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Abstract
Tomography diagnostics represent an essential tool in tokamaks to infer the local plasma properties using line-integrated

measurements from one or several cameras. In particular, soft X-rays (SXR) in the energy range 0.1–20 keV can provide

valuable information on magnetohydrodynamic activity, magnetic equilibrium or impurity transport. Heavy impurities like

tungsten (W) are a major source of concern due to significant radiation losses in the plasma core, thus they have to be kept

under acceptable concentrations. Therefore, 2D SXR tomography diagnostics become crucial to estimate the W concen-

tration profile in the plasma, quantify the W poloidal distribution and identify relevant impurity mitigation strategies. In

this context, a synthetic diagnostic becomes a very valuable tool (1) to study the tomographic reconstruction capabilities,

(2) to validate diagnostic design as well as (3) to assess the error propagation during the reconstruction process and

impurity transport analysis. The goal of this contribution is to give some highlights on recent studies related to each of

these three steps, for the development of SXR synthetic diagnostic tools in tokamak plasmas.
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Introduction

In the context of an increasing world energy production

based on limited fossil fuel reserves and with a doubling

time of 30–40 years in the last century, e.g. from 6000

million tons of oil equivalent (Mtoe) in 1973 to more than

13,000 Mtoe in 2013 [1], controlled thermonuclear fusion

could be the ideal candidate to fulfil the future energy

demand. Although magnetic confinement fusion based on

tokamak is currently the most advanced option, many

technological and physics challenges are still on the way to

be solved before reaching the technological state of a

commercial fusion reactor. In particular, dust and impuri-

ties originating from wall erosion can pollute the plasma

core and decrease its stability and energy confinement by

radiation [2, 3]. Besides, modern tokamaks like the Inter-

national Thermonuclear Experimental Reactor (ITER) will

not be able to use traditional carbon as a plasma-facing

material due to its high tritium retention. Tungsten was

retained instead for its low tritium retention associated with

good mechanical properties, its resilience to intense heat

fluxes and its low erosion rate [4]. Unfortunately, non-fully

ionized impurities such as tungsten can represent a major

threat for the tokamak performances because of intense

radiation—especially due to line emission in the soft X-ray

(SXR) range 0.1–20 keV [2]. Low concentrations of

tungsten impurities in the order of 10–4 in the plasma core

are sufficient to compromise the plasma performance of

ITER and its goal of Q ¼ Pfusion=Pheating � 10 [5]. This

implies that the development of X-ray diagnostic tools

becomes crucial to monitor the local density of impurities

in the plasma, to study their transport and to identify

actuators that can prevent or mitigate their central accu-

mulation [6, 7]. However, the correct estimation of the

local impurity concentration relies on the proper charac-

terization of the detector spectral response as well as the

detailed emissivity features of the plasma, namely the fil-

tered impurity cooling factor [5]. In this context, a syn-

thetic diagnostic becomes a very valuable tool to study the

tomographic reconstruction capabilities, to validate diag-

nostic design as well as to assess the error propagation

during the reconstruction process [8]. Therefore, a
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complete synthetic diagnostic tool should consider the

following steps:

• Detector signal and/or spectrum reconstruction from a

given geometry and plasma scenario,

• Tomographic inversion to estimate the local emissivity

from the synthetic measurements,

• Impurity density reconstruction and subsequent trans-

port analysis.

The goal of this contribution is to give some highlights

on recent studies related to each of these three steps, for the

development of SXR synthetic diagnostic tools in tokamak

plasmas. In the second section, the potential of artificial

neural network for fast tomographic inversions is briefly

discussed. In the third section, a synthetic diagnostic is

employed in order to predict the observed SXR spectrum in

different tokamak scenarios. In the fourth section, the

influence of perturbative noise on the reconstruction of

impurity transport coefficients is investigated. Finally,

some conclusions and perspectives are given in the last

section.

