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Abstract In this paper, we extend the notions of (®, p)-invexity and generalized (P, p)-
invexity to the continuous case and we use these concepts to establish sufficient optimality
conditions for the considered class of nonconvex multiobjective variational control problems.
Further, multiobjective variational control mixed dual problem is given for the considered
multiobjective variational control problem and several mixed duality results are established
under (P, p)-invexity.
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1 Introduction

During the last two decades, multiobjective control problems have been considered in flight
control design, in the control of space structures, in industrial process control, in impulsive
control problems, in the control of production and inventory, and other diverse fields. The
multiobjective variational programming problem with equality and inequality restrictions
was considered by many authors (see, for example, [7,13,20,21], and references here)
Chandra et al. [4] gave the Fritz-John necessary optimality conditions for the existence of
an optimal solution for the single objective control problem. In [14], Mond and Smart gave
duality results and sufficiency conditions for control problems under invexity assumptions.
Bhatia and Kumar [2] extended the work of Mond and Smart to the content of multiobjec-
tive control problems and established duality results for Wolfe as well as Mond—Weir-type
duals under p-invexity assumptions and their generalizations. In [15], Mukherejee and Rao
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extended mixed-type duality to the class of multiobjective variational problems and proved
duality results under generalized p-invexity. Mishra and Mukherejee [11] obtained duality
results for multiobjective control problems under V -invexity assumptions and their general-
izations. They extended the results of Bhatia and Kumar [2] to a wider class of multiobjective
control problems. Bhatia and Mehra [3] extended the concepts of B-type I and generalized
B-type I functions to the continuous case and they used these concepts to establish sufficient
optimality conditions and duality results for multiobjective variational programming prob-
lems. Nahak and Nanda [17] discussed duality theorems and related efficient solutions of
the primal and dual problems for multiobjective variational control problems with (F, p)-
convexity. Reddy and Mukherjee [18] studied duality theorems and related efficient solutions
of the primal and dual problems for multiobjective fractional control problems under (F, p)-
convexity. Ahmad and Gulati [1] studied mixed type duality for multiobjective variational
problems also under (F, p)-convexity, obtaining new optimality results. Using the relation-
ship between the efficient solution of the multiobjective control problem and the optimal
solution of the associated scalar control problem, Gramatovici [6] derived the necessary
optimality conditions for the multiobjective control problems with invex functions. Kim and
Kim [9] introduced new classes of generalized V-type I functions for variational problems
and they proved a number of sufficiency results and duality theorems using Lagrange multi-
plier conditions under various types of generalized V-type I invexity requirements. Further,
under the generalized V-type I invexity assumptions and their generalizations, they obtained
duality results for Mond—Weir type duals. Also Hachimi and Aghezzaf [7] obtained several
mixed type duality results for multiobjective variational programming problems, but under
a new introduced concept of generalized type I functions. In [10], Khazafi et al. introduced
the classes of (B, p)-type I functions and generalized (B, p)-type I functions and derived a
series of sufficient optimality conditions and mixed type duality results for multiobjective
control problems.

Our aim in this paper is to provide several sufficient optimality conditions and mixed
duality results for a multiobjective variational control problem under generalized convexity
restrictions on the components of functions describing the constraints and the objective
functions. In our approach, the usual convexity requirement for functions is relaxed. In
this paper, therefore, we introduce the concepts of (P, p)-invexity and generalized (P, p)-
invexity for a multiobjective variational control problem, as a new condition on functions
of this kind of problem. Then, we use these mentioned concepts of generalized invexity to
establish several sufficient optimality conditions for a new class of nonconvex multiobjective
variational control problems.

Further, for the considered multiobjective variational control problem, its vector vari-
ational control mixed dual problem is given and several duality theorems are established
between these vector optimization problems under (®, p)-invexity. Since (P, p)-invexity
and generalized (P, p)-invexity notions unify several classes of generalized convex func-
tions, therefore, the results established in this paper for multiobjective variational control
problems are more general than those in a fairly large number of works.

2 Preliminaries and notations
The following convention for equalities and inequalities will be used in the paper.

For any x = (x1, x2, ..., )T, y=01,Y2,.--, y,,)T, where the symbol OT stands for
the transpose, we define:
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(i) x =y ifandonlyifx; = y; foralli =1,2,...,n;
(i) x <y ifandonlyifx; < y; foralli =1,2,...,n;
(iii) x <y ifandonlyifx; < y; foralli =1,2,...,n;
(iv) x <y ifandonlyif x £ y and x # y.
All vectors will be taken as column vectors.

Let I = [a,b] be a real interval and let A = {1,2,...,p},J = {1,2,...,¢9} and
K={l,...,s}

In this paper, we assume that x(¢) is an n-dimensional piecewise smooth function of 7,
and x(¢) is the derivative of x(¢) with respect to ¢ in [a, b].

Denote by X the space of piecewise smooth state functions x : I — R" with norm
Ixll = Ixlloc + IDx |5, Where the differentiation operator D is given by z = Dx <=
x(t) = x(a) + fat z(s)ds, where x (a) is a given boundary value. Therefore, % =D

except at discontinuities. For notational simplicity, we write x(¢) and x(t) as x and x,
respectively.

Let f : I x R" x R" — R? be a p-dimensional function and each its component is
a continuously differentiable real scalar function, g : I X R" X R" — R?and h : I X
R™ x R"™ — R® be continuously differentiable g-dimensional and s-dimensional functions,
respectively. Here 7 is the independent variable and x(¢) is the state variable. In order to

consider fl(t, x (1), x (1)), where x : I — R" is differentiable with derivative x, denote

the partial derivatives of f 1 with respect to ¢, x and X, respectively, by ftl, fxl, f 1 such that
X
fxl = (% L %) and f! = (i, e i) Similarly the partial derivatives of the
n x dxq axp
vector function g and the vector function £ can be written, using matrices with g rows and s
rows instead of one, respectively.

In [5], Caristi et al. introduced the concept of (P, p)-invexity as a generalization of invexity
notion, previously defined in the literature by Hanson [8].

In this section, we extend the definitions of (®, p)-invexity and generalized (P, p)-
invexity notions to the continuous case. Thus, we generalize the definitions of generalized
convexity introduced by Caristi et al. [5] for scalar optimization problems to the case of
multiobjective variational control ones.

