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Abstract We introduce the notion of strongly t-convex set-valued maps and present some
properties of it. In particular, a Bernstein–Doetsch and Sierpiński-type theorems for strongly
midconvex set-valued maps, as well as a Kuhn-type result are obtained. A representation of
strongly t-convex set-valued maps in inner product spaces and a characterization of inner
product spaces involving this representation is given. Finally, a connection between strongly
convex set-valued maps and strongly convex sets is presented.
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1 Introduction

Let (X, ‖ · ‖) be a normed space, D be a convex subset of X and let c > 0. A function
f : D → R is called strongly convex with modulus c if
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f (t x1 + (1 − t)x2) ≤ t f (x1) + (1 − t) f (x2) − ct (1 − t)‖x1 − x2‖2 (1)

for all x1, x2 ∈ D and t ∈ [0, 1]. Strongly convex functions have been introduced by Polyak
[27]. He used them for proving the convergence of a gradient type algorithm for minimizing
a function. They have many properties useful in optimization theory and mathematical eco-
nomics. For instance, if f is a strongly convex function then its level sets {x : f (x) ≤ λ}
are bounded for each λ and f has a unique minimum on every closed convex set. Numer-
ous properties and applications of them can be found in the literature (see, for instance,
[9,13,14,17,19,20,26,29,35–37]). Recently, Huang [11,12] extended the definition (1) of
strongly convex functions to set-valued maps. He used such maps to investigate error bounds
for some inclusion problems with set constraints.

In this note we introduce the notion of strongly t-convex set-valued maps (strongly mid-
convex, in particular) and present some properties of it. Our definition is weaker than that
given by Huang, but is easier to verify than that one since we assume that relation (2) below
holds for only one fixed t ∈ (0, 1), not for all t ∈ (0, 1). Therefore, it seems to be inter-
esting and important that under weak regularity assumptions the class of strongly t-convex
set-valued maps coincides with the class of strongly convex set-valued maps. We present,
in Sect. 3, some counterparts of the classical theorems of Bernstein–Doetsch and Sierpiński
for strongly midconvex set-valued maps. We give also a version of Huang’s theorem on
error bounds for some inclusion optimization problems as an application of these results. In
Sect. 4 we prove a Kuhn-type theorem stating that strongly t−convex set-valued maps are
strongly midconvex. Section 5 contains some representation of strongly t-convex set valued
maps with domain in an inner product space and a characterization of inner product spaces
involving this representation. Finally, in Sect. 6, we discuss connections of strongly convex
set-valued maps with strongly convex sets.

2 Preliminaries

Let (X, ‖ ·‖) and (Y, ‖ ·‖) be real normed spaces and D be a convex subset of X . Throughout
this paper B denotes the open unit ball in Y and B the closure of B. We denote by n(Y ) the
family of all nonempty subsets of Y , and by b(Y ), cl(Y ), bcl(Y ) and ccl(Y ) the subfamilies
of n(Y ) of all bounded, closed, bounded closed and convex closed sets, respectively.

Let t ∈ (0, 1) and c > 0. We say that a set-valued map F : D → n(Y ) is strongly t-convex
with modulus c if

t F(x1) + (1 − t)F(x2) + ct (1 − t)‖x1 − x2‖2 B ⊂ F(t x1 + (1 − t)x2), (2)

for all x1, x2 ∈ D. We say that F is strongly midconvex with modulus c if it satisfies (2) with
t = 1/2, that is

1

2
F(x1) + 1

2
F(x2) + c

4
‖x1 − x2‖2 B ⊂ F

(
x1 + x2

2

)
, (3)

for all x1, x2 ∈ D. F is called strongly convex with modulus c if it satisfies (2) with every
t ∈ (0, 1) and all x1, x2 ∈ D (see [11,12]). The usual notions of t-convex, midconvex and
convex set-valued maps correspond to relations (2) and (3) with c = 0, respectively (cf. e.g.
[3–7,21,34]).

