum analysis, starting with the analysis of possible
improvements and missing values. When investigating the required/allowed modification of
performance values, we focus on radial improvements/deteriorations.
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Table 3 Comprehensive assignment-related possible improvements ρP
>(RP (a) ≥ 4) and possible missing

values uP>(RP (a) ≥ 4) for possible assignment of selected alternatives to class at least C4

Ljubljana Riga Dublin Bratislava Warsaw Istanbul

ρP
>(RP (a) ≥ 4) 1.1242 1.2865 1.3347 1.4482 1.4514 1.3955

uP>(RP (a) ≥ 4) 0.1150 0.2286 0.2450 0.2647 0.3082 0.2286

Bucharest Tallinn Belgrade Sofia Kiev

ρP
>(RP (a) ≥ 4) 1.9322 1.8823 1.8413 2.4767 2.6864

uP>(RP (a) ≥ 4) 0.4799 0.3180 0.4566 0.5933 0.5288

Fig. 2 Themost advantageousmarginal value functions in terms of possible assignment toC4 forDublin (solid
line; U (Dublin) = 0.486, uP>(RP (Dublin) ≥ 4) = 0.2450), Warsaw (dashed line; U (Warsaw) = 0.407;
uP>(RP (Warsaw) ≥ 4) = 0.3082), and Bucharest (dotted line; U(Bucharest) = 0.209; uP>(RP (Bucharest) ≥
4) = 0.4799)

Possible assignment-related improvements and missing values

First, we focus on 11 non-reference cities whose best possible class is not better than C3. We
are interested in the improvements that they need to make to be assigned toC4 for at least one
compatible preference model instance. In Table 3, we provide the respective comprehensive
assignment-relatedpossible improvementsρP

>(RP (a) ≥ 4) aswell as possiblemissingvalues
uP

>(RP (a) ≥ 4). On one hand, the least improvement in terms of both ρP
>(RP (a) ≥ 4) and

uP
>(RP (a) ≥ 4) needs to be made by Ljubljana, Riga, and Dublin. These are cities which

are possibly assigned to C3 with their current performance vectors. On the other hand, the
greatest improvement in view of possible assignment to C4 needs to be made by Kiev, Sofia,
and Bucharest, which are currently necessarily assigned to C1. The marginal value functions
which are the most advantageous in terms of possible assignment to C4 for Dublin, Warsaw,
and Bucharest are presented in Fig. 2.

Let us now illustrate that the more demanding the target set (i.e., the better the class to
attain), the greater improvement is needed to acquire it for at least one compatible preference
model instance. For example:

– Warsaw which is possibly assigned to C2 in the best case needs to improve its perfor-
mances 1.0139 or 1.4514 times to possibly reach, respectively, C3 or C4; the respective
missing values are 0.0095 and 0.3082;
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Table 4 Partial assignment-related possible improvements ρP
>,G j

(RP (Riga) ≥ 4) for possible assignment

of Riga to C4

{g1} {g2} {g3} {g4}
1.3672 – – –

{g1, g2} {g1, g3} {g1, g4} {g2, g3} {g2, g4} {g3, g4}

1.3672 1.2865 1.3343 – 1.8496 –

{g1, g2, g3} {g1, g2, g4} {g1, g3, g4} {g2, g3, g4} {g1, g2, g3, g4}

1.2865 1.2865 1.2865 1.7483 1.2865

Table 5 Comprehensive assignment-related necessary improvements ρN
> (LP (a) ≥ 4) and necessarymissing

values uN>(LP (a) ≥ 4) for necessary assignment of selected alternatives to class at least C4

Copenhagen Paris Vienna London Amsterdam Madrid

ρN
> (LP (a) ≥ 4) 1.0025 1.1186 1.1035 1.1321 1.1703 1.1686

uN>(LP (a) ≥ 4) 0.0030 0.1040 0.1040 0.1337 0.1337 0.1455

– Bucharest which is possibly and necessarily assigned to C1 needs to improve its perfor-
mances 1.1240, 1.3541, or 1.9322 times to possibly reach, respectively, C2, C3 or C4;
the respective missing values are 0.0641, 0.1812, and 0.4799.

Instead of investigating the simultaneous improvement of all performances to reach a
specified possible assignment, it may be interesting to consider some subsets of criteria only.
In Table 4, we present partial assignment-related possible improvements ρP

>,G j
(RP (a) ≥ 4)

for all subsets of criteria G j ⊆ G in view of the possible assignment of Riga to C4. They
confirm that for any subsets of criteria G1 ⊂ G2 ⊆ G, allowing achievement of the target,
the required improvement on G2 is not greater than the respective improvement on G1. The
detailed analysis reveals that minimal subsets of criteria that, when improved, guarantee
the possible assignment of Riga to C4 are {g1} and {g2, g4} (these were called possible
improvement reducts in Sect. 5.2.1). Further, whatever the improvement on {g2}, {g3}, {g4},
{g2, g3}, or {g3, g4}, the investigated target cannot be reached. Finally, the following strategies
seem to be the best for Riga to follow: improvement of its performance on g1 by 1.3672 times,
or slightly less simultaneous improvement on g1 and g3 or g1 and g4.

Possible preference-related assignment-based improvements and missing values

When it comes to the possible assignment-based preference relation, we investigate the
improvement that needs to be made to turn its falsity into the truth. For example, Kiev which
is assigned to a class worse than Athens by all compatible preference model instances needs
to improve its performances 1.3904 times so that Kiev �→,P Athens; the respective missing
value is 0.1684. When considering Warsaw and Rome, the corresponding results are 1.0139
(for the possible improvement) and 0.0095 (for the possible missing value).

Necessary assignment-related improvements and missing values

Now, let us illustrate the way one could take advantage of the framework for investigating the
necessary improvements. First, we focus on 6 cities which are possibly, but not necessarily,
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Fig. 3 The most advantageous marginal value functions in terms of necessary assignment to C4 for
Copenhagen (solid line; U (Copenhagen) = 0.871, uN>(LP (Copenhagen) ≥ 4) = 0.0030), Paris (dashed
line; U (Paris) = 0.696; uN>(LP (Paris) ≥ 4) = 0.104), and Madrid (dotted line; U (Madrid) = 0.638;
uN>(LP (Madrid) ≥ 4) = 0.1455)

assigned to C4. We are interested in the improvements that they need to make to be assigned
to the best class with all compatible preference model instances. The results of this analysis
are provided in Table 5. On one hand, only a very slight improvement of the performances
or the comprehensive value would grant Copenhagen the necessary assignment to C4. These
results indicate that its possible assignment to C3 is very sensitive with respect to the current
performance vector. On the other hand, the effort that needs to be made by Amsterdam and
Madrid to reach the specified target is much greater. The marginal value functions which are
least advantageous in terms of the necessary assignment to C4 for Copenhagen, Paris, and
Madrid are presented in Fig. 3.

Again, let us illustrate that the more demanding the target, the greater improvement is
needed to achieve it for all compatible preference model instances. For example:

– Madrid which is possibly assigned to [C2,C4] needs to improve its performances 1.0402
or 1.1686 times to be necessarily assigned to class at least C3 or C4, respectively; the
respective missing values are 0.0346 and 0.1455;

– Bratislava which is possibly assigned to [C1,C3] needs to improve its performances
1.0287 or 1.5016 times to be necessarily assigned to class at least C2 or C3, respectively;
the respective missing values are 0.0194 and 0.3337.

In Table 6, we present partial assignment-related necessary improvements ρN
>,G j

(LP

(Istanbul) ≥ 4) for necessary assignment of Istanbul to C2. The analysis confirms that by
improving performances on any subset of criteria Istanbul may acquire this target. Never-
theless, the following strategies seem to be the best for Istanbul to follow: improvement of
g1(Istanbul) by 1.3659 times, simultaneous improvement on g1 and g3, or g3 and g4, or g1,
g3 and g4.

