Skip to main content
Log in

Baicalin Released from Scutellaria baicalensis Induces Autotoxicity and Promotes Soilborn Pathogens

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Experiments were conducted to determine whether allelochemicals released by the important medicinal plant Scutellaria baicalensis Georgi help to explain why S. baicalensis performs poorly when continuously cropped. Based on high performance liquid chromatography, the concentration of baicalin (the major compound released by S. baicalensis roots) in the soil where S. baicalensi had been grown for 3 years was 0.97 µg.g−1. Both the crude extracts from S. baicalensis roots and purified baicalin at 0.97 µg.g−1 increased the mortality of S. baicalensis seedlings in an autotoxicity test. This concentration stimulated the growth of two soilborne pathogens (Pythium ultimum and Rhizoctonia solani) on agar, and their growth and pathogenic activity in sand. Seedling mortality and damping-off caused by both pathogens were greater in sand where S. canadensis had previously grown than in sand where it had not previously grown. Mortality and damping-off of S. baicalensis seedlings also were significantly higher in soil collected from an S. baicalensis field than in soil collected from a Nicotiana tabacum L. field. The results are consistent with the hypothesis that allelochemicals released by S. baicalensis negatively affect S. baicalensis directly by inducing autotoxicity and indirectly by increasing pathogen activity in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., and Vivanco, J. M. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Bastida, F., Kandeler, E., Moreno, J. L., Ros, M., Garcia, C., and Hernandez, T. 2008. Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl. Soil Ecol. 40: 318–329.

    Article  Google Scholar 

  • Batish, D. R., Singh, H. P., Kohli, R. K. and Kaur, S. 2001. Crop allelopathy and its role in ecological agriculture. J. Crop Prod. 4: 121–162.

    Article  CAS  Google Scholar 

  • Beckstead, J. and Parker, I. M. 2003. Invasiveness of Ammophila arenaria: release from soil-borne pathogens? Ecology 84: 2824–2831.

    Article  Google Scholar 

  • Ben-Hammouda, M., Ghorbal, M. H., Kremer, R. J., and Oueslati, O. 2002. Autotoxicity of barley. J. Plant Nutri. 25:1155–1161.

    Article  CAS  Google Scholar 

  • Benizri, E., Piutti, S., Verger, S., Pagès, L., Vercambre, G., Poessel, J. L., and Michelot, P. 2005. Replant diseases: bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol. Biochem. 37: 1738–1746.

    Article  CAS  Google Scholar 

  • Bever, J. D. 2003. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol. 157: 465–473.

    Article  Google Scholar 

  • Bezemer, T. M., Lawson, C. S., Hedlund, K., Edwards, A. R., Brook, A. J., Igual, J. M., Mortimer, S. R., and Van Der Putten, W. H. 2006. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. J. Ