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Abstract We describe the minimum volume simplex enclosure problem (MVSEP), which
is known to be a global optimization problem, and further investigate its multimodality. The
problem is a basis for several (unmixing) methods that estimate so-called endmembers and
fractional values in a linear mixing model. We describe one of the estimation methods based
on MVSEP. We show numerically that using nonlinear optimization local search leads to the
estimation results aimed at. This is done using examples, designing instances and comparing
the outcomes with a maximum volume enclosing simplex approach which is used frequently
in unmixing data.
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1 Introduction

The problem to enclose a number of points by a body of certain shape is often a global optimi-
zation problem. The minimum volume simplex enclosure problem (MVSEP) minimizes the
volume of a simplex that encloses a given set of points. Initially, [3] showed that the solution
of MVSEP can be used for so-called unmixing of sensor data; having (high dimensional)
data from multispectral imaging sensors one tries to unfold (unmix) them into components.
The underlying statistical model under consideration is the so-called linear mixing model:

y = Xa + ε (1)

where y is an m-vector of observed properties, X is an m × (n + 1) matrix with the prop-
erties of pure constituents, also called endmembers, and a is an (n + 1)-vector of fractions,
also called abundances. Often ε is taken as a noise m-vector with components that are i.i.d.
Gaussian random variables with a standard deviation of σ, ε ∼ N (0, σ 2 E), E the identity
matrix.

Given a set of observations y1, . . . , yr , the estimation problem is to recover X and to
obtain for each observation yk its fractional composition ak that should be nonnegative and
its elements summing up to one, i.e. it lays on the unit simplex. The model has important
applications in geology ([8]) where soil samples are analyzed and decomposed in its basic
constituents and in the analysis of remotely sensed hyperspectral data, where the estimation
is called endmember extraction and spectral unmixing. An overview is given by [6] and in [2]
an extensive description of underlying concepts and developed methods is provided. In this
field, besides the use of an MVSEP approach, also a maximum volume “inscribed” simplex
concept exists and is the base of the so-called n- findr algorithm extensively described in
[10].

Section 2 discusses the MVSEP and illustrates its multimodal character. It is put besides
the maximum volume “inscribed” simplex problem. In Sect. 3, a procedure is described
for estimating parameter values of the linear mixing model based on MVSEP. Section 4
investigates the relation between input noise and the variability of estimates with numerical
instances, when local searches are used to generate solutions of MVSEP. Finally, conclusions
are drawn in Sect. 5.

2 Minimum volume and maximum volume simplex problems

We first focus on the MVSEP and then show its relation with the maximum volume prob-
lem. The problem of finding the minimum volume enclosing simplex of a set of points
zk ∈ R

n,∀k = 1, . . . , r consists of finding a set of n + 1 affine independent vertices vi such
that V = [v1, . . . , vn+1] is the minimum of

min
V̂

{
f (V̂ ) :=

∣∣∣∣det

(
V̂
1T

)∣∣∣∣
}

s.t.: βk =
(

V̂
1T

)−1 (
zk

1

)
≥ 0,∀k (2)

where 1 is the all-ones vector. MVSEP (2) is a nonlinear optimization problem with n×(n+1)

variables and r × (n + 1) constraints. Note that vector βk of point k denotes how zk can be
written as a convex combination of the columns of V . If it has components that are zero, zk

is on the boundary of the simplex Ŝ = conv(V̂ ). Corresponding to the terminology of active
(binding) constraints, we call the points at the boundary active points.
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Fig. 1 3 enclosing simplices of 4 points

Enclosing a set of points with a minimum volume shape has specific mathematical charac-
teristics. For any convex shape where one minimizes the volume, the points in the interior of
the convex hull do not have to be taken into account. However, the determination of the points
that are on the boundary of the convex hull is of the same complexity as finding the minimum
volume shape [7]. Usually, a limited number of active points can be found on the boundary of
the minimum volume shape. In [4], several examples for enclosing with spheres (the Cheby-
chev problem) and with hyper-rectangles are given. Enclosing a set of points by a minimum
radius sphere is a convex problem and therefore relatively easy to solve. Khachiyan and Todd
[7], Sun and Freund [9] discuss the complexity to determine for a set of points the enclosing
and enclosed ellipsoids. In [4] a small instance with only 4 points is used to illustrate the
complexity of the enclosing hyperrectangle problem. We generate a 4-point problem for (2)
as an example.