Let us also illustrate that achieving a certain target for at least one compatible preference
model instance is easier than in the necessary sense. For example, Bratislavawhich is assigned
toC3 in the best case needs to improve its performances 1.4482 or 1.8304 times to be assigned
to class C4, respectively, for at least one or all compatible preference model instances; the
respective missing values are 0.2647 and 0.5124. When considering Istanbul whose best
possible class isC2, it would be possibly or necessarily assigned toC3 in case its performances
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Table 6 Partial assignment-related necessary improvements ρN
>,G j

(LP (Istanbul) ≥ 4) for necessary assign-

ment of Istanbul to C2

{g1} {g2} {g3} {g4}
1.3659 1.5693 1.6475 1.8476

{g1, g2} {g1, g3} {g1, g4} {g2, g3} {g2, g4} {g3, g4}

1.3659 1.1760 1.2806 1.6475 1.8476 1.2545

{g1, g2, g3} {g1, g2, g4} {g1, g3, g4} {g2, g3, g4} {g1, g2, g3, g4}

1.1714 1.2806 1.1500 1.2545 1.1500

are improved, respectively, 1.0062 or 1.4797 times, or its comprehensive value is improved
by 0.0042 or 0.3249.

Necessary preference-related assignment-based improvements and missing values

When it comes to the improvement granting the truth of the exemplary necessary assignment-
based preference relation, Madrid which is not assigned to a class at least as good as London
with all compatible preference model instances needs to improve its performances 1.3904
times so that Madrid �→,N London; the respective missing value is 0.1684. The necessary
improvement andmissing value needed to instantiate the relation: London�→,N Madrid, are
equal to 1.0139 and 0.0095, respectively. Further, Warsaw needs to improve its performance
1.3347 times (comprehensive value by 0.2450) to be necessarily assigned to a class at least
as good as Athens.

Possible assignment-related deteriorations and surplus values

Let us remind that the possible or necessary improvement or missing value should be
computed in case some target is not attained with the current performance vector. Other-
wise, one may investigate what is the possible or necessary deterioration or surplus value
that still guarantees preserving some target. First, let us focus on the deterioration of the
performances and the comprehensive value of selected alternatives that would still grant
their possible assignment to class at least C3. In Table 7, we provide the respective com-
prehensive assignment-related possible deteriorations ρP

<(RP (a) ≥ 3) and surplus values
uP

<(RP (a) ≥ 3) for 11 alternatives which acquire this target with their current performance
vectors. On one hand, Zurich, Copenhagen, Paris, Vienna, London, Amsterdam, and Madrid
can afford significant deterioration in terms of both their performances and comprehensive
values while still being possibly assigned to C3. On the other hand, for Riga, Dublin, and
Bratislava only very slight deterioration is allowed to maintain assignment toC3 with at least
one compatible preference model instance. In particular, the assignment of Bratislava to C3

is very sensitive to its current performance vector.
Obviously, the more loose the target, i.e., the worse the class to maintain, the greater

deterioration is allowed to hold it for at least one compatible preference model instance. For
example:

– Madridwhich is possibly assigned to [C2,C4] can afford deterioration of its performances
by 0.9513, 0.6590, or 0.5454 times to possibly maintain the assignment to, respectively,
C4, C3, or C2; the respective surplus values are 0.3633, 0.5454 and 0.6590;
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– Riga which is possibly assigned to [C2,C3] can afford deterioration of its performances
by 0.8833 or 0.7374 times to possibly maintain assignment to, respectively, C3 or C2;
the respective surplus values are 0.0879 and 0.2069.

Possible preference-related assignment-based deteriorations and surplus values

When it comes to the deterioration for the exemplary possible assignment-based preference
relation, Rigawhich is assigned to a class at least as good asDublin for at least one compatible
preference model instance may deteriorate its performances by 0.7374 times so that still Riga
�→,P Dublin; the respective missing value is 0.2069. The possible deterioration and surplus
value for the relation: Dublin �→,P Riga, are equal to 0.08281 and 0.1246, respectively.
Thus, the performances and the comprehensive value of Riga are less sensitive with respect
to the truth of the possible assignment-based preference to Dublin than vice versa.

Necessary assignment-related deteriorations and surplus values

As far as the necessary deterioration and the surplus value are concerned, let us first focus on
alternatives which are necessarily assigned to class at least C3. We wish to investigate what
deterioration of their performances or what decrease of the comprehensive value they can
afford while still being assigned to class C3 or better with all compatible preference model
instances. The results of this analysis are provided in Table 8. On one hand, for Paris, London,
and Amsterdam, only a very slight deterioration of their performances or comprehensive
values is allowed. On the other hand, the necessary assignment to class not worse than C3

for Zurich and Copenhagen is much less sensitive to the change of their performances or
comprehensive values.

Again, the less strict the designated target, the greater deterioration is allowed to maintain
it for all compatible preference model instances. For example:

Table 7 Comprehensive assignment-related possible deteriorations ρP
<(RP (a) ≥ 3) and surplus values

uP<(RP (a) ≥ 3) for possible assignment of selected alternatives to class at least C3

Zurich Copenhagen Paris Vienna London Amsterdam

ρP
<(RP (a) ≥ 3) 0.5816 0.5925 0.6345 0.6313 0.6718 0.6416

uP<(RP (a) ≥ 3) 0.4995 0.4785 0.4027 0.4053 0.3413 0.3877

Madrid Ljubljana Riga Dublin Bratislava

ρP
<(RP (a) ≥ 3) 0.6590 0.7468 0.8883 0.9359 0.9895

uP<(RP (a) ≥ 3) 0.3633 0.2354 0.0879 0.0475 0.0086

Table 8 Comprehensive assignment-related necessary deteriorations ρN
< (LP (a) ≥ 3) and surplus values

uN<(LP (a) ≥ 3) for necessary assignment of selected alternatives to class at least C3

Zurich Copenhagen Paris Vienna London Amsterdam

ρN
< (LP (a) ≥ 3) 0.8607 0.8696 0.9951 0.9278 0.9926 0.9632

uN<(LP (a) ≥ 3) 0.1650 0.1511 0.0044 0.0800 0.0071 0.0391
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– Zurich which is necessarily assigned to C4 can afford deterioration of its performances
by 0.9913 or 0.8607 times to maintain assignment to, respectively, C4 and C3 with all
compatible preference model instances; the respective surplus values are 0.0103 and
0.1650;

– Amsterdam which is never assigned to class worse than C3 can afford deterioration of
its performances by 0.9632 or 0.7218 times to maintain assignment to, respectively, C3

and C2 with all compatible preference model instances; the respective surplus values are
0.0391 and 0.3149.

Necessary preference-related assignment-based deteriorations and surplus values

Referring to an exemplary necessary assignment-based preference relation,Madrid can afford
deterioration of its performances by 0.7218 times and its comprehensive value by 0.3149
while still being necessarily preferred to Budapest. When comparing Dublin with Vilnius,
the corresponding results are 0.9921 (for the necessary deterioration) and 0.0064 (for the
necessary surplus value).

Finally, let us emphasize thatmaintaining the targetwith at least one compatible preference
model instance is much easier than with all compatible preference model instances. Thus,
for example, Zurich can deteriorate its performances by 0.9913 or 0.5816 times while still
being assigned to C4, respectively, necessarily or possibly.

In the e-Appendix, we analyze the problem of assessing environmental impact of cities in
terms of multiple criteria ranking and provide an answer to some representative questions of
different type that can be answered within the framework for post factum analysis.