Clearly, the definition of strongly convex (strongly t-convex, strongly midconvex) set-
valued maps is motivated by the definition of strongly convex functions. In the following
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example we show some connections between conditions (1) and (2) in the case where F has
values in R.

Example 1 Let D be a convex subset of X . Assume that f : D → R is strongly convex with
modulus c, g : D → R is strongly concave with modulus c (that is −g satisfies (1)) and
f ≤ g on D. Then, one can easily check that the set-valued maps F1, F2, F3 defined by

F1(x) = [ f (x), g(x)], F2(x) = [ f (x),∞), F3(x) = (−∞, g(x)], x ∈ D,

are strongly convex with modulus c. In particular, the set-valued map F : [−r, r ] → bcl(R)

given by F(x) = c [x2−r2, r2−x2], x ∈ [−r, r ], is strongly convex with modulus c (because
f (x) = c(x2 − r2) is strongly convex with modulus c). Conversely, if F : D → b(R) is
strongly convex with modulus c, then the function f : D → R given by f (x) = inf F(x),
x ∈ D, is strongly convex with modulus c and the function g(x) = sup F(x), x ∈ D, is
strongly concave with modulus c.

The following lemmas will be used in the sequel.
Lemma 1 If F : D → n(Y ) is strongly midconvex with modulus c then

k

2n
F(x1) +

(
1 − k

2n

)
F(x2) + c

k

2n

(
1 − k

2n

)
‖x1 − x2‖2 B ⊂ F

(
k

2n
x1 +

(
1 − k

2n

)
x2

)
,

(4)

for all x1, x2 ∈ D and all k, n ∈ N such that k < 2n.

Proof The proof is by induction on n. For n = 1 (4) reduces to (3). Assuming (4) to hold for
some n ∈ N and all k < 2n , we will prove it for n + 1. Fix x1, x2 ∈ D and take k < 2n+1.
Without loss of generality it suffices to consider only the case k < 2n equivalent to k

2n+1 < 1
2

(indeed, for k = 2n we get (3), whereas the case 2n < k < 2n+1 is symmetric to the previous

one because then
(

1 − k
2n+1

)
< 1

2 ). Using the induction assumption and the definition (3) of

strong midconvexity, we get

k

2n+1 F(x1) +
(

1 − k

2n+1

)
F(x2) + c

k

2n+1

(
1 − k

2n+1

)
‖x1 − x2‖2 B

⊂ 1

2

[
k

2n
F(x1) +

(
1 − k

2n

)
F(x2) + c

k

2n

(
1 − k

2n

)
‖x1 − x2‖2 B

]
+ 1

2
F(x2)

+ ck2

4(2n)2 ‖x1 − x2‖2 B

⊂ 1

2
F

(
k

2n
x1 +

(
1 − k

2n

)
x2

)
+ 1

2
F(x2) + c

4
‖
(

k

2n
x1 +

(
1 − k

2n

)
x2

)
− x2‖2 B

⊂ F

(
k

2n+1 x1 +
(

1 − k

2n+1

)
x2

)
,

which finishes the proof. �	
Lemma 2 Let t ∈ (0, 1). If F : D → cl(Y ) is t-convex (strongly t-convex with modulus c
in particular), then F(x) is convex for every x ∈ D.

Proof For every x ∈ D, t F(x) + (1 − t)F(x) ⊂ F(x) by (2). Since F(x) is closed, it
follows that it is convex (see e.g. [1]). �	
Recall also the Rådström cancelation law [28] which is a useful tool in our investigation.

Lemma 3 Let A, B, C be subsets of X such that A + C ⊂ B + C. If B is closed convex
and C is bounded and nonempty, then A ⊂ B.
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3 Bernstein–Doetsch-type results

Obviously, every strongly convex set-valued map is strongly t-convex with any t ∈ (0, 1), but
the converse is not true, in general. For instance, if a : R → R is an additive discontinuous
function [such functions can be constructed by use of the Hamel basis (cf. e.g. [15,31])],
then the set-valued map F : [−1, 1] → bcl(R) defined by F(x) = [x2 − 1, 1 − x2] +
a(x), is strongly midconvex with modulus 1, but is not strongly convex (with any modulus).
Indeed, the function f : [−1, 1] → R given by f (x) = inf F(x) = x2 − 1 + a(x) is
strongly midconvex with modulus 1, but is not strongly convex because of the discontinuity
(cf. Example 1). However, in the class of continuous set-valued maps, strong midconvexity
(t-convexity) is equivalent to strong convexity. In fact, this equivalence holds under conditions
much weaker than continuity. In this section we present a few results of such type.