Before we introduce the definitions mentioned above, we give a definition of convexity
of a functional ® : I X R" x R" X R" x R* x R" X R — R.

Deﬁnitiqnl 'Let ® : I x R" x R" x R" x R" x R" x R - R. A functional
&(t, x,x,2,2, (-, +)) is convex on R"t! if, for any x,z € R",x,z € R", the following
inequality

(15,52, (61 00 + (1= 1) (€2, 02)
ST Y (N N B LY (RN
holds for all &1, & € R", p1, p2 € R and for any A € [0, 1].

Let W : X — R defined by ¥ (x) = _fab<ﬂ(t,x,)k)dt, where ¢ : I x R" x R" — R,
be differentiable. For notational convenience, we use ¢ (t, X, 5() for ¢ (t, x (1), X (Z)). The

following definitions introduce the concepts of (P, p)-invexity and generalized (P, p)-
invexity for the functional W.
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Definition 2 Let x € X be given. If there exist a real number p and a functional &:
I x R" x R" x R" x R" x R" x R — R, where dD(t,x,X,f,f, (-,+)) is convex on

R™! ®(r, x,x, X, Y (0,a)) = 0 forevery x € X and any a € R, such that the inequality
b b
/(p t,x, x / ( 7)
a
/ d
> /CD (t X, X, X, % ((px (t,f, Y) T |:<p)-c (t,f, f)],p)) dt(>)
a

holds for all x € X, (x # X), then the functional W is said to be (strictly) (®, p)-invex at
X on X. If the inequality above is satisfied for every X € X, then W is said to be (strictly)
(P, p)-invex on X.

Definition 3 Let x € X be given. If there exist a real number p and a functional &:
I x R" x R" x R" x R" x R" x R — R, where ®(, x, x,X, X, (-, -)) is convex on

R ®(s, x, x, X, f (0,a)) = 0 forevery x € X and any a € R such that the inequality

b b
/¢(Z,x,X)dt—/¢(t,f,f)dt
a

a

b
< / ) (t,x,k,f, Y ((px (t,f, f) —% |:go)-c (t,f, f)] p)) dt (<)

holds for all x € X, (x # X), then the functional W is said to be (strictly) (&, p)-incave at
X on X. If the inequality above is satisfied for every x € X , then W is said to be (strictly)
(®, p)-incave on X.

Definition 4 Let x € X be given. If there exist a real number p and a functional &:
I x R" x R" x R" x R" x R" x R — R, where dD(t,x,)k,f,f, (-,+)) is convex on

Rt @, x, x, X, f (0,a)) = 0 forevery x € X and any a € R such that the relation

[olenyan= fofoss)a
= Jo(nini (o () [ () )<

holds for all x € X, then the functional W is said to be (P, p)-pseudo-invex at X on X. If the
relation above is satisfied for every X € X, then W is said to be (®, p)-pseudo-invex on X.

Definition 5 Let x € X be given. If there exist a real number p and a functional &:
I x R" x R" x R" x R" x R" x R — R, where ®(,x,x,%,%, (-,-)) is convex on

R, o(t, x, X, X, f, (0,a)) = 0 forevery x € X and any a € R such that the relation
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[olens)ars [o(um)a
= Jonnn (o) o () )<

holds for all x € X, x # X, then the functional W is said to be strictly (P, p)-pseudo-invex
atx € X on X. If the relation above is satisfied for every x € X, then W is said to be strictly
(P, p)-pseudo-invex on X.

Definition 6 Let x € X be given. If there exist a real number p and a functional &:
I x R" x R" x R" x R" x R" x R — R, where ®(,x,x,%,%, (-,-)) is convex on

R @1, x, X, X, J;C, (0,a)) = 0 forevery x € X and any a € R such that the relation

/hgo(txx g/b (zx)dt
~ Jolensan o rs) D (e} oo

holds for all x € X, then the functional W is said to be (®, p)-quasi-invex atx € X on X. If
the relation above is satisfied for every X € X, then W is said to be (®, p)-quasi-invex on X.

The concept of (P, p)-invexity generalizes and extends a lot of generalized convexity
notions previously defined in the literature. In order to illustrate this fact, we give an example
of a functional ¥ which is (®, p)-invex, but it is not invex.

Example 7 Define the function ¢ : I x R?x R > R by ¢(t, x, x) = x1(£)x2(¢). Consider
1 .

the functional W defined by ¥ (x) = fga(t, x,x)dt. We set p = —1 and
0

. : 1
d (I,X,X,Y, f’ (ﬂ’ ,O)) = _5 (flﬂl +f2/32) +2 (2:0 - 1) |xl(t)x2(t)|~

Then, by Definition 2, it can be proved that the functional W is (®, p)-invex on R? x R2.
Note, moreover, that the functional W is not invex on R% x R? with respect to any function
n:IxR"x R"x R" x R" — R" (see, Definition 4 [16]).

In the multiobjective variational control problem, under given conditions, the state vector
x(t) is brought from specified initial state x (@) = « to some specified final state x(b) =
in such a way to minimize a given functional. A more precise mathematical formulation is
given in the following vector optimization problem:
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b b b
Minimize /f (t,x (z),x(t)) di = /f‘ (t,x (z),x(t)) ,...,/fP (r,x(t),}c (r))
’ ’ ’ (MVCP)
subject to g (t,x ), x (t)) <0, rel
h(t,x(t),x(t)) —0,rel,
x(a)=a, x(b) =8,
where f = (f1,..., fp) : I x R" x R" — RP,is a p-dimensional function and each of its

component is a continuously differentiable real scalar function, g : I x R" x R" — R? and
h:Ix R"x R" — R® are assumed to be continuously differentiable g-dimensional and
s-dimensional functions, respectively.

Let S denote the set of all feasible solutions of (MVCP), i.e.:

S = {x : x € X verifying the constraints of (MVCP)} .

Definition 8 A feasible solution X of the considered multiobjective variational control prob-
lem (MVCP) is said to be efficient of (MVCP) if there exists no other x € S such that

/bf(t,x,;k)dts/bf(t,x,i)dt,

a

that is, there exists no other x € § such that

b b
/f" (r,x,x)dtgff" (r,f,i)dz, Vi € A,
a a
b b
/fr (t,x,k)dt </fr (t,f,f)dt for some r € A.
a a

3 Optimality conditions

In order to prove sufficient optimality conditions for the considered multiobjective variational
programming problem (MVCP), we give the Karush-Kuhn-Tucker necessary optimality con-
ditions for such a vector optimization problem. This theorem is the continuous version of
Theorem 2.2 [19] (see also [3,12,13]).

Theorem 9 Let X be a normal efficient solution in problem (MVCP) at which the Kuhn—

Tucker constraint qualification is satisfied. Then there exist A € RP and the piecewise smooth
Sfunctions £(-) : I — R™ and ¢(-) : I — R® such that

Xfo (z,f, f) + &80T g¢ (,j’ ;) +70)  h, (t,f, f)
- % [er;c (t,f, x*) +E0" g, (r,x, i) +2 0" h, (t,f, f)} rel, (1)
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b
/E(r)Tg (r,f, f) dt =0, )
N

>0, A e=1, E()=0. 3)

For notational convenience, we use & for £ (¢) and ¢ for ¢ ().

Theorem 10 Let X be a feasible solution in the considered multiobjective variational pro-
gramming problem (MVCP) and the Karush-Kuhn-Tucker conditions (1)—(3) be satisfied at
this point with . € RP and the piecewise smooth functions€(-) : I — R™and(-) : I — R*.
Further, assume that the following hypotheses are fulfilled:

(a) fi (t,,-),i=1,..., p,is strictly (<I>, pf,.)-invex atx on S,

(b) g/ (t, ), j=1,...q, is (P, pg;)-invex ar X on S,

© h*@, ) ke kt(t)={keK:¢ (t)> 0}, is (P, py,)-invexat X on S,
d —nk@, ) ke K- ()= {k eK ¢, (1)< O} is (dD Phk) invex at X on S,
© X kiby, +Z, 1EiPg; + D+ SkPh — 2kek—) Sk 2 0.

Then X is an efficient solution in problem (MVCP).

Proof Suppose, contrary to the result, that X is not an efficient solution in problem (MVCP).
Then, there exists X € S such that

b b
/fi (z,}',}')dtg/fi (t,f,f)dt, Vi € A, 4)

and

b b
/f’ (t,)?,ic;)dt</f’ (t,f,f)dt for some r € A. )

Since the hypotheses (a)—(d) are fulfilled, therefore, by Definition 2, the following inequalities

b b

/fi (t,?c',fc’)dt—/fi (t,f,f)dt

iz d, ieA 6
-l ren o

\Y
Q\w
()
~
Pt
><k-
=l
=l
Vammn
T
-~
g
=|
v

b
-~ : i : d ; :
> /CD (z,x,x,f, X; (gfc (t,f, f) 7 |:g! (z,f, f)], pgi)) dt, jelJ, )
M .
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b
> /cb (z,SZ, XXX (hk (;,x, x) - [h’? (t,f, f)] ,Ohk)) dt, kekKt(@). 8
X

g/cb (x,z, XXX (—h’; (t,f, Y)—E [—h’? (z,x, f)} phk)) dt, ke K~ (). (9
X
Combining (4)—(6) and taking into account that A > 0, we get

b
_ . . . . drT . :
/Aicb(t,}',}',f,f; (f;(t,f,f)—g[ff (t,f,f)],pﬁ))dtgo, icA (10)
X

and

D) =i 7 () o)) <0

for at least one r € A. (11)

Adding both sides of (10) and (11), we obtain

b
» S . .
/ZX@(LE,;{@;; (f;' (t,f,f)—%[f,i (t,f,f)],pﬁ))dt<0. (12)
q i=1

Since éj (t) =20, j € J, then (7) gives

q A . X . . .
> /Zéjcb (r,f, X, X, X (g){ (r,f, f) — % [g? (r,f, f)],pgj))dt. (13)
j=1 !

Using the feasibility of X in problem (MVCP) together with the Karush-Kuhn-Tucker nec-
essary optimality condition (2), we get
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The inequalities (8) and (9) yield, respectively,

b b
/ >t (t,;?,fc’)dt—/ > ot (t,f,f)dt

w keK*(@) w keK*()
/ d
- ~ s — . k _ k _
> / Z ;@ (t,x,x,x,x, (hx (t,x,x)—a |:h).c (t,x,x)], Phk)) dt, (15)
" keK+(1)
b b
/ >t (r,}, )’Z) di— [ > gh* (t,f, f) dt
W keK—() w keK—(1)
/ d
- ~ -~ _ _ k _ k _
> / Z (—{ )dD (l,x,x,x,x, (—hx (t,x,x)—a |:—hx (t,x,x)], ,Ohk)) dt.
" keK—(1)
(16)
Adding both sides of the inequalities (15) and (16), we obtain
b b
/kahk (zf}) dt—/szhk (t,f,f) di
w kek w kek
/ d
> / > e (1,35, XX, (h§ (r,f, f) - [h]; (t,f, f)] ,ohk)) dr
" keK+(1)
/ d
— ~ = — — k _ k — —
+/ Z (—{k) [} (t,x,x,x,x, (—hx (t,x,x)—a |:—h).c (t,x,x)], phk)) dt.
w keK—(1)
Using the feasibility of X in problem (MVCP) together with (2) and (3), we have
b
- ~ k . d k —
/ Z P (t,x,x,x,x; (hx (t,x,x) 7 [h (t,x,x)], ,Ohk)) dt
a keKTt(r) *
; d
- ~ o — — k — _ k —
+/ Z (—{k) o) (t,x,x,x,x, (—hx (t,x,x)—a |:—h)_c (t,x,x)], phk))dt <0.
a keK—(t)
(17

Combining (12), (14) and (17), we get
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z 5@ ( ,,,,, (h§ (z,f, )T) - [hi (t,f, Y)] phk)) dt

v keK+ ()
b .
+D (e (t,?c’, E 0 (—h" (t,f, Y)—i [—h" (z X f)] ,ohk)) dr <0
Y keK— (1) dt *
(18)
We denote
- A .
= e _ . ieA, (19)
Dt i 2052085 O+ ek Sk (O — 2gerx ) Sk O
—~ Ej () ;
& (1) = = = = —, jeJ, (20)
! PPV 27:1 E; () + 2 pek+ Sk (O — 2pek—q) Sk (1)
-~ [710) +
Gk (1) = = = = ——, keK" (@), @2
‘ S M2 8 O+ Dhek+ ) Sk (D= Dek— Sk (0
T ()= - - Y0NS — . keK (). (22

i hi 208 O+ ek Sk (D= Dker—o Sk (O

By (19)—(22), it follows that 0 § ;i < 1,i € A, but 2 > 0 for at least one i € A, 0 <
Ej ®<1,jel 0 Ck (t) £ 1,k € K, and, moreover,

14 q
>k Z O+ D am+ D am=1 (23)
i=1 j=1

keK*(t) keK— (1)

Combining (18)—(22), we get

o . . . . d . :
/. )\idJ(t,x,x,x,x;(X(t,x,x)—a[f/«r (f,x’x)}/?fi))dt

IS}
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By Definition 2, it follows that the functional ®(z, X, f, X, f, -) is convex on R"1. Since
(23) holds, then, by (24), Definition 1 implies

+ > (t, X, )+ ] (—Ek)h’;(z,f,f)

P
D hipsi + Zsfpg, > Gew | |dt<o.
i=1 j=1

keKt ()UK~ (1)
Hence, the Karush-Kuhn-Tucker necessary optimality condition (2) yields
b

. . r q
/cb LEEET N0 D hin + D 80+ D ok S | | 4t <0
i=1 j=1

a

(25)

From the hypothesis (e), we have

P q
S hion+ D Eipg+ DL Ton 20 (26)
i=1 =1

keK+ ()UK~ (1)

By Definition 2, it follows that ®(z, X, 3c;, f,f (0,a)) = 0 for any @ € R4. Thus, (26)
implies that the following inequality

b
/q> LE R Zx,pf, +Zs]pg, > G| |dtz0
u keK+(1)UK~ (1)
holds, contradicting (25). Thus, the proof of theorem is completed. O

Theorem 11 Let X be a feasible solution in the considered multiobjective variational pro-
gramming problem (MVCP) and the Karush-Kuhn-Tucker conditions (1)—(3) be satisfied at
this point with . € RP and the piecewise smooth functions€(-) : I — R™and(-) : I — R".
Further, assume that the following hypotheses are fulfilled:

(a) fi (t,-,-),i=1,..., p,is strictly (CD, pfi)-pseudo-invex atx on S,

®) g/t j=1,...,q, is (dD, pgj)—quasi—invex atx on S,

(c) @, ) ke Kt (t) = {k €K ¢, (t)> 0} is (d> ,Ohk) -quasi-invex at x on S,
(d) —n* (t, , ), ke K™ (t) = {k eK ¢, (1)< O} is (dD Phk) -quasi-invex at X on S,
© X kiby, +Z, 1€ibg; + Dkek+ ) CkPh — Dkek—) Skl 2 0.
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Then X is an efficient solution in problem (MVCP).

Proof Suppose, contrary to the result, that X is not an efficient solution in problem (MVCP).
Then, there exists X feasible in problem (MVCP) such that

b b
/f" (r,z,}’)dtg/f" (t,f,f)dt, icA, 27)

and

b

b
/f’ (z,z,ic) dt</f’ (r,f,i) dt forsomer € A. 28)
a

a

By Definition 5, (27) and (28) yield

b
/@(r,k’,}',i,f; (f; (t,f,f) ~ 2 |:ff (t,f,f):|,,0f[))dt <0, ie€A.
a

and

b
- _ _ = d _ =
/<I> (t,x,x,x,x; fi (t,x,x) = |:f.r (t,x,x):l,,ofr)dt <0, forsomer € A.
X
a

Since A > 0, then the inequality above gives

bop o . .
/ZL@ (t,k“, XX, X (f;' (r,f, x) - % [f{ (r,f,f)],pﬁ.)) dr <0. (29)

=1

a =

Using the feasibility of x and X in problem (MVCP) together with the Karush-Kuhn-Tucker
necessary optimality conditions ( 2) and (3), we obtain

b b
/Ejgf (t,icv,k;)dt g/gjgf (t,f,f)dt, ji=1,....q.

Thus, by Definition 6, the hypothesis (b) yields

b
— - i _ - d ; _ -
/§j¢<z,x,x,x,x; (g; (t,x,x) 7 |:gi (z,x,x)],pgj)) dt <0, jel.
a

Adding both sides of the inequalities above, we obtain
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Using the feasibility of X and X in problem (MVCP), we have

b b
/hk (1,35,5'5) dt = /hk (t,f,f) dt, ke K+ (1), G1)
a a

b b

/—hk (zf)?) dt :/—hk (t,f,f) dt, ke K~ (t). (32)

Hence, by hypotheses (c) and (d), the inequalities (31) and (32) imply, respectively,

b
- L _ d _ -
/@(l,x,x,x,x; (hl; (t,x,x)—a[hl.< (I,x x)} phk))dt§0, ke KT (@),
X

(33)
b
~ - _ _ k _ d k _ _
/d> (t,x,x,x,x; (—hx (t,x,x)—a |:—h. (t,x,x)], phk)) dt £0, ke K™ (1).
X
(34
Thus,
b
— ~ L _ _ k _ d k _
/ Z X (t,x,x,x,x; (hx (t,x,x)—d— [h (t,x x)] phk))dt <0, (35)
% keKT() Pl
/ d
> (n)e (r,k“, XXX (—h§ (r,f, f)—dt [—h’; (r,f )} phk)) dr <0
v keK—(1)
(36)

Q

==k, == K, ~ =
+/ z @ (t,x,x,x,x, (hx (t,x,x) 7 |:h),( (t,x,x)], ,Ohk)) dt
a keK+t()
z === o kK, ~ -~
/ ( X,X,X,X; (—hx (t,x,x)—d
kekK—(t)

The rest of proof is the same as in proof of Theorem 10. O
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4 Mixed duality
Let M be a subset of J and L = J/M such that M U L = J, and let

e O " (1x 0.2 0y 0.y 0) =D & 08 (x O, 50y 1),y 0)
jeM

and
g 07" (nx0. 300 0) =D &0 (nx 0. X0,y 0.3 0).
jeL

In this section, we prove duality results between the considered multiobjective variational
control programming problem (MVCP) and its mixed type multiobjective variational dual
problem (VMD) defined as follows

b
Maximize / ( f (r, v,y (r)) ten )T g™ (r, v,y (r)) e) dt (VMD)

a

subject o [47 £, (1.y 0,y (0) +£ 0 g (v 0.y )

0y oy 0.3 0)] = L[ (v 0.5 0)

0 g (O3 0)+e O R (Ly0.y0)] rer

b
[aam st (yos0)arzo
b

[e@mn(tyo.ym)a=o
a
ya) =a, y(b) =5,
=0, 2Te=1,5020,
where e = (1,...,1) € R? is a p-dimensional vector. It may be noted here that the above

dual constraints are written using the Karush-Kuhn-Tucker necessary optimality conditions
for the problem (MVCP) (see Theorem 9).

Remark 12 Let L = @. Then, the dual (VMD) reduces to the well-known Wolfe dual. If
M = @, then (VMD) becomes Mond—Weir type dual.

Let Q2p be the set of all feasible solutions (y, A, &, ¢) in mixed type multiobjective vari-
ational dual problem (VMD). We denote by Y theset Y = {y € X : (y,A,&,¢) € Qp}.

Theorem 13 (Weak duality): Let x and (y, A, &, {) be any feasible solutions in problems
(MVCP) and (VMD), respectively. Further, assume that the following hypotheses are fulfilled:

(a) fi (t,-,-),i=1,..., p, is strictly (<I>, pf,.)-invex atyonSUY,
(b) gj t-),j=1,.,q,is (d>, ,og_,.)—invex atyonSUY,
©) W@, ) ke Kt (t)={k e K : & (t) > 0}, is (P, pp,)-invexat y on SUY,
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) —h* @, ) ke K~ (t)=1{ke K : @) <0}, is (P, pp)-invexat y on SUY,

(e) z)»lpf, +Z€ng1+ > aom — D, kpm 20

keK* (1) keK—(1)
Then, the following cannot hold

b

b
/f txx dtg/ tyy +en' g (z,y,y))dt, icA, (37

and

b

b
/f’ (z,x,x) d </(fr (t,y,y) +éu ()T g (t,y,&)) di

a

for somer € A. (38)

Proof We proceed by contradiction. Suppose, contrary to the result, that the inequalities (37)
and (38) are satisfied. Since the hypotheses (a)—(d) are fulfilled, therefore, by Definition 2,
the following inequalities

b b
/fi (t,x,k)dt—/fi (t,y,y)dz
b
> /CD (t,x,ic,y,j}; (fy’ (lyy) - % |:fy’ (tyy)]pfl)) dt, i€A, 39)

a
b

b
/gj (t,x,X)dt—/gj (t,y,)})dz
a

a

b
L N dT . _
> /d> (t,x,x, ¥, ¥ (g§ (t,y,y) - [gi (t,y, y)],pgj)) dr, jel, (40)
b

/hk (t,x,ic) dt—/hk (t,y,y) dt

a a

d (t,x,)'c, v,y (hlf (t, v, y) — % |:h1; (t, v, y)], ,Ohk)) dt, ke KV (),

=

a\w

(41
b

b
—/hk (z,x,x)dz+/h" (z,y,y)dz
4

a

b
> /CD (t,x,)'c, v, ¥ (—h]f (t, v, y) — % |:—hl; (t, v, y):| phk)) dt, ke K™ (1)
a

(42)
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hold. Since & (¢) = 0, then (40) gives

b b
/gjgj (t,x,fc) dt—/éjgj (t,y,j;) dt
a a
b
> /sjcl>(r,x,a'c,y,y; (gii () - % [g’ (z,y,y)],pg,-)) i, jel. @3
;

Using the feasibility of x and (y, A, &, ¢) in problems (MVCP) and (VMD), respectively, we
get

S

Eg(tyy)d

E
b
/ (t, X, X, v, j}; (g( (t, v, y) — % |:g: (t, v, y)], pg_/.)) dr (44)

1\

and

b
/Zéj@ (t,x,ic, yo ¥ (g§ (r.v.5) - % [gi (r.v. y)] pgj)) dr 0. (45)

a JEL

By (39), (44) and (45), we get

/bf’ (t,x,x a’t /fl t,y, y dz /Zé‘]g/ t,y, y)

a JEM

>a/<1>(t,x,5c,y,j»; (f’ (t v, y)—i[f’ £y, y ] Pf,))
+/Z§jd><z,x,5c,y,j); (g (t v, y) o [ 1Ly, y }Pg,))

a JEM

+/Z$j<1>(f’x75€,y,&; (g (t v, y) [ £y, y }pg,)) i€A.

a JEL
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Thus, by M U L = J, the inequality above yields

b b b
/fi (l,x,fc)dl‘—/fi (t,y,y)dt—/ > &gl (t,y,&)dt
" a a JEM
b
= [ (romrons (4 (ne3) = 5 [ (13) ) o) )
a
b
+/Zq:§,-d> (t,x,ic, v, y; (g§ (t, v, y) — % |:g; (t, v, y)], pgj)) dt, i €A.

a J=1
(46)

Combining (37), (38) and (46), we obtain
/ d
) o N d[ .
/@ (t,x,x,y,y, (f/V (t,y,y) 'R [fy (t,y,y)],pf,-)) dt
a
b 4 ) ) . ) d . )
+/Z$/<I> (t,x,x,y,y; (g§ (t,y,y) - [g; (t,y,y)],pg,-)) dt <0, i€A.

a J=1
47)
Since A > 0 and ATe = 1, then (47) gives

b
/.p A@(r,x,ic,y,&; (fv’ (t,y,&)—%[f; (l,y,y)],ﬂ)ﬁ))df

a l

1

b g

+/Z$J-CI> (t,x,k, v,y (g§ (t, v, y) — % |:g; (t, v, y)], pgj)) dt <0. (48)
a J=1

Thus, (41) and (42) yield, respectively,

b b
/ z cehk (t,x,ic)dt—/ Z ckhk (t,y,y)dt

Y keK+(t) 7 keKt(1)
b
. . . d .
2/ > §k<l>(t,x,x,y,y; (hf (t,y,y)—a[h’i (t,y,y)},phk))dt, (49)
Y keK+(r) ?
and
b b
/ > ant (t,x,ic)dt—/ > aht (t,y,y)dt
Y keK— (1) Y keK— (1)
b
. . . d .
;/ > (—;k)cp(t,x,x,y,y; (—h’; (t,y,y)—a[—h’; (t,y,y)],phk))dt.
v keK—(1) ’

(50)
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Adding both sides of (49) and (50), we get

b b
/Z{khk (t,x,ic) dz—/Z;khk (z,y,y) dt

u kek a kekK
b
> m(r,x,x,y,y: (h{; (r,y,y)—%[hf (t,y,y)],phk))dt
a keK*()
b
+/ Z (—{k)q)(l‘,x,).C, y!).); (_hl; (t’ yvy)_% |:_h]; (t’ yvy):lv phk))dt'
a keK—()

Hence, by the feasibility of x and of (y, A, &, ¢) in problems (MVCP) and (VMD), respec-
tively, it follows that

> ao (t,x,x, v, (h’; (r, ¥, y)—% [h’; (t, ¥ y)] phk)) dt

b

o keK+(r)
/ d
+/ > (—we (t,x,x, Vs ¥ (—h’i (r.v. y)—g [—h'; (r.. y)] Phk)) dr £0.
Y keK—(1)
(51)
Hence, (48) and (51) yield
' S . N dT . .
/ZZI )\lq) (t’xvxv Y, i (f) (t!y’ y)_E |:fy (tv y!y)]’ pf;)) dt
/ d
) : o ) L :
+a/j§,$]<1> (t,x,x,y,y, (gy (r.v.7) r [gy (r.v. y)],pgj)) di
/ d
+/ Z & ® (t, XX, 9, (h’; (t, y, y)—a |:h]; (t, v, y)], Phk)) dt
5 keK+(n)
/ d
+/ > (—we (t,x,)'c, Y, Vi (—h’; (t, y, y) - [—h’; (z, ¥, y):| Iohk)) dt <0.
a keK—(1)
(52)
We denote
- Ai .
Ai = , 1EA, (53)
S hi+ I E O+ Dk S (O = Dhek— & ()
)= - 5 () L jed. (54
it M+ 20508 O+ ek Sk () = 2kek—o) Sk ()
Gt = G ke Kt (), (55)

Pt M 2 6 (D Dek o bk (D= Dek— bk (1)
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<k (1)
S A & O+ D ek b (D= Dk G (O

By (53)-(56), it follows that 0 <% <1,i€ Abutx > 0foratleastonei € A,0 <
Ej(t)<1 jed, 0<§k(t)<1 keK and, moreover,

Z Zs/(m o+ D =1 (57)
i=1 j=1

keK* (1) keK—(1)

Gt =

ke K~ (t). (56)

Combining (52)—(56), we get

/bzpﬁl (t XX, Vs (fy (t v y) jt [f (t 2 y)},pfl-)) dt

a 1=

2 4 . . .
+/ zngD (z,x,)'c, v, j}; (g; (t, v, y)—% |:g; (t, v, y):|, ,ogj)) dt
a J=1
b
+/ Z Z [} (t,x,ic, v, j); (h"C (t, v, y) di [h (t v, y)], phk)) dt
keK+(1)
b
+ Z ~k¢' (z,x,)'c, y,jf; ( h/\‘ (t v, y) :lit [—h’; (t,y, y)] phk)) dt <O.
w keK—(1)

(58)

By Definition 2, it follows that the functional & (¢, x, X, v, j}, -) is convex on R"1, Thus,
since (57) holds, then Definition 1 implies

/b_zxi‘b(l,x,iny,y; (f;§ (t,y,&) %[f (t v, y)],pﬁ))dt

a =1

+/hzg]¢(t X, X, Y, Y (gy (t Vs y) ddt [g (t Ys )’)}pgj))dt

a J=1
b
- (s N d T, .
+ kPt xx,y, vy (t,y,y) ~ 7 hv (t,y,y) s Phy | ) dt
S keK+ () ’
/ d
+ D ao (t,x,ic, Y, Y (—h’; (t, 3 y) - [—h’\i (t, v, y)] ,Ohk)) di
a keK— (1) :
b
i/cb XX, Y,V ZA £l (l v, y)+Z€Jg\ (l v, y)+ >k (t v, y)
J j=1 keK+ (1)
ok : d | &~ . :
+ > (~a) (t,y, y) - Z (t v, y) Zé‘jg; (t,y, y)
keK (1) i=1 i=1
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F3 B () S R () |

keK*(t) ’ keK—(t)

po a N

PITIED TIRUNED SRRV ) 2 &
i=1 j=1 keK+ (UK~ (1)

Combining (58) and (59), we have

b

p q
/4> x| [ D KA (t,y,y) +> &gl (t,y,y)
i=1 =1

a

X k() R (o) [ | TR ()
i=1

keK*(r) keK (1)
q
+2 &8 (nyy)+ 30 @i (nyy)+ D0 (8 (),
j=1 i keKt(t) Y keK— (1) y
p _ q _ _
)ICTTRD S PURED SIS ¥R | P
i=1 j=1 keK+ ()UK~ (1)

Hence, the first constraint of (VMD) yields

b

P q
/CD X, X9, O,ZAipﬁ+Z$jpg,~+ z Skpne | | dt < 0. (60)
j=1

A i=1 keK+ ()UK~ (1)

From the hypothesis (e), it follows that
P a_ _
Dohiog+ D Eivg DL Teon 20 (61)
i=1 j=1 keK+ ()UK~ (1)

By Definition 2, we have that ® (¢, x, x, y, y; (0, a)) = Oforany a € R,. Thus, (61) implies
that the following inequality

b
P q
/d> LX, X, Y, Y O,Z)Lipf; +Z$jpg,~+ Z Skpny | | dt =0
a i=1 j=1 keKT ()UK~ (1)
holds, contradicting (60). This completes the proof of theorem. O

Theorem 14 (Weak duality): Let x and (y, A, &, £) be any feasible solutions in problems
(MVCP) and (VMD), respectively. Further, assume that the following hypotheses are fulfilled:

(a) fi ) +é&u (t)T gM ), i=1,...,p, isstrictly (®, py,)-pseudo-invex at y on
SUY,

) & O gt @, -, ) is (P, Pg)-quasi-invex at y on SU'Y,

©) ¢ OT h, -, ) is (P, pn)-quasi-invex at y on SUY,

(d) 2P xipg + pg, +pn 2 0.
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Then, the following cannot hold

b

b
/ff (z,x,x) di §/(fi (r,y,y)+5M 07 gM (:,y,y'))dt, icA, (62

a

and

b

b
/f txx dt</ 6Ly, y +§M(Z)TgM(t,y,y))dtforsomerGA.
(63)