Example 1 Given matrix Z = [z1, . . . , z4] with data Z =
(

0 4 4 1
0 0 4 4

)
. Problem (2) has

several local minima for this instance. They can be found by running nonlinear optimization
algorithms from several starting points. In this example, the global minimum solution in
terms of the enclosing simplex is not unique. In Fig. 1, three enclosing simplices are given.

Vertex matrices

(
0 6 2
0 0 8

)
,

(−2 4 4
0 0 8

)
give volume 48 and

(−2 6 2
4 4 −4

)
represents a sim-

plex of volume 64. The latter is called a local minimum solution; moving vertices a bit such
that it still encloses the points increases its volume. Moreover, any convex combination of
the matrices with volume 48 also has a volume of 48. This means that the number of global
minimum solutions (simplices) of (2) in this example is infinite.

First of all one should keep in mind that, in general, having a global optimum enclosing
simplex implies (n + 1)! solution matrices V , as any permutation of the columns in V repre-
sents the same simplex. When using (2) to estimate a constituent matrix, one has to allocate
vertices vi to constituents during an interpretation of estimation results. Besides symmetry,
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Fig. 2 Enclosing 10 points on the unit ball. Dotted simplex is first guess as starting simplex of a local search
algorithm with fixed line simplex as result

Fig. 3 Minimum volume of enclosing simplex when fixing angle α of first edge

MVSEP (2) is harder for an instance Z representing a “round” cloud of points. To illustrate
this, we construct an instance where the points are distributed over the unit ball as our next
example.

Example 2 To give a good picture of multimodality is not straightforward; even in the
2-dimensional cases the MVSEP has 6 parameters to optimize. Therefore we construct a
parameterized example where the angle of the first edge α of the simplex is fixed and we
optimize over the other parameters as illustrated in Fig. 2.

The basis of the case is enclosing the unit ball (any ellipse also would do) with a (regular)
simplex of volume 3

√
3 ≈ 5.2. For the illustration, we generate 10 points over the unit ball

and solve MVSEP by fixing α and the corresponding edge and minimizing over the rest
of the parameters. The result of this exercise has been drawn in Fig. 3. It shows the mini-
mum volume for varying value of α. The minima in Fig. 3 are local minima of problem (2).
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Fig. 4 3 Endmembers, 20 observations in 2D with enclosing simplex Ŝ

The instance shows that the number of optima, when points zk are 2-dimensional, increases
with the number r of points as long as they are in the convex hull. This is confirmed by the
findings of [11], which constructs a specific algorithm for 3-dimensional instances.

Now consider the linear mixing model, where MVSEP is applied in estimation methods.
Let the points zk be observations of model

z = V a + ξ, (3)

where ξ is an n-vector of Gaussian i.i.d. variates. V is now a n × (n + 1) matrix of endmem-
bers. So, (3) is a special case of model (1) with n = m. Notice that in practice m >> n, i.e.
the number of measured properties of a sample is much higher than the number of constit-
uents. The question here is: if zk are samples from a lower dimensional model (3), does a
permutation of the columns of a solution V̂ = [v̂1, . . . , v̂n+1] represent an approximation of
the endmembers in V ? In other words, how well does simplex Ŝ = conv(V̂ ) approximate
S = conv(V ) and how multimodal is (2)?

Example 3 Consider matrix of endmembers V =
(

1 4 5
1 4 0

)
depicted in Fig. 4 by dots. In

total, 20 points are generated as convex combinations of the columns of V and depicted as
crosses in the leftmost picture of Fig. 4 where 10 are a combination of 2 endmembers and 10
are a combination of 3 endmembers. Only if the number of points on the boundary is very
low, enclosing simplex Ŝ does not reflect matrix V as vertices. Simplex S has a volume of 15.
We add noise with σ = 0.1 to simulate observations of (3) and obtain the points in the right
picture of Fig. 4. They are enclosed by a simplex Ŝ of volume 17. Notice that less points are
now located at the boundary. It may be intuitively clear that there should be at least 4 active
points to obtain the minimum volume simplex in 2D.