A set-valued function F : D → n(Y ) is said to be continuous (with respect to the
Hausdorff topology on n(Y )) at a point x0 ∈ D if for every ε > 0 there exists a δ > 0 such
that

F(x0) ⊂ F(x) + εB (5)

and

F(x) ⊂ F(x0) + εB (6)

for every x ∈ D such that ‖x − x0‖ < δ. If we assume only condition (5) (condition (6)) F
is said to be lower semicontinuous (upper semicontinuous) at x0.

Theorem 4 If a set-valued function F : D → bcl(Y ) is strongly midconvex with modulus
c and upper semicontinuous on D, then it is strongly convex with modulus c.

Proof Let x1, x2 ∈ D and t ∈ (0, 1). Take a sequence (qn) of dyadic numbers in (0, 1)

tending to t and fix an ε > 0. Since the set-valued functions of the form R 
 s → s A ∈ n(Y )

are continuous provided the set A is bounded (see e.g. [22], Lemma 3.2), we have

t F(x1) ⊂ qn F(x1) + ε

4
B, (1 − t)F(x2) ⊂ (1 − qn)F(x2) + ε

4
B (7)

and

ct (1 − t)‖x1 − x2‖2 B ⊂ cqn(1 − qn)‖x1 − x2‖2 B + ε

4
B, (8)

for all n ≥ n1. On the other hand, by the upper semicontinuity of F at the point t x1+(1−t)x2,
we get

F(qn x1 + (1 − qn)x2) ⊂ F(t x1 + (1 − t)x2) + ε

4
B, (9)

for all n ≥ n2. Hence, using (7), (8), (9) and Lemma 1, we obtain

t F(x1) + (1 − t)F(x2) + ct (1 − t)‖x1 − x2‖2 B

⊂ qn F(x1) + (1 − qn)F(x2) + cqn(1 − qn)‖x1 − x2‖2 B + 3

4
εB

⊂ F(qn x1 + (1 − qn)x2) + 3

4
εB ⊂ F(t x1 + (1 − t)x2) + εB,

for all n ≥ max{n1, n2}. Since the above inclusions hold for every ε > 0, we have also

t F(x1) + (1 − t)F(x2) + ct (1 − t)‖x1 − x2‖2 B

⊂
⋂
ε>0

(
F(t x1 + (1 − t)x2) + εB

) = cl F(t x1 + (1 − t)x2) = F(t x1 + (1 − t)x2).
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This shows that F is strongly convex with modulus c and finishes the proof. �	
It is known that if a midconvex set-valued map F : D → b(Y ), defined on an open convex

set D ⊂ X , satisfies some regularity assumptions such as lower semicontinuity at a point of
D or boundedness on a set with nonempty interior or measurability, then it is continuous (see,
for instance [22,23,34] and the references therein). Therefore, as a consequence of Theorem
4 and those results we obtain the following corollaries. Here D is assumed to be an open
convex subset of X .

Corollary 5 If a set-valued map F : D → bcl(Y ) is strongly midconvex with modulus c
and lower semicontinuous at a point of D, then it is continuous and strongly convex with
modulus c.

Now, let us adopt the following definition which is a natural extension of the concept of
the boundedness for real-valued functions. A set-valued map F : D → n(Y ) is said to be
bounded on a set of A ⊂ D, if there exists a number r > 0 such that F(x) ∩ r B 
= ∅ for
every x ∈ A. The following result is an analogue of the classical theorem of Bernstein and
Doetsch (see [15,31]).