Proof We proceed by contradiction. Suppose, contrary to the result, that the inequalities
(62) and (63) are satisfied. Hence, by x € D and (y, X, &,¢) € Qp, (62) and ( 63) yield,
respectively,

b
/(fl f,x, X +$M(I)TgM(t,x,X))dt§

b
[ (7 (r35) 4o @7 ¥ (r3.5))ar. e, (64
b
[ (i) 07 @ (10.8) )
b

< / (fr (t,y,j}) +ey ()7 gM (t,y,y))dt for some r € A. (65)

a
Thus, by (64) and (65), Definition 5 implies
b

/d> LX.X,y. ) f)’;(t,y,y)JrZSjgﬁ(t,y,&)—

a JEM

% f;(t,y,y)+j§4$jg§(t,y,y) op | |dt <0, iea (66

Byx € Dand (y, 1, &, ¢) € Qp, it follows that

/sL o7 r x, x dt < /gL o7 (z,y,y) dt, (67)

/; O h (t, x,ic) dt = /; O h (t, y, y) dt. (68)
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By hypotheses (b)-(c), (67) and (68), Definition 6 implies, respectively,
/ d
. - L N d L .
/CD £, Y, Vs Zsjgy (t,y,y) o Zé&,gy (t,y,y) o, | | dr <0, (69)
a JEL jeL
b

/cb(r,x,ic, ¥ i (Z ahl (1. 3) = % [Z (2 y)} ph))dz <0 (70)
o k=1 k=1~

Since A > 0, then, combining (66), (69) and (70), we have

b
p
/ M@t xxy, s fy’(t,y,y)JrZé‘jg; (t,y,y)

1

a ! jeM
d i N j .
_E f(tayay)"i_ZS]gy(t,y,y) ,pfl
’ JjeM
: , _ ' d ‘ ‘
+O (1, x,x,,y; ZSjg§ (t, v, y)_a ZS/g{ (t, y, y) \ Per
JjeL JeL y
N d s
: - L _ . -
+@ (t,x,x, ¥, ¥ (Z} Skl (r, Y, y) T [; ;kh'\,y (z, Y, y)} ,Oh))] dt <0.

(71)

Since the functional ®(z, x, X, v, y -) is convex on R 3Te=1land MUL = J , then
Definition 1 implies

b
p q s
/d> txx,y v | Do hif] (t, v y) + &g (t, Y y) + > aht (t, Y y)
2 i=1 =1 k=1
d : : il : : N :
— | 2k (t,y,y) +2.68) (t,y,y) +Z§kh}3 (t,y,y) ,
i1 =1 k=1

P
i=

D ki + g + ph))dt <0.
1

Hence, the first constraint of (VMD) yields

b

p
/@(r,x,fc, V. ¥ (0, Zx,-pﬁ + pg, + ph))dt <0. (72)

2 i=1

Since (¢, x, X, v, j}; (0,a)) = 0 for any @ € R, then hypothesis (d) implies that the
following inequality

b

P
/<I>(t,x,5c, ¥,y (0, > kibg + gy +ph))dt >0

2 i=1
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holds, contradicting (72). Thus, the proof of theorem completes. O

Theorem 15 (Strong duality): Let X be an efficient solution in the considered multiobjective
variational programming problem (MVCP). Further assume that the Kuhn—Tucker constraint
qualification is satisfied for (MVCP). Then there exist A € Rf_ and the piecewise smooth
functions £(-) : I — R™ and £(-) : I — R® such that X is a feasible solution for problem
(VMD.). If also the weak duality theorem holds between (MVCP) and (VMD), then X is an
efficient solution for mixed type dual problem (VMD) and the objective function values are
equal.

Proof By assumption, X is an efficient solution in the considered multiobjective variational
programming problem (MVCP). Hence, by Theorem 9, there exist . € R” and piecewise
smooth functions £(-) : I — R™ and ¢(-) : I — R® such that the Karush-Kuhn-Tucker

optimality conditions (1)~(3) are satisfied. Thus, (X, 1, £, ¢) is a feasible solution in mixed
dual problem (VMD) and the two objective functionals have same values. Efficiency of X in

problem (VMD) follows directly from the weak duality theorem (Theorem 13).

Proposition 16 Let (i, 1 E, E) be a feasible solution in mixed type dual problem (VMD)
such thaty € S. Further, assume that the following hypotheses are fulfilled:

(a) fi (t,-,),i=1,...,p,isstrictly (®, pp,)-invexat’y on SUY,

(b) g-/ ), j=1,....q, is (P, pgj)-invexation SuUY,

© h*@t, -, ) ke Kt (1) ={ke K :¢; (1) >0}, is (D, pp)-invexatyon SUY,
(d) —hk(t, ., ke K~ (t)—{ke K : ¢ (1) <0}, is (@, pn)-invex aty on SUY,
@ X/ hipg, +Z, 1EjPg; + Dkek+) CkPhi — 2kek—) Skl 2 0.

Then'y is efficient in the considered multiobjective variational control problem (MVCP).

Theorem 17 (Converse duality): Let (y, rE, E) be an efficient solution in mixed type mul-
tiobjective variational dual problem (VMD) andy € S. Further, assume that the hypotheses
(a)-(e) of Proposition 16 are fulfilled. Then 'y is efficient for the considered multiobjective
variational control problem (MVCP).

Proof Proof follows directly from Proposition 16. O

Theorem 18 (Strict converse duality): Let X and ( Az E, a be feasible solutions in prob-
lems (MVCP) and (VMD), respectively, such that

b, . b, .
/Ziif" (t,f,f)dt§/2k f’( )dz—i—/ZSjg/ (r,y,y)d:. (73)

a =1 a i=1 jeM

Further, assume that the following hypotheses are fulfilled:

(a) f’: @, -),i=1,...,p,isstrictly (®, pf)-invexaty on SUY,

®) g/ ¢t,,),j=1,...,q, is (D, pg;)-invexat’y on SUY,

© h*(t, ), ke KT (t)={k e K:¢, (t) >0}, is (P, pp)-invexatyon SUY,
(d) —hk(t, ;) ke K= () ={k e K :;(t) <0}, is (P, pp)-invexary on SUY,
@ 2P Moy, ‘*‘Z 1808 F Dkert ) EkPhe — 2kek - Sk 2 0.