Example 3 shows several features of using the MVSEP for estimating endmembers. First
of all, if a sufficient number of points are at the boundary (their fraction vector a contains
zeros) and there is no noise, Ŝ = S, i.e. we recover the endmembers and there is one (local)
optimal enclosing simplex; it is sufficient to apply nonlinear optimization local search.

Secondly, if points are well spread over the boundary, the cloud of points is not “round” and
consequently problem (2) has either one global minimum simplex, or local nonglobal minima
that are close to the global one, as well in function value as in (permutation of) matrix V̂ .
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Fig. 5 Maximum volume S̃ (solid line) and minimum volume Ŝ (dotted line). Dots are endmember values in
V and crosses are 20 noisy observations zk

Local nonlinear optimization may generate good approximations to the true endmembers, that
usually correspond to correct estimates if noise is absent. This will be numerically illustrated
in Sect. 4.

The exact number of points on the boundary of S to recover V by (2) depends on the number
of zeros in the corresponding abundance vector a. In the extreme case, all pure constituents
are present in the data. This means that in the data we have n + 1 unit vectors ak = ei being
columns of the unit (identity) matrix E . The convex hull of the corresponding endmem-
bers vi = V ei encloses all observations in the absence of noise. Moreover, the volume of
S = conv(V ) is the largest if one selects n + 1 points out of the r observations, because they
are convex combinations of vi . The related largest volume problem is called the maximum
volume simplex problem.

Consider the points in Z now as a set X. One wants to find that subset V, |V| = (n + 1),
with a corresponding simplex of maximum volume. Using notation of sets and matrices, one
can express this as

max
V⊂X

{
f (V ) :=

∣∣∣∣det

(
V
1T

)∣∣∣∣
}
, (4)

where V is a matrix with the columns of V. Problem (4) is a combinatorial optimization
problem. Let us call the solution of problem (4) Ṽ and the corresponding simplex S̃. Notice
that due to noise or absence of the endmembers in the data set, S̃ does not necessarily enclose
all data points zk . We illustrate this with an example.

Example 4 Consider the setting of Example 3 where now 20 points are generated with noise
of σ = 0.3. Figure 5 gives a minimum volume simplex Ŝ enclosing the points with volume
18.5. The maximum volume simplex S̃ that selects 3 points out of 20 has volume 11.25.
It does not enclose all observations.

As illustrated by Example 4, the simplex Ŝ encloses all points, so also S̃ ⊂ Ŝ. However, the
simplex S that we intend to estimate does not have a fixed relation with them. It may be clear
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that lower noise and more observations as random combinations of the endmembers make S̃
go to S. Given fixed noise variance σ 2 and increasing a number of uniformly spread points,
leads in limit to an overestimate of S, as observations fall outside S.

Problem (4) implies selecting n + 1 points out of r . The number of possibilities grows
as an (n + 1)-degree polynomial in r . Usually, heuristic methods are used to find a good
solution. The use of problem (4) for the estimation of parameters of model (1) is based on the
assumption that endmembers are present in the data Z . n- findr [10] is a heuristic algorithm
that generates a (not necessarily optimal) solution of problem (4) in the context of spectral
unmixing applications. We refer here to n- findr as an algorithm and not to the commercial
software that has been constructed around it. The n- findr algorithm is a so-called local
search heuristic in the context of the available literature on combinatorial optimization, e.g.
[1]. The algorithm has been extensively described in [10] with a claim that, under certain
circumstances, it converges to the optimum solution of problem (4). We will use a matlab
implementation of the algorithm as a reference method.