Corollary 6 If a set-valued map F : D → bcl(Y ) is strongly midconvex with modulus c
and bounded on a subset of D with a nonempty interior, then it is continuous and strongly
convex with modulus c.

Recall that a set-valued map F : R
n ⊃ D → n(Y ) is Lebesgue measurable if for every

open set W ⊂ Y the set F+(W ) = {x ∈ D : F(x) ⊂ W } is Lebesgue measurable. The
next result is a counterpart of the theorem of Sierpiński (see [15,31]).

Corollary 7 If a set-valued map F : R
n ⊃ D → bcl(Y ) is strongly midconvex with modulus

c and Lebesgue measurable, then it is continuous and strongly convex with modulus c.

Remark 8 Convex set-valued maps arise naturally from, e.g., the constraints of convex opti-
mization problems and play an important role in various questions of convex analysis and
economic theory (see, for instance, [4,5,32,33]). Sometimes we can replace the assumption
that the set-valued map under consideration is (strongly) convex by the weaker and easier
to verify one—that it is (strongly) midconvex, and, consequently, we get formally stronger
results. As an example we present a version of Huang’s theorem (cf. [11], Theorem 4.5) on
error bounds for some inclusion optimization problem (see [11] for further details). Using
Corollaries 5–7 above and the fact that continuous closed-valued maps have closed graphs
(see e.g. [30,33]), we get the following variant of Huang’s theorem (in which instead of
the assumptions that F is strongly convex with closed graph we assume that it is strongly
midconvex and lower semicontinuous at a point).

Theorem 9 Let X, Y be Banach spaces, D be a convex open subset of X and F : D → bcl(Y )

be strongly midconvex with modulus c and lower semicontinuous at a point of D (or bounded
on a subset of D with nonempty interior or Lebesgue measurable (in the case where X = R

n)).
Let b ∈ F(D) and η > 0. If for each a ∈ bd(F−1(b)) there exists δa > 0 such that

η[d(x, F−1(b))]2 ≤ d(b, F(x))

for all x ∈ a + δa B, then there exists τ := min{c, η} such that

τ [d(x, F−1(b))]2 ≤ d(b, F(x))

for all x ∈ D.
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4 Kuhn-type result

It is known by the Kuhn’s theorem [16] that t−convex functions (with arbitrarily fixed
t ∈ (0, 1)) are midconvex. Similar results hold also for t-convex set-valued maps [7] and for
strongly t-convex functions [2]. In this section we present a counterpart of those results for
strongly t-convex set-valued maps. In the proof we apply the idea used in [8].

Theorem 10 Let (X, ‖ · ‖) and (Y, ‖ · ‖) be real normed spaces, D be a convex subset of
X and t ∈ (0, 1) be a fixed number. If a set-valued function F : D → bcl(Y ) is strongly
t-convex with modulus c, then it is strongly midconvex with modulus c.

Proof Fix x1, x2 ∈ D and put z := x1+x2
2 , u := (1 − t)x1 + t z and v := (1 − t)z + t x2.

Then

z = tu + (1 − t)v.

Since

‖x1 − z‖ = ‖z − x2‖ = ‖u − v‖ = 1

2
‖x1 − x2‖,

we have

1

2
t (1 − t)‖x1 − x2‖2 B = t2(1 − t)‖x1 − z‖2 B

+t (1 − t)2‖z − x2‖2 B + t (1 − t)‖u − v‖2 B.

Using this equality and applying three times condition (2) in the definition of strong
t-convexity, we obtain

t (1 − t)F(x1) + t (1 − t)F(x2) + (1 − 2t (1 − t))F(z) + c

2
t (1 − t)‖x1 − x2‖2 B

⊂ t
[
(1 − t)F(x1) + t F(z) + ct (1 − t)‖x1 − z‖2 B

]
+(1 − t)

[
(1 − t)F(z) + t F(x2) + ct (1 − t)‖z − x2‖2 B

] + ct (1 − t)‖u − v‖2 B

⊂ t F(u) + (1 − t)F(v) + ct (1 − t)‖u − v‖2 B

⊂ F(z) ⊂ 2t (1 − t)F(z) + (1 − 2t (1 − t))F(z).