ThenX =y andy is efficient for the considered multiobjective variational control problem
(MVCP).
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Proof Suppose, contrary to the result, that X # y. Since ¥ and (¥, A, &, ¢) are feasible
solutions in problems (MVCP) and (VMD), respectively, then

/Zs,g ( ﬂ)dr</25,g ( w) (74)

a JEL v JEL
/kah" (z,f,f) dt=/Z;khk( 7, y) : (75)
w kekK keK

The hypotheses (b)—(d), by Definition 2, yield

a
b
= i - d i - .
§/¢(LLXJuw(%(tyd)—gg%;QJMO]P&))w,JeJ, (76)

b
> / ® (z,f, %YV ([—h’; (z,y, y)] - % [—h’; (r,y y)] phk)> dt, ke K™ ().
a

(78)

By&; 20, € J,(76) gives

Since X and (3, A, £, ¢) are feasible solutions in problems (MVCP) and (VMD), respectively,
then (79) implies
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d . .
— [g’ (t,v, y)},pg,-))dz <0 (80)

and, by (74),

b
/ZE,Q (t,f, X,V (g§ (z,i, i) ~ [g-\_{ (z,y, y)] pg_/)) dr <0. (81)
) )

jeL

Adding both sides of (80) and (81), we obtain

dr . .
R IS 1) PR

Since ¢; > 0,k € K* (), and —¢; > 0,k € K~ (t), then (77) and ( 78) yield

b b
/ > ot (t,f, f) dt —/ > gt (t,y, y) dt

Y keK+(OUK— (1) Y keK+(OUK— ()
/ d
> oo (x5 vy (i (5, 5) - — [ (1,7, 7) ], dt
_/Zék( yy()(yy) dt[y V.5 )| one
a keKT(®)

b
a keK—(t)
“al (Z ’ 7)] ))d’ (83)
ar | TH DY) P ,

) in problems (MVCP) and (VMD), respectively, it

>l
Ml
o)

3

= S - d -
Z é‘qu (tafvaYsy; (h]; (tvya y) - E |:h]; (ts Vs y)]v Iol’lk))dt

v keKt (1)

By the feasibility of X and of (7,
follows that

b

d _ =
- [—h’; (z,y,y)],phk))dt <0. (84)
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We denote

~ i )

Y — _ ., icA, (85)

Dt M2 18 O+ 2 ke S D=2 kek-0 §i O

= g,‘ (@) .

E ()= —— _ AL ___ jes, (6
! S ki Z?‘:l Ej D+ 2 hex+i) §j D —2hek-1 §j @

-~ Zk (t) +

Gk ()= — = = —, ke KT (1), 87)
TS T Y E O+ Sk 85 (0 — Dhek 085 O

G — _ L® ke (). 69)

i i+ zq':1 E; D+ 2 hek+) $j D —2hek—1 §j @

By (85)-(83), it follows that 0 <% <1,i€Abuta; > 0foratleastonei € A,0 <
E,(t)<l jeJ, 0<§k(t)<l keK*(z)UK (1), and, moreover,

P q
> ki Z O+ D+ D amn=1 (89)
i=1 j=1 keK+ (1) keK—(1)

Then, by (85)—(88), the hypothesis (e) yields

p q
Dohiri A2 E W+ DL G 20. (90)

keK+ ()UK~ (1)

By Definition 2, it follows that ® (¢, X, f, v, y (0,a)) = Oforany a € Ry.Hence, (90) gives

b
. . p q
/q> LEEY Y0, hios+ D& Wpg+ DL G®pn | |dr =0,
p i=1 j=1 keK+ ()UK~ (1)
oD
Thus, the first constraint of vector variational control mixed type dual problem (VMD) implies

b
14 . q . .
/d> L x .y [ DA (r,w) + &gl (r,m)
i=1 j=1

a

+ > qh"( w) > (—a)hy (r,

keK+ (1)

RUTESD SIS SN T ) P o2

i=1 j=1 keK+ ()UK~ (1)
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By Definition 2, it follows that the functional ® (¢, X, x;, y, f, -) is convex on R"! Thus, by
Definition 1 and (85)—(90), (92) yields

o i=l1
/ d
+/Z~,¢(z,f,f,i,i, (g% (r,i,i) - [g{ (z,i,i)],pg,)) di
a j=1
/ d
o (7555 (05 (0.5.7) = < |0k (0.5.5) |, dt
of 2 B (o (i (o) = 5[4 (93) o)
" keK+(n)
/ d
+/ > (—;k)eb(z,f,f,i,i, (—%(LYJ)—E[ h* (t,i,i)],phk)dt)zo
w keK—(1) ’

+
|
M)

o
—
=
=l
=l
<
<l
N
=
[
X
>
<l

=< -
N—"
|
Sl
r—
=
-
—
>
<l
<
N—"
[
ko)
=
S
N—"
N—"
L
~

keK+(1)
I f . — = d . — =
/ > chao(ainn (o 59) -4 [ (5 ) m))o
w keK—(1) Y
> (93)
Combining (82), (84) and (93), we get
b
P
_ ) . d
/ZA,QD (t,f, XY ( i (t,y,y) -— [f’ (Lii)} pf,))dt
“ dt |7y
a i=1
b
> / > &gl (r,y, y) dr. (94)
a JEM

Hence, the hypothesis (a) and Definition 2 yield

b b
/fi (t,f,x;)dt—'/fi (L?i)dt
a , a

) . d ) .
- [o(umrrsi (5 (n55) =5 [ (n55) [ os) )ar iea
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Multiplying both sides of the above inequalities by &; ,i = 1, . ..., p, where X > 0, % ¢ = 1,
we obtain
b b
/X,-fi (t,f,f) dt —/X,-f" (t,y,y) dt
a a

By (94) and (97), it follows that the following inequality

b p b p b
/ZXif" (t,f,f) dt >/ZX,~ff (z,y,y) dt+/Z§,~gj (t,?,i) dt
o=l Y=l JojeM

holds, contradicting the assumption (73). Hence, x = y and efficiency of y in the multiob-
jective variational control problem (MVCP) follows by the weak duality theorem (Theorem
13). This completes the proof of theorem. O

5 Conclusion

In this paper, we have generalized (®, p)-invexity notion and its generalizations to the con-
tinuous case. Then we have used these classes of generalized convex functions to derive
several sufficient optimality conditions and mixed type duality results for a new class of non-
convex multiobjective variational control problems. Our results apparently generalize a fairly
large number of sufficient optimality conditions and duality results previously obtained in the
literature for multiobjective variational control problems under other generalized convexity
notions.
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