7 Conclusions

In this paper we presented a new approach for sensitivity and robustness analysis of the
multiple criteria ranking and sorting recommendations. We have formulated optimization
problems for determining the improvement that an alternative needs to make in order to
achieve some target result, or the deterioration that it can afford in order to maintain it.
We have taken into account five types of targets referring to pairwise preference relations,
assignment-based preference relations, group preference relations, attaining some rank or
class assignment. The above targets have been considered in view of their achievement or
maintenance for at least one or all preference model instances compatible with Decision
Maker’s preference information. We have quantified the required improvement or allowed
deterioration in terms of either alternative’s comprehensive values (scores) or its performance
vector. For the latter, we referred to changing performances either on all criteria or only on
some selected subsets of criteria. Although we elaborated for the value-based robustness
analysis methods, the basic ideas underlying post factum analysis are applicable for a wide
spectrum of MCDA approaches.

The usefulness of the results obtained with post factum analysis is two-fold. Firstly, they
indicate the best strategy for achieving or maintaining the target. As noted by Alexander [1],
this kind of recommendation derived from sensitivity analysis can be used in the design,
application of allocation formulas, or play a communicative in planning which aims to max-
imize the efficiency in decision making and minimize resource usage. Secondly, post factum
analysis may help in ensuring that the recommended decision is robust. Indeed, by examining
the smallest improvement (the greatest deterioration) of the performance values that needs to
(can) be made to attain (maintain) the target, the robustness of the recommendation is exam-
ined [17]. For example, with small modification required/allowed, the recommended decision
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can be regarded as being sensitive to the performance values and the DM faces the risk of
its change. In case the modification of performances is large, the recommendation can be
deemed as robust and the DM can be confident of the validity of current results. From another
perspective, the discovered modifications can be used to define a proximity recommendation
(ranking or class assignments) that may potentially differ from the original recommendation
[41]. This can be achieved, e.g., by studying which alternatives are close to being ranked first
or assigned to the best class. Finally, by introducing the concept of improvement reducts,
post factum analysis may be used to indicate how critical different performance values are
in the ranking or assignment of the alternatives [39]. This can provide direction to the DM
for further analysis or stimulate re-evaluation of the most critical values more accurately.

We have illustrated the introduced approach using the problem of assessing environmental
impact of 30 main European cities. Nevertheless, the scope of decision problems in which
answering similar questions may be of interest to the DM is very broad. Indeed, post fac-
tum analysis is useful whenever planning, design, or resource allocation are involved in the
process. This holds, e.g., in environmental management, manufacturing industry, and fund
allocation.

We intend to apply the framework presented in this paper to some real-world problems
for which the robustness of the delivered recommendation has been already investigated in
terms of the necessary and the possible. These include:

– parametric evaluation of research units [24] to indicate the improvements in terms of
quality of acquired effects and activities undertook in the evaluation period which are
necessary for being assigned to a better class;

– environmental management of land zones to provide support in terms of modifying the
natural and anthropogenic indicators for acquiring greater resilience against desertifica-
tion perceived by the experts [38];

– information retrieval with respect to changing the relevance and positioning of scientific
articles on rank-ordered lists to improve their perceived physician based ranking [30].
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8. Corrente, S., Greco, S., Kadziński, M., Słowiński, R.: Robust ordinal regression in preference learning
and ranking. Mach. Learn. 93(2–3), 381–422 (2013)

9. Doumpos, M., Zopounidis, C., Galariotis, E.: Inferring robust decision models in multicriteria classifica-
tion problems: an experimental analysis. Eur. J. Op. Res. 236(2), 601–611 (2014)

10. EIU. EuropeanGreenCity Index.Assessing the environmental impact of Europe’smajor cities. Economist
Intelligence Unit, London (2009)

11. Gouveia, M., Dias, L.C., Antunes, C.H.: Super-efficiency and stability intervals in additive DEA. J. Op.
Res. Soc. 64, 86–96 (2013)
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