Since the set F(z) is bounded closed and (by Lemma 2) convex, using the Rådström
cancelation law, we get

t (1 − t)F(x1) + t (1 − t)F(x2) + c

2
t (1 − t)‖x1 − x2‖2 B ⊂ 2t (1 − t)F(z).

Hence, dividing by 2t (1 − t), we obtain

1

2
F(x1) + 1

2
F(x2) + c

4
‖x1 − x2‖2 B ⊂ F

(
x1 + x2

2

)
,

which proves that F is strongly midconvex with modulus c. �	
Remark 11 From Theorem 10 and Theorem 4 we infer that if a set-valued map F : D →
bcl(Y ) is strongly t−convex with modulus c and upper semicontinuous, then it is strongly
convex with modulus c. Similarly we can reformulate Corollaries 5, 6 and 7 for strongly
t−convex set-valued maps.
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5 A characterization of inner product spaces

In this section we give some relationships between convex and strongly convex set-valued
maps in the case where X is a real inner product space (that is, the norm ‖ · ‖ is induced by
an inner product: ‖x‖2 :=< x | x >). Namely, we prove that a set-valued map F is strongly
convex with modulus c if and only if G = F +c‖·‖2 B is convex. Next, using this condition,
we obtain a new characterization of inner product spaces among normed spaces.

Theorem 12 Let (X, ‖ · ‖) be a real inner product space, D be a convex subset of X and
t ∈ (0, 1) be a fixed number. A set-valued map F : D → ccl(Y ) is strongly t-convex with
modulus c if and only if the set-valued map G defined by G(x) = F(x) + c‖x‖2 B, x ∈ D,
is t-convex.

Proof Assume first that G is t-convex, that is

tG(x1) + (1 − t)G(x2) ⊂ G(t x1 + (1 − t)x2), x1, x2 ∈ D.

Then

t F(x1) + ct‖x1‖2 B + (1 − t)F(x2) + c(1 − t)‖x2‖2 B

⊂ F(t x1 + (1 − t)x2) + c‖t x1 + (1 − t)x2‖2 B. (10)

By elementary properties of the inner product we get

t‖x1‖2 + (1 − t)‖x2‖2 = t (1 − t)‖x1 − x2‖2 + ‖t x1 + (1 − t)x2‖2.

Therefore, (10) can be rewritten in the form

t F(x1) + (1 − t)F(x2) + ct (1 − t)‖x1 − x2‖2 B + c‖t x1 + (1 − t)x2‖2 B

⊂ F(t x1 + (1 − t)x2) + c‖t x1 + (1 − t)x2‖2 B.

Since the set F(t x1 + (1 − t)x2) is convex closed and B is bounded, by the Rådström
cancelation law we obtain

t F(x1) + (1 − t)F(x2) + ct (1 − t)‖x1 − x2‖2 B ⊂ F(t x1 + (1 − t)x2),

which proves that F is strongly t-convex with modulus c.
Conversely, if F is strongly t-convex with modulus c, then

tG(x1) + (1 − t)G(x2)

= t F(x1) + (1 − t)F(x2) + ct‖x1‖2 B + c(1 − t)‖x2‖2 B

= t F(x1) + (1 − t)F(x2) + ct (1 − t)‖x1 − x2‖2 B + c‖t x1 + (1 − t)x2‖2 B

⊂ F(t x1 + (1 − t)x2) + c‖t x1 + (1 − t)x2‖2 B = G(t x1 + (1 − t)x2),

which shows that G is t-convex. �	
The assumption that X is an inner product space is not redundant in the above theorem.

Moreover, the fact that F is strongly t-convex with modulus c if and only if G = F+c‖·‖2 B
is t-convex, characterizes inner product spaces among all normed spaces. The next theorem
is motivated by [24], where similar characterizations of inner product spaces by strongly
convex and strongly midconvex functions are presented.

Theorem 13 Let (X, ‖ ·‖) be a real normed space. The following conditions are equivalent:

1. (X, ‖ · ‖) is an inner product space;
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2. For every c > 0 and t ∈ (0, 1) and for every set-valued map F : D → ccl(Y ) defined on a
convex subset D of X, F is strongly t-convex with modulus c if and only if G = F+c‖·‖2 B
is t-convex;

3. For every c > 0 and for every set-valued map F : D → ccl(Y ) defined on a convex
subset D of X, if G = F + c‖ · ‖2 B is midconvex then F is strongly midconvex with
modulus c.

Proof Implication 1 ⇒ 2 follows by Theorem 10. Implication 2 ⇒ 3 is obvious.
To show that 3 ⇒ 1, fix x1, x2 ∈ X , take r ≥ max{‖x1‖, ‖x2‖} and consider the set-

valued map F = c(r2 − ‖ · ‖2)B defined on D = {x ∈ X : ‖x‖ ≤ r}. By the assumption,
F is strongly midconvex with modulus c because G = F +c‖·‖2 B = cr2 B is midconvex.
Thus

1

2
F(x1) + 1

2
F(x2) + c

4
‖x1 − x2‖2 B ⊂ F

(
x1 + x2

2

)
,

whence, by the definition of F ,

c

2
(r2 − ‖x1‖2)B + c

2
(r2 − ‖x2‖2)B + c

4
‖x1 − x2‖2 B ⊂ c

(
r2 − ‖ x1 + x2

2
‖2

)
B.

From here

(4r2 − 2‖x1‖2 − 2‖x2‖2 + ‖x1 − x2‖2)B ⊂ (4r2 − ‖x1 + x2‖2)B,

and, consequently,

‖x1 + x2‖2 + ‖x1 − x2‖2 ≤ 2‖x1‖2 + 2‖x2‖2. (11)

This inequality holds for all x1, x2 ∈ X. Putting u = x1 + x2 and v = x1 − x2 in (11) we get
also

2‖u‖2 + 2‖v‖2 ≤ ‖u + v‖2 + ‖u − v‖2, u, v ∈ X. (12)

Conditions (11) and (12) mean that the norm ‖ · ‖ satisfies the parallelogram law, which
implies, by the classical Jordan–von Neumann theorem, that (X, ‖ · ‖) is an inner product
space. �	

6 Relationships with strongly convex sets

Let (Z , ‖ · ‖) be a real normed space and R > 0. Given z1, z2 ∈ Z with ‖z1 − z2‖ ≤ 2R,
we denote by DR(z1, z2) the intersection of all closed balls with radius R containing
z1 and z2. A set A ⊂ Z is called strongly convex with respect to the radius R if diam A ≤ 2R
and DR(z1, z2) ⊂ A for all z1, z2 ∈ A. Equivalently, A is strongly convex with respect to
R if it can be represented as the intersection of a family of closed balls of radius R (see
[26,35,36]). Strongly convex sets appear naturally during the study of accessible sets in non-
linear control systems, and they were considered, among others, by Pliś [25], Łojasiewicz
[18], Frankowska and Olech [10] (they called these sets R-regular or R-convex sets). Many
properties and applications of strongly convex sets can be found in Polovinkin [26] and Vial
[35,36]. In this section we present some relations between strongly convex set-valued maps
and strongly convex sets.

In [26] Polovinkin proved the following theorem: If A ⊂ R
n × R is a strongly convex

set with respect to a radius R and D = {x ∈ R
n : ∃α ∈ R, (x, α) ∈ A}, then the function
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f : D → R defined by f (x) = inf{α ∈ R : (x, α) ∈ A} is strongly convex with modulus
c = 1

2R . Using this result we can show that every strongly convex set A ⊂ R
n × R is the

graph of a strongly convex set-valued map. Recall that the graph of F : D → n(Y ) is defined
by Gr F = {(x, y) : x ∈ D, y ∈ F(x)}.
Theorem 14 Let A ⊂ R

n ×R be a strongly convex set with respect to a radius R > 0 and let
D = {x ∈ R

n : ∃α ∈ R, (x, α) ∈ A}. Then there exists a set-valued map F : D → bcl(R)

strongly convex with modulus 1
2R such that Gr F = A.