Soft X-ray Tomography and the Potential
of Neural Networks for Fast Inversions

As introduced in the previous section, reliable SXR diag-

nostic tools are essential to monitor the local impurity

density, study W transport in the plasma core and identify

actuators to avoid W central accumulation. Furthermore,

the impurity density can exhibit poloidal asymmetries, for

instance in the case of plasma rotation (induced by a

neutral beam of fast particles) [9] or by the local modifi-

cation of the electrostatic potential (e.g. during ion cyclo-

tron resonance heating) [10]. It has been shown that these

asymmetries can significantly impact the radial impurity

transport [7]. Therefore, 2D tomography diagnostics

become crucial to estimate the tungsten concentration

profile in the plasma, quantify the 2D poloidal distribution

and identify relevant impurity mitigation strategies [11].

Hereafter, the geometry of the SXR diagnostic of Tore

Supra [12], consisting of two detector-pinhole cameras as

depicted in Fig. 1, is considered. In the Line-of-Sight (LoS)

approximation, the measurements fi of the i-th detector (in

W m-2) looking at the plasma is given by the line integral:

fi ¼ ui=Ei ¼
Z

LoS

eg x; yð Þdri þ ~fi ð1Þ

where ui is the impinging power on the detector (in W), Ei

denotes the geometrical etendue (in m-2) of the detector-

aperture system, eg x; yð Þ is the 2D emissivity field (in

W m-3) filtered by the spectral response g hvð Þ of the

detector and ~fi the perturbative noise in the i-th channel.

For tomographic purposes, the forward problem can be

discretized as follows:

fi ¼
X
j

Tijej þ ~fi ð2Þ

where ej is the plasma emissivity in the j-th pixel and the

transfer matrix elements Tij correspond to the response

function of the detection system. Unfortunately, recon-

structing the local SXR emissivity consists in an ill-posed

inverse problem by nature, with in addition a sparse mea-

surements set fif gi¼1::N due to the lack of available space in

tokamaks. An adequate regularization procedure is thus

required to perform the reconstruction.

The most common method relies on the Tikhonov reg-

ularization [13]. In this case, some a priori information is

added in the reconstruction process through a regulariza-

tion matrix H that imposes smoothness on the emissivity

profiles, for instance by minimizing the Fisher information.

It is then possible to extract a meaningful solution by

finding the minimum of a functional:

e0 ¼ arg min
e

f � T:ej j2þkte:H:e
� �

¼ tT:T þ kH
� ��1

:tT:f

ð3Þ

where the regularization parameter k acts as a balance

between v2 ¼ f � T:ej j2 minimization and smoothness of

the solution. The value of k can be optimized based on

several different methods [14]. Inversion methods alter-

native to the Tikhonov regularization can be found in the

literature, e.g. based on Bayesian inference [15], a Monte-

Carlo approach [16] or on a genetic algorithm [17]. How-

ever, most of these methods still require a significant

computational time although significant effort is being

performed towards real-time applications [18]. In this

context, deep learning and artificial neural networks [19]

represent the ideal candidate in the perspective of real-time

impurity control. Neural networks are able to fit any mul-

tidimensional function in a given input range—with the

adequate network complexity and training process—by

adjusting properly the weights and biases of the neurons

[20]. Besides tomography [19] and image recognition [21],

they have been used in support of simulation with high

computational cost, e.g. turbulent transport modelling [22],

and to make empirical correlations from large experimental

databases, e.g. disruption prediction [23].

A neural network with two fully connected layers of 30

sigmoid neurons has been recently developed in the Tore

Supra geometry to achieve fast SXR inversions, as depicted

in Fig. 1, and trained with a large database of synthetic

profiles [24]. The input layer is composed of 69 neurons,

corresponding to the number of SXR channels used for the
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inversion and of an output layer of 2500 neurons to pro-

duce 50 9 50 pixels tomograms. The training loss that

assesses the network performances is defined by the mean

square error cost function:

C w; bð Þ ¼ 1

2n

X
x

y xð Þ � a x;w; bð Þ½ �2 ð4Þ

where w; bð Þ denotes the weights and biases of each neu-

ron, x; y xð Þð Þ represent a training sample, i.e. measure-

ments x and tomogram y xð Þ, with a x;w; bð Þ the

corresponding output of the network. A stochastic gradient-

descent method [25] is used to iteratively updates the

weights and biases in the direction of the negative gradient

of the cost function, computed using a backpropagation

algorithm [26]. The evolution of the training loss over the

training process is shown in Fig. 2, where 90% of the data

were used for training and 10% were kept outside of the

training set for validation purposes.