In the use of (2), noise complicates the estimation of V . More noise makes the volume of
Ŝ bigger. Like in regression, one would like to draw the bounding facets through the exterior
of the cloud of points instead of enclosing it. In [5] a procedure called minvest is developed
based on that observation and compared to a multitude of methods for spectral unmixing. In
Sect. 3, we describe the underlying ideas of this minimum volume based method. The next
question is how sensitive such a minimum volume based method is to noise compared to a
maximum volume based method. Does it still give accurate estimates if noise increases and
local nonlinear search is used? We deal with that question in Sect. 4.

3 A minimum volume simplex estimation procedure

A procedure called minvest based on MVSEP is described to recover matrix X and fraction
vector ak from observations yk, k = 1, . . . , r of model (1). Despite data yk ∈ R

m , the corre-
sponding ground truth data Xak lay in a lower dimensional space Y, i.e. a point y = Xa ∈ Y

can be represented by a point z ∈ R
n . Y can be described using an m-vector b and an m × n

orthonormal matrix Γ and the relation:

y = Xa = b + Γ V a = b + Γ z, (5)

where z = V a is a n-vector that corresponds to y. Without noise, one can describe space Y

with n+1 affine independent observations y1. . . . , yn+1: Y = yn+1+ < [y1−yn+1, . . . , yn −
yn+1] >, and determine Γ accordingly. In the practical situation of having noise, one can
estimate Y and a corresponding representation via vector b and matrix Γ by using principal
component analysis. In that case, the choice for b and Γ is given by b = y = 1

r

∑
k yk

and Γ = C = [c1, . . . , cn] is an m × n matrix of principal components; in direction c1 we
have the biggest variation, in direction c2 the second biggest, etc. In this terminology, the
transformed observations zk = CT (yk − y) are called scores.

For the relation of model (3) and (1) in terms of noise, (5) implies that ξ has n Gaussian i.i.d.
components with the same variance σ 2 due to Γ being orthonormal; ξ = (Γ T Γ )−1Γ T ε =
Γ T ε. The procedure is to transform the data yk to zk in the lower dimensional space, create
an estimate V̂ of V and to transform that back via X̂ = CV̂ + y1T . As a second step, the
abundance ak is estimated from V̂ and zk .
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3.1 Estimate V̂ of endmember matrix V

Despite V a can be found in the convex hull S = conv(V ), observation zk may be out due to
the noise in model (3). The idea for estimating V is to base the final estimate of endmembers
on the P observations that we expect to be interior with respect to S. The endmembers are
estimated iteratively from the minimum volume problem (2) where, at each iteration, the
points at the boundary of its convex hull (active points) are removed until P observations
are left over. We estimate P from a crude approximation, which assumes that if aik = 0, the
probability is 50% that the observation is in S. Assuming independence, with N abundance

values equal to zero we take that probability as
( 1

2

)N
. Given that there are rN observations

with ground truth ak having N zeros, this estimate gives P = ∑n
N=0

( 1
2

)N
rN . The values

for rN in an experimental setting are found in the ground truth data ak , or can be estimated
from other estimation methods.

As starting simplex, one can take a random matrix or, for instance, the result of the n- findr
algorithm. A solution of MVSEP (2) is determined, and points at the boundary are detected
via the active (binding) constraints. These points are removed and (2) is again solved, points
removed etc., until P points are left over to base the estimate on. We illustrate Algorithm 1
with an example.

Algorithm 1 : minvest
Inputs: Z : n × r matrix of observation scores

P: number of interior observations
Output: V̂ : n × (n + 1) matrix of endmember estimates

Funct MinVol estimator

1. Initialization: R := r, Z0 := Z , generate starting simplex V̂
2. while (R > P)

3. Generate V̂ by solving (2) for Z0, former V̂ is starting value
4. Remove points at boundary Ŝ = conv(V̂ ) from Z0, update number of observations to R = |Z0|
5. endwhile

Example 5 Given the simplex of endmembers of Example 3, in total r = 100 observations
are generated on its boundary such that they have one zero abundance value each. Noise is
added with σ = 0.2. This means that about half of the observations are located inside; we can
take P = 50. The fmincon routine of matlab is used to solve (2) generating minimum
volume enclosing simplices Ŝ, given by dotted lines in Fig. 6. In each iteration, about 6
points are active and removed from the set. Ŝ is determined again using the former estimate
as starting value. This process continues up to the final estimate which in this case is based

on 46 points. The estimated matrix of endmembers is given by V̂ =
(

1.02 5.03 4.00
1.03 −0.02 4.26

)

with a volume of 16.07 and corresponding simplex depicted by a solid line in Fig. 6. Notice
that the fmincon solver generates local and not necessarily global solutions of (2). Despite
the noise is considerable, one obtains adequate estimations of the simplex S.