Proof Denote f1(x) = min{α ∈ R : (x, α) ∈ A} and f2(x) = max{α ∈ R : (x, α) ∈ A},
x ∈ D. By the theorem of Polovinkin mentioned above, f1 is strongly convex with modulus

1
2R and f2 is strongly concave with modulus 1

2R . Hence the set-valued map F : D → bcl(R)

defined by F(x) = [ f1(x), f2(x)] is also strongly convex with modulus 1
2R (cf. Example 1)

and Gr F = A. �	
The following example shows that the converse theorem is not true.

Example 2 Consider the set-valued map F : [−R, R] → c(R) defined by F(x) =
[−√

R2 − x2, 1 + √
R2 − x2 ], x ∈ [−R, R]. By the known characterization of twice

differentiable strongly convex functions stating that f is strongly convex with modulus c if
and only if f ′′ ≥ 2c, we infer that f1(x) = −√

R2 − x2 is strongly convex with modulus 1
2R .

Similarly, f2(x) = 1+√
R2 − x2 is strongly concave with modulus 1

2R . Hence F is strongly
convex with modulus 1

2R . However, the graph of F is not strongly convex with respect to the
radius R because diam Gr F > 2R. In fact, Gr F is not strongly convex with respect to any
radius r > 0. Indeed, for 2r < diam Gr F it is clear, and for 2r ≥ diam Gr F it follows
from the fact that (R, 0), (R, 1) ∈ Gr F but Dr ((R, 0), (R, 1)) � Gr F .

In [35] Vial proved the following theorem: A closed set A ⊂ R
n is strongly convex with

respect to a radius R if and only if A is bounded and for any z1, z2 ∈ A and t ∈ (0, 1) the closed
ball K (zt , δt ) with center zt = t z1 + (1 − t)z2 and radius δt = 1

2R t (1 − t)‖z1 − z2‖2,

is included in A. In the same way one can prove that this result holds also for every set
A ⊂ X ×Y , where X and Y are arbitrary real inner product spaces. Then X ×Y is also an inner
product space with the inner product < (x1, y1) | (x2, y2) >=< x1 | x2 > + < y1 | y2 >

and the norm ‖(x, y)‖2 = ‖x‖2 + ‖y‖2.
Using the above result we can obtain the following generalization of Theorem 14.

Theorem 15 Let X, Y be real inner product spaces, A ⊂ X × Y be a strongly convex set
with respect to a radius R > 0 and let D = {x ∈ X : ∃y ∈ R, (x, y) ∈ A}. Then there exists
a set-valued map F : D → bcl(Y ) strongly convex with modulus 1

2R such that Gr F = A.

Proof Consider the set-valued map F : D → bcl(Y ) defined by

F(x) = Ax := {y ∈ Y : (x, y) ∈ A}.
Clearly, Gr F = A. We will show that F is strongly convex with modulus 1

2R . To this aim
fix x1, x2 ∈ D, y1 ∈ F(x1), y2 ∈ F(x2) and t ∈ (0, 1). By the Vial-type result mentioned
above we have

K ((xt , yt ), δt ) ⊂ A,

where K ((xt , yt ), δt ) is the closed ball in X × Y with center (xt , yt ) = t (x1, y1) + (1 − t)
(x2, y2) an radius δt = 1

2R t (1 − t)‖(x1, y1) − (x2, y2)‖2. Taking the xt -section on the both
sides we get

K ((xt , yt ), δt )xt ⊂ Axt ,
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and from here

t y1 + (1 − t)y2 + 1

2R
t (1 − t)‖x1 − x2‖2 B ⊂ F(t x1 + (1 − t)x2).

Since this inclusion holds for all y1 ∈ F(x1) and y2 ∈ F(x2), we have also

t F(x1) + (1 − t)F(x2) + 1

2R
t (1 − t)‖x1 − x2‖2 B ⊂ F(t x1 + (1 − t)x2),

which shows that F is strongly convex with modulus 1
2R and finishes the proof. �	
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