Skip to main content
Log in

Feasibility Study on Quantitative Measurements of Singlet Oxygen Generation Using Singlet Oxygen Sensor Green

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the feasibility for quantitative measurement of singlet oxygen (1O2) generation by using a newly developed 1O2-specific fluorescence probe Singlet Oxygen Sensor Green reagent (SOSG). 1O2 generation from photoirradiation of a model photosensitizer Rose Bengal (RB), in initially air-statured phosphate buffered saline (PBS) was indirectly monitored with SOSG. In the presence of 1O2, SOSG can react with 1O2 to produce SOSG endoperoxides (SOSG-EP) that emit strong green fluorescence with the maximum at 531 nm. The green fluorescence of SOSG-EP is mainly dependent on the initial concentrations of RB and SOSG, and the photoirradiation time for 1O2 generation. Furthermore, kinetic analysis of the RB-sensitized photooxidation of SOSG is performed that, for the first time, allows quantitative measurement of 1O2 generation directly from the determination of reaction rate. In addition, the obtained 1O2 quantum yield of porphyrin-based photosensitizer hematoporphyrin monomethyl ether (HMME) in PBS by using SOSG is in good agreement with the value that independently determined by using direct measurement of 1O2 luminescence. The results of this study clearly demonstrate that the quantitative measurement of 1O2 generation using SOSG can be achieved by determining the reaction rate with an appropriate measurement protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17(12):1685–1691

    Article  PubMed  CAS  Google Scholar 

  2. Driever SM, Fryer MJ, Mullineaux PM, Baker NR (2009) Imaging of reactive oxygen species in vivo. Methods Mol Biol 479:109–116

    PubMed  CAS  Google Scholar 

  3. Triantaphylides C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14(4):219–228

    Article  PubMed  CAS  Google Scholar 

  4. Jarvi MT, Niedre MJ, Patterson MS, Wilson BC (2006) Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects. Photochem Photobiol 82(5):1198–1210

    Article  PubMed  CAS  Google Scholar 

  5. Li BH, Wilson BC (2011) Direct and indirect measurements of singlet oxygen for photodynamic therapy. Proceedings 13th International Photodynamic Association World Congress pp 43–47

  6. Kessel D, Price M (2012) Evaluation of DADB as a probe for singlet oxygen formation during photodynamic therapy. Photochem Photobiol 88(3):717–720

    Google Scholar 

  7. Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40(9):4783–4804

    Article  PubMed  CAS  Google Scholar 

  8. Oliveira MS, Severino D, Prado FM, Angeli JP, Motta FD, Baptista MS, Medeiros MH, Di Mascio P (2011) Singlet molecular oxygen trapping by the fluorescent probe diethyl-3,3′-(9,10-anthracenediyl)bisacrylate synthesized by the Heck reaction. Photochem Photobiol Sci 10(10):1546–1555

    Article  PubMed  CAS  Google Scholar 

  9. Jimenez-Banzo A, Ragas X, Kapusta P, Nonell S (2008) Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection. Photochem Photobiol Sci 7(9):1003–1010

    Article  PubMed  CAS  Google Scholar 

  10. Niedre MJ, Patterson MS, Giles A, Wilson BC (2005) Imaging of photodynamically generated singlet oxygen luminescence in vivo. Photochem Photobiol 81(4):941–943

    Article  PubMed  CAS  Google Scholar 

  11. Umezawa N, Tanaka K, Urano Y, Kikuchi K, Higuchi T, Nagano T (1999) Novel fluorescent probes for singlet oxygen. Angew Chem Int Ed Engl 38(19):2899–2901

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi K, Higuchi T, Nagano T (2001) Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. J Am Chem Soc 123(11):2530–2536

    Article  PubMed  CAS  Google Scholar 

  13. Song B, Wang GL, Tan MQ, Yuan JL (2006) A europium(III) complex as an efficient singlet oxygen luminescence probe. J Am Chem Soc 128(41):13442–13450

    Article  PubMed  CAS  Google Scholar 

  14. Singlet Oxygen Sensor Green Reagent (Invitrogen, Eugene, 2004) pp 1–2

  15. Gollmer A, Arnbjerg J, Blaikie FH, Pedersen BW, Breitenbach T, Daasbjerg K, Glasius M, Ogilby PR (2011) Singlet Oxygen Sensor Green (R): photochemical behavior in solution and in a mammalian cell. Photochem Photobiol 87(3):671–679

    Article  PubMed  CAS  Google Scholar 

  16. Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, singlet oxygen sensor green. J Exp Bot 57(8):1725–1734