3.2 Estimate Â of abundance matrix A

To recover the fractional values ak from the estimated endmembers V , one can in principle
solve
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Fig. 6 Estimates of S, interior and projected observations represented as squares

zk =
(

V
1T

) (
ak

1

)
, (6)

as (6) implies having (n +1) variables aik and (n +1) equations. For the fraction of observa-
tions located in the final set Z0 and geometrically within simplex Ŝ, we have automatically
positive abundance values given by βk in (2). For observations zk outside Ŝ, we have at least
one corresponding a jk < 0. Assuming Ŝ = S, the idea is that zk is located outside due to
noise ξ . This makes it reasonable to project zk on the nearest facet of Ŝ.

Let F be the space of that facet containing p ≤ n vertices called u1, . . . , u p . Define matrix
W = [w1, . . . , wp−1] with w j = u j − u p . Now one can write

F =
⎧⎨
⎩x =

p∑
j=1

a j u j |
p∑

j=1

a j = 1

⎫⎬
⎭ = u p + 〈W 〉. (7)

The relation between the two representations is that for an (n + 1)-vector a with
∑p

j=1 a j =
1 → ap = 1 − ∑p−1

j=1 a j , one can write point x ∈ F as

x =
p∑

j=1

a j u j = u p +
p−1∑
j=1

a j (u j − u p) = u p +
p−1∑
j=1

a jw j . (8)

The projection x of z on F is x = W (W T W )−1W T (z − u p) and corresponding abundance

a = (W T W )−1W T (z − u p), a ∈ R
p−1 and ap = 1 −

p−1∑
j=1

a j . (9)

The choice to make is which facet to project on, i.e. which a j are zero, so their v j should
not be considered in matrix U . Let J(a) = { j |a j > 0} be the index set of positive values
in a vector a. Algorithm 2 first determines a via (6), selects endmembers v j from J(a) into
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matrix U , determines W and calculates (9). Although not often, it may occur that the result
still contains negative components. Those are set to zero and (9) is recalculated for the lower
dimensional facet until only positive abundance values are left. In Fig. 6, the interior points z

Algorithm 2 : Abundance estimation
Inputs: V : n × (n + 1) matrix of endmember scores

z: n-vector of scores
Outputs: a: non-negative fraction vector

Funct Abundance

1. Initialization: Determine a via (6)
2. while not all components (a j ≥ 0)

3. for all j with a j < 0, put a j := 0
4. for all j ∈ J(a) put their v j in U
5. Construct W and determine values a j for j ∈ J(a) via (9)
6. endwhile

and the projected versions x of the outside observations of Example 5 are given by squares.
They correspond to nonnegative fractional values.

4 Sensitivity with respect to noise

As we have seen, without noise dimension reduction and enclosure lead to an exact recovery
of the original parameters of the model. What is the influence of σ on the accuracy of an
MVSEP based method like minvest compared to a maximum volume simplex based method
like n- findr?

To find an answer, we develop several experiments using simulations. The first experi-
ment is a 4D instance where σ is varied and the variance of the estimated values is measured.
The second case is based on computer simulated hyperspectral scenes constructed from real
spectral observations. It requires dimension reduction and further allows visual inspection of
the results.

As a measure of viability of the estimation V̂ of V, we take the standard deviation assuming
V̂ is unbiased. This is also called root mean squared error (RMSE):

σV = √
(

1

n(n + 1)

∑
i

∑
j

(V̂i j − Vi j )
2). (10)

The quality of estimation Â of A is measured as the standard deviation estimate assuming Â
is unbiased:

σA = √
(

1

r × n

∑
i

∑
k

( Âik − Aik)
2). (11)

We measure as well the variance σA of A generated by (6) (this is called linear spectral unmix-
ing in the literature) as variance σAp of A generated by Algorithm 2. The latter is called fully
constrained linear spectral unmixing (FCLSU) in the spectral unmixing literature.

4.1 A 4D experiment

This experiment has the following ingredients:
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Table 1 Standard deviation estimates (RMSE) of endmembers V and abundance A of by n- findr and
minvest algorithms given noise standard deviation σ

σ n- findr minvest

0.01 0.1 0.2 0.5 0.7 0.01 0.1 0.2 0.5 0.7

σV 0.030 0.118 0.233 0.857 1.359 0.013 0.111 0.194 0.486 0.922

σA 0.011 0.063 0.114 0.259 0.323 0.007 0.058 0.105 0.204 0.266

σAp 0.008 0.048 0.092 0.224 0.281 0.005 0.048 0.086 0.174 0.234

– There are (n + 1) = 5 endmembers and r = 500 observations in R
4

– The endmember matrix to be estimated is V =

⎛
⎜⎜⎝

0 1 2 3 5
5 1 3 5 4
0 1 1 2 0
0 0 2 1 0

⎞
⎟⎟⎠. We keep the order of

endmembers fixed by sorting the first row. In this way, estimates V̂ and V are easily
compared.

– To mimic the idea of combinations of a few constituents, a ground-truth abundance matrix
A is generated consisting of 50% of mixtures of 2 endmembers and 50% of mixtures of
3 endmembers. They are generated uniformly over the corresponding facets of the unit
simplex.

– The score matrix Z used as input for the estimation is taken as Z = V A + σ × ξ , where
ξ is standard Gaussian noise. Given that the measured RMSE depends on (pseudo-)ran-
domly drawn Gaussian noise, we replicate noise 100 times, i.e. generate replications for
Z , and take the average of the measures.

– The estimate of the number of points P that fall in the simplex is based on: r0 = r1 =
r4 = 0 and r2 = r3 = 250, so P = 93.75.

The result for n- findr and minvest is given in Table 1. It shows standard deviation estimates
σV of endmembers and σA of fractional abundances calculated via (6) and via FCLSU. One
can observe that the standard deviation of the estimates is in the same order of magnitude
as that of noise. This means that the procedures give results as accurate as the input data.
Deviation of endmembers and abundances estimations provided by n- findr are larger than
those obtained with minvest. The reason may be that the pure endmembers vi are not present
in the data.

4.2 Experiment with spectral data

In this experiment, data are taken from the field of hyperspectral imaging sensors. More
specifically, the reflectance spectra of n + 1 = 5 US Geological Survey (USGS) mineral
spectra (alunite, buddingtonite, calcite, kaolinite and muscovite, all signatures are available
online1) were used to build an endmember matrix X with m = 224. A square synthetic image
scene of size 100 × 100 pixels is simulated. Mixtures Xak between the five endmembers
have been generated to construct ground-truth fractional maps, such that the endmembers
are located at the four corners and at the center of the image, and signature abundance a
decreases linearly away from the pure pixels. Gaussian noise with a signal-to-noise ratio or
SNR ranging from 30:1 to 70:1 was added to the scene in order to simulate contributions

1 http://speclab.cr.usgs.gov/spectral-lib.html.
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Fig. 7 a Ground-truth fractional abundance maps. b Fractional abundance estimations without noise using
minvest algorithm. c Fractional abundance estimations for the image with SNR of 30:1 using minvest
algorithm

from ambient (clutter) and instrumental sources. The signal-to-noise ratio is a usual way to
express the ratio between the size of the observed property and the variance of the noise.
Values higher than 70 are basically considered no-noise.