Here, we test this neural network with synthetic emis-

sivity patterns from the validation set, exhibiting poloidal

asymmetries as presented in Fig. 3 and with 2% of Gaus-

sian noise in the measurements to assess the neural network

robustness. It can be seen that the network is able to

properly recover the synthetic emissivity patterns. How-

ever, the emissivity error can locally peak from 15% to up

to 40% as shown in Fig. 3g–i), which could be detrimental

for the SXR analysis of impurities. The reconstruction error

could be further reduced by optimizing the network

parameters (number of hidden layers and neurons per

layer) and the training process, e.g. using the dropout

method. The relatively high level of error observed on

Fig. 3 is the drawback of the simplicity of fully connected

layers as compared with deeper de-convolutional networks,

for which the structure is specifically adapted for image

recognition and tomography tasks [19, 27].

The main advantage of the neural network approach is

that, once properly train with a synthetic or experimental

database, the neural network can perform inversions in a

time\ 0.1 ms, two orders of magnitude faster than

Tikhonov regularization and compatible with real-time

control. Two options can be considered while applying a

neural network to experimental data. The first option is to

directly train the neural network on a database of experi-

mental tomograms already obtained from another method,

typically using Tikhonov regularization, like in [19]. This

option allows performing reconstructions much faster with

respect to the traditional regularization, at the cost of an

additional error induced by the neural network, but requires

Fig. 1 Layout of the forward and inverse problem related to tokamak plasma tomography. The inverse problem is solved using an artificial neural

network. The LoS geometry of the two SXR cameras of Tore Supra is plotted in white on the tomogram

Fig. 2 Minimization of the cost function value of the neural network,

as defined in Eq. (4), after # epochs of the training process
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the prior existence of a reliable and complete experimental

database. The second option is to train the neural network

on a synthetic database in a first step, and in a second step

to apply it on experimental data. The advantage of such an

approach is to be able to perform the tomographic task

ab initio, for instance from the beginning of tokamak

operations. However, the reliability of the latter approach

depends largely on the capabilities of the synthetic diag-

nostics to describe accurately the reality of the

experiments.

GEM Synthetic Diagnostic for Impurity
Transport Studies on the WEST Tokamak

The Tore Supra tokamak was recently upgraded into

WEST—for Tungsten (W) Environment in Steady-State

Tokamak, to serve as a test-bed for ITER divertor com-

ponents in long pulse operation [28]. It was also the

opportunity to develop a new SXR detection system based

on the Gas Electron Multiplier (GEM) technology [29, 30],

after laboratory tests of a GEM prototype at CELIA [31]

and on ASDEX-Upgrade [32]. Indeed, the semiconductor

diodes traditionally used in tokamaks will not whistand the

harsh ITER environment in the D-T operations and more

robust technologies based for instance on a gaseous

detection volume have to be considered [33]. A specificity

of the GEM WEST detectors is that they will operate in

photon-counting mode, allowing to classify incident pho-

tons in energy bands and thus recovering some spectral

information on the SXR radiation [34]. This will open new

possibilities to disentangle the different SXR contribution

from W emissivity, i.e. line emission, radiative recombi-

nation and Bremsstrahlung radiation.

In this context, a synthetic diagnostic has been devel-

oped in order to investigate the reconstruction capabilities

of the GEM WEST cameras [8]. The diagnostic is com-

posed of two cameras placed in the same poloidal cross-

Fig. 3 Tomographic inversions performed using phantom 2D emissivity profiles with a high-field-side, b hollow, c low-field-side shapes. d–f

Associated tomograms reconstructed by the neural network and g–i the corresponding error map between reconstructed and initial tomograms
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section, as shown in Fig. 4. The synthetic diagnostic

includes the SXR source from a given plasma scenario, the

photoionization probability, electron cloud transport in the

detection volume using the Magboltz code [35], and

tomographic reconstruction of the radiation from the GEM

signal in the WEST geometry [36]. In this section, we show

a set of three simulations of the acquired SXR spectrum by

the GEM cameras in the case of a standard WEST Physics

basis scenario with heating power of 12 MW, Ip = 0.6 MA

including W impurities [37]. The SXR emissivity is mod-

elled as follows:

eSXR ¼ n2
e LH Teð Þ þ cWLW Te;D;Vð Þ½ � ð5Þ

with ne, Te the electron density and temperature and where

LH and LW denote the Hydrogen and W cooling factors,

respectively. The W spectral properties, as well as

recombination and ionization coefficients of W ions are

obtained from the open ADAS database [38]. The scenario

includes the possibility to choose the diffusion and con-

vective W transport coefficients (D,V) to modify the W

ionization equilibrium.