    Article  PubMed  CAS  Google Scholar 

  17. Ragas X, Cooper LP, White JH, Nonell S, Flors C (2011) Quantification of photosensitized singlet oxygen production by a fluorescent protein. Chemphyschem 12(1):161–165

    Article  PubMed  CAS  Google Scholar 

  18. Hideg E (2008) A comparative study of fluorescent singlet oxygen probes in plant leaves. Cent Eur J Biol 3(3):273–284

    Article  CAS  Google Scholar 

  19. Zhang Y, Aslan K, Previte MJ, Geddes CD (2008) Plasmonic engineering of singlet oxygen generation. Proc Natl Acad Sci U S A 105(6):1798–1802

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y, Aslan K, Previte MJR, Geddes CD (2007) Metal-enhanced singlet oxygen generation: a consequence of plasmon enhanced triplet yields. J Fluoresc 17(4):345–349

    Article  PubMed  CAS  Google Scholar 

  21. Hotze EM, Badireddy AR, Chellam S, Wiesner MR (2009) Mechanisms of bacteriophage inactivation via singlet oxygen generation in UV illuminated fullerol suspensions. Environ Sci Technol 43(17):6639–6645

    Article  PubMed  CAS  Google Scholar 

  22. Tam TT, Juzeniene A, Steindal AH, Iani V, Moan J (2009) Photodegradation of 5-methyltetrahydrofolate in the presence of Uroporphyrin. J Photochem Photobiol B 94(3):201–204

    Article  PubMed  CAS  Google Scholar 

  23. Yan F, Zhang Y, Yuan HK, Gregas MK, Vo-Dinh T (2008) Apoferritin protein cages: a novel drug nanocarrier for photodynamic therapy. Chem Commun 14(38):4579–4581

    Article  Google Scholar 

  24. Price M, Reiners JJ, Santiago AM, Kessel D (2009) Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy. Photochem Photobiol 85(5):1177–1181

    Article  PubMed  CAS  Google Scholar 

  25. Yan F, Zhang Y, Kim KS, Yuan HK, Vo-Dinh T (2010) Cellular uptake and photodynamic activity of protein nanocages containing methylene blue photosensitizing drug. Photochem Photobiol 86(3):662–666

    Article  PubMed  CAS  Google Scholar 

  26. Shen Y, Lin HY, Huang ZF, Chen DF, Li BH, Xie SS (2011) Indirect imaging of singlet oxygen generation from a single cell. Laser Phys Lett 8(3):232–238

    Article  CAS  Google Scholar 

  27. Redmond RW, Gamlin JN (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70(4):391–475

    PubMed  CAS  Google Scholar 

  28. Wilkinson F, Helman WP, Ross AB (1993) Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J Phys Chem Ref Data 22(1):113–262

    Article  CAS  Google Scholar 

  29. Lin HY, Chen DF, Shen Y, Li BH, Xie SS (2011) The influence of pulse-height discrimination threshold on the accuracy of singlet oxygen luminescence measurements. J Optics 13(12):125301

    Article  Google Scholar 

  30. Li BH, Lin LS, Lin HY, Xie SS (2008) Singlet oxygen quantum yields of porphyrin-based photosensitizers for photodynamic therapy. J Innovation Opt Health Sci 1(1):141–149

    Article  Google Scholar 

  31. Ragas X, Jimenez-Banzo A, Sanchez-Garcia D, Batllori X, Nonell S (2009) Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green. Chem Commun 28(20):2920–2922

    Article  Google Scholar 

  32. Swanson SJ, Choi WG, Chanoca A, Gilroy S (2011) In vivo imaging of Ca(2+), pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol 62(62):273–297

    Article  PubMed  CAS  Google Scholar 

  33. Lee S, Zhu L, Minhaj AM, Hinds MF, Vu DH, Rosen DI, Davis SJ, Hasan T (2008) Pulsed diode laser-based monitor for singlet molecular oxygen. J Biomed Opt 13(3):034010

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (60978070), the program for New Century Excellent Talents in University of China (NCET-10-0012), the Fujian Provincial Natural Science Foundation (2011J01342, 2011J06022) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1115). BW acknowledges the support of the Canadian Cancer Society Research Institute for research in PDT dosimetry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Buhong Li or Shusen Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Shen, Y., Chen, D. et al. Feasibility Study on Quantitative Measurements of Singlet Oxygen Generation Using Singlet Oxygen Sensor Green. J Fluoresc 23, 41–47 (2013). https://doi.org/10.1007/s10895-012-1114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1114-5

Keywords

Navigation