In hyperspectral analysis, the use of so-called fractional abundance maps is common to
depict the fractional values for each endmember spatially. Figure 7a shows the ground-truth
maps compared with the maps obtained by minvest for the simulated image without noise in
Fig. 7b and with an SNR of 30:1 in Fig. 7c. The visual appearance of the fractional abundance
maps generated by minvest algorithm is in very good compromise with the ground-truth
fractional abundance maps, even for a scenario with high noise, i.e. the estimated abundance
is always highly correlated to the abundances in the fractional maps of ground-truth values.

Figure 8 displays the fractional abundance estimations obtained by n- findr combined
with a fully constrained least squares (FCLSU) algorithm for abundance estimation. It can
be observed that the use of n- findr endmembers resulted in fractional maps which are not
as properly distributed (in spatial terms) as those provided by minvest. In particular, this
is the case for the simulated scene with SNR of 30:1 in Fig. 8c. Although the estimations
resulting from n- findr are less correlated (i.e., they appear less similar visually) the RMSE
of the estimated abundance fractions tells us if there are any scaling issues involved as was
the case for some of the minvest estimations.

Table 2 gives the RMSE between the fractional abundance maps estimated for the end-
members extracted using n- findr (combined with FCLSU) and minvest. As shown by
Table 2, the best estimations for the simulated scene without noise are provided by minvest,
while the best estimations for the scenes with simulated noise are provided by n- findr.
This seems not to be consistent with the visual appearance of the fractional abundance maps
estimated by the different methods, in particular for the maps displayed in Fig. 8c and their
visual agreement with the ground-truth maps. However, this is merely a scaling issue. Due
to the dependence of minvest on the estimated number of observations falling inside the
original simplex, the estimate of S may over or underestimate its volume. This means that all
abundance values are either too big or too small resulting in a higher RMSE value. The visual
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Fig. 8 a Ground-truth fractional abundance maps. b Fractional abundance estimations for the simulated image
without noise using n- findr algorithm followed by fully constrained linear spectral unmixing. c Fractional
abundance estimations for the simulated image with SNR of 30:1 using n- findr algorithm followed by fully
constrained linear spectral unmixing

Table 2 RMSE values
comparing fractional abundance
estimated by different methods
with true abundance; simulated
scenes with different values for
SNR

SNR minvest n- findr

∞ 0.0000 0.0020

70 0.0262 0.0067

50 0.0347 0.0117

30 0.0522 0.0331

correspondence (correlation) tells us that apparently the orientation of the generated simplex
by minvest is better than that generated by n- findr. A further study [5] goes into the scal-
ing issue and compares the minvest algorithm described here with 10 other algorithms for
spectral unmixing on benchmark cases.

5 Conclusions

The minimum volume simplicial enclosure problem (MVSEP) has been analyzed with a
focus on its use for estimating endmember and abundance parameters in a linear mixing
model. An estimation method called minvest has been described and its behaviour for the
variance in the input data has been investigated and compared to a maximum volume simplex
based method called n- findr.

The MVSEP is a global optimization problem where the number of optima depends in
the worst case on the number of points in the convex hull of the instance. The result of the
combinatorial optimization problem of finding a maximum volume simplex by selecting data
as vertices is logically enclosed by the result of the MVSEP. Both problems are used as a
basis for estimating the parameters in a linear mixing model.
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For data from linear mixing models that are spread over the boundary of the simplex, the
MVSEP has one minimum that, due to permutations, has a number of minimum points.
Surprisingly, local search leads in general to the global optimum enclosing simplex of
MVESP. Moreover, if data are generated from the mixing model without any noise, the
MVSEP based minvest method returns the original endmember values. This means that no
pure pixels (endmembers) are required to be present in the data set. Maximum volume based
methods like n- findr require the assumption of presence of pure points.

The variation in the estimation results reflects the variance in the input data. Even when
using nonlinear local search in minvest, the variation is of the same order of magnitude
whereas the n- findr method seems more sensitive to high variance. The results of minvest
seem more correlated to ground-truth abundance data than the ones of n- findr. However,
the values for the root mean squared error performance indicator appear sensitive to scaling
in its use for measuring abundance discrepancies.

Further research can focus on the relation between the used values for the estimated
number P of interior points and the scaling effects observed in the abundance discrepancy
measure.
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