The Fig. 5a reports the synthetic GEM spectrum

obtained for the three scenarios considered: (1) pure

plasma hydrogen plasma, i.e. a tungsten concentration

cW ¼ 0, (2) cW ¼ 10�4 with an intermediate transport case

(D,V)x1 and (3) cW ¼ 10�4 with a strong transport case

(D,V)x10, i.e. where the transport coefficients have been

increased by one order of magnitude to highlight the

transport effects. The transport coefficients values in the

(D,V)x1 scenario correspond to D = 0.5 m2 s-1,

V = - 1 m s-1 in the plasma core r=a\0:6 and

D = 2 m2 s-1, V = - 5 m s-1 at the plasma edge. A sig-

nificant increase of the SXR radiation is observed around

2 keV. This is expected since W line emission is dominant

in this spectral region for the considered plasma core

temperature Te & 3–4 keV, while the Bremsstrahlung

radiation becomes dominant for photon energies above

4 keV. The impact of transport intensity on the W SXR

cooling factor LW can be seen on Fig. 5b. In particular, the

enhanced transport reduces the W radiation in the plasma

core, since high W ionization states are more easily

transported from the core to the edge, decreasing the mean

W effective charge in the core.

Reconstruction of Impurity Transport
Coefficients and Impact of Perturbative
Noise

In this section, we investigate the possibility of recon-

structing the impurity transport coefficients (D,V) from

given measurements of the local impurity density nS in the

presence of different levels of perturbative noise. The

impurity density is generally estimated by reformulating

Eq. (5):

Fig. 4 Poloidal cross-section of the WEST tokamak, with the

geometry of the lines-of-sight of the new GEM diagnostic in red.

The relative signal intensity on each pixel of the horizontal and

vertical GEM cameras are represented for a WEST emissivity

scenario in pure hydrogen plasma

Fig. 5 a GEM synthetic

spectrum acquired in a WEST

emissivity scenario (line-

integrated spectrum summed

over all GEM channels) with

different assumptions on

tungsten impurity concentration.

b W SXR GEM filtered cooling

factor in the two considered

transport scenarios
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nS �
eSXR � n2

eLH Teð Þ
neLS Te;D;Vð Þ ð6Þ

given that the species S (e.g. W) is the dominant impurity

contributing to the emissivity. This can be performed

experimentally by SXR tomography as seen in the previous

sections, coupled with other diagnostics like Visible–UV

spectroscopy to cover a wider radial range. However, in

this section, the details of the detector response, impurity

spectral features and tomographic reconstruction are not

included in the analysis and the error in the impurity

density reconstruction is rather described by a statistical

noise with a Gaussian distribution and without systematic

errors, for simplicity purposes. The issue of systematic

errors in the geometry or camera calibration is thus let for

further investigations. The (D,V) reconstruction relies on

the Gradient-Flux (G-F) method [39, 40], which is appli-

cable when the impurity density profile is evolving in time

while the plasma conditions remain stable. Indeed, in this

case the radial flux of impurities can be expressed as:

Fig. 6 a W transport coefficient

profiles considered in the

simulation. b W density profile

resulting from the chosen

transport coefficients

Fig. 7 Simulated time evolution

of the impurity density for

different radial locations.

a Impurity density 2D map

(logscale), where the time

window used for the

reconstruction is indicated by

red dash lines. b Times traces

for different radial locations,

where the impurity injection is

indicated in red (LBO—for

Laser-blow off trigger)
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C~S r; tð Þ ¼ �D rð Þr~rnS r; tð Þ þ nS r; tð ÞV~ rð Þ ð7Þ

where the radial flux and gradient of impurity are time

dependent while the diffusive and convective coefficients

remain constant. The conditions can be fulfilled during the

recovery phase of a sawtooth (ST) crash or just after a

controlled impurity injection at a trace level. The method

allows extracting experimentally the transport coefficient

thanks to a linear fit:

CS

nS
r; tð Þ ¼ �D rð ÞrrnS

nS
r; tð Þ þ V rð Þ ð8Þ

where �D rð Þ is the slope and V rð Þ is the offset. The

impurity flux can be reconstructed from:

CS r; tð Þ ¼ � 1

r

Zr

0

onS
ot

r0; tð Þr0dr0 ð9Þ

The G-F linear fit in Eq. (8) is subject to experimental

uncertainties, in particular in the plasma region where the

impurity density gradient is low (i.e. flat radial profile). It is

thus valuable to develop a synthetic diagnostic tool to

assess the reconstruction capabilities for different levels of

noise in the reconstructed impurity density.

Hereafter, we will consider an ideal tokamak in circular

geometry with a major radius of R = 2.5 m and a minor

radius of a = 0.5 m. The assumed (D,V) coefficients are

shown in Fig. 6a, together with the steady-state impurity

density profile obtained using Eq. (8) when CS r; tð Þ ¼ 0:

rrnS rð Þ
nS rð Þ ¼ V rð Þ

D rð Þ ð10Þ

Equation (10) leads to the following impurity density

profile:

nS rð Þ ¼ nS;0 exp

Zr

0

V r0ð Þ
D r0ð Þ dr

0

0
@

1
A ð11Þ

The simulation is simply performed by solving numer-

ically the continuity equation for the impurities:

Fig. 8 Reconstructed transport coefficients using the ST recovery

phase, i.e. excluding the effect of the controlled impurity injection. a
Diffusion coefficient profile during a ST crash. b–d Reconstruction of

the transport coefficients with a level of Gaussian noise of b 0.1%, c
0.5% and d 2%, where Dini, Vini are the transport coefficients used in

the simulation, Drec, Vrec are the reconstructed ones with error bars

corresponding to �2r in the G-F linear fit—not plotted for large

errorbars, i.e. r=a[ 0:3 in b and c due to visibility issues. The black

dashed line ‘‘ST’’ denotes the sawtooth inversion radius at r=a ¼ 0:3

246 Journal of Fusion Energy (2020) 39:240–250
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onS
ot

þ rr
�!

:C~S ¼ Sext ð12Þ

The obtained impurity 2D map is presented in Fig. 7a.

The time evolution of the impurity density for a few radial

locations is also displayed in Fig. 7b. ST crashes are sim-

ply implemented by transiently increasing the diffusive

coefficient up to D = 30 m2 s-1 in the region r=a\0:3, as

presented in Fig. 8a. An impurity injection is also added by

putting a non-zero source term Sext [ 0 at t = 0.11 s at the

plasma edge, i.e. for r=a[ 0:95.

An attempt of reconstructing the transport coefficients in

the ST recovery phase, excluding the impurity injection

phase i.e. for the time window t ¼ 0:033s; 0:099s½ �, is

shown in Fig. 8 for 0.1%, 0.5% and 2% of perturbative

noise. The impurity density is assumed to be reconstructed

over the full radial range including a statistical error with a

Fig. 9 Reconstructed transport coefficients using the time evolution

of the tungsten density during the impurity injection phase, assuming

different level of Gaussian noise in the impurity density reconstruc-

tion: a 0.1%, b 2% and c 10%, where Dini, Vini denote the coefficients

used in the simulation and Drec, Vrec the reconstructed ones with error

bars corresponding to �2r in the G-F linear fit. d–f Associated G-F

linear fit of the normalized impurity fluxes and radial gradients, based

on Eq. (8)
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Gaussian distribution varying from 0.1 to 10%. The

impurity flux is estimated using the obtained noisy density

in Eq. (10) and the reconstructed coefficients (Drec, Vrec)

are estimated from the G-F linear fit described by Eq. (9).

The error bars in the linear fit correspond to �2r, i.e. 95%

of values around the mean for a normal distribution. As a

result, it is observed that the reconstruction is only reliable

inside the ST inversion radius r=a\0:3. This is expected

since it is the region of significant time evolution of the

impurity flux during the ST recovery phase. While the

reconstruction is still robust for 0.5% of perturbative noise

and r=a\0:3, see Fig. 8c, a Gaussian noise of J2% is

enough to significantly perturb the reconstruction over the

full radial range, as shown on Fig. 8d.

Finally, the GF reconstruction method is applied just

after the impurity injection, where the time window used

for the reconstruction is indicated by the red dash lines on

Fig. 7a. The reconstruction results are presented in

Fig. 9a–c) for different levels of Gaussian noise—0.1%,

2% and 10%—together with the linear fit of Eq. (8) in

Fig. 9d–f. Overall, it can be seen that the transport coef-

ficient profiles are recovered over the full radial range with

a better robustness against statistical noise than during the

ST recovery phase alone. Indeed, a strong noise of 10% is

necessary to significantly perturb the (Drec, Vrec) profiles.

However, it is observed that the reconstruction is less

reliable in the limit regions r=a\0:1 and r=a[ 0:8 where

the coefficients can be underestimated (in absolute value),

even for 0.1% and 2% of Gaussian noise, as shown in

Fig. 9a, b. This can be interpreted by the fact that both the

radial gradient and flux of impurities are lower in these

regions, decreasing the quality of the G-F linear fit. As a

conclusion, the reconstructions during the ST recovery

phase and during the impurity injection phase showed that

the G-F method is mostly robust in the regions with a

significant radial impurity gradient and for strong time

evolution of the impurity profile.

Conclusion

In this paper, some recent studies related to the develop-

ment of X-ray synthetic diagnostic tools have been pre-

sented, in the prospect of impurity transport monitoring.

First, the potential of neural networks to perform tomo-

graphic inversions with real-time capabilities was demon-

strated based on a synthetic database in the geometry of the

Tore Supra SXR diagnostic. A good capability of the net-

work to learn and reproduced the emissivity patterns was

found with 2% of Gaussian noise in the measurements,

although the local reconstruction error can peak from 15%

to up to 40%. Secondly, a GEM synthetic diagnostic was

applied in a WEST scenario to illustrate the influence of

plasma parameters, in particular the tungsten concentration

level and transport effects, on the acquired spectrum and

the possibility to disentangle the different contributions to

the SXR spectrum. Finally, the robustness of the recon-

struction of the impurity transport coefficients (D,V)

against 0.1–10% of perturbative Gaussian noise was

investigated with a using the G-F method, during a ST

recovery phase and during an impurity injection phase. The

study allowed to reveal the plasma regions in which the

(D,V) reconstruction is the most sensitive to experimental

uncertainties. More specifically, the (D,V) reconstruction is

no more valid outside of the ST inversion radius, here for

r=a[ 0:3, during the ST recovery phase. In the impurity

injection phase, the reconstruction is valid over the full

profile up to 10% of noise, although less reliable in the

limit regions r=a\0:1 and r=a\0:8 of lower gradients and

flux of impurities for the studied scenario.
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B. Pégourié, Y. Peysson, R. Sabot, F. Saint-Laurent, M. Sch-

neider, J.M. Travère, E. Tsitrone, S. Vartanian, L. Vermare, M.

Yoshida, R. Zagorski, JET Contributors, WEST physics basis.

Nucl. Fusion 55, 063017 (2015)

38. The Open ADAS Project (Atomic Data and Analysis Structure).

https://open.adas.ac.uk

39. G. Bonheure, J. Mlynar, A. Murari, C. Giroud, P. Belo, L. Ber-

talot, S. Popovichev, JET-EFDA Contributors, A novel method

for trace tritium transport studies. Nucl. Fusion 49, 085025 (2009)

40. M. Sertoli, C. Angioni, T. Odstrcil, ASDEX Upgrade Team, and

EUROFusion MST1 Team, Parametric dependencies of the

experimental tungsten transport coefficients in ICRH and ECRH

assisted ASDEX Upgrade H-modes. Phys. Plasmas 24, 112503

(2017)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

250 Journal of Fusion Energy (2020) 39:240–250

123

http://open.adas.ac.uk

	Synthetic X-ray Tomography Diagnostics for Tokamak Plasmas
	Abstract
	Introduction
	Soft X-ray Tomography and the Potential of Neural Networks for Fast Inversions
	GEM Synthetic Diagnostic for Impurity Transport Studies on the WEST Tokamak
	Reconstruction of Impurity Transport Coefficients and Impact of Perturbative Noise
	Conclusion
	Acknowledgements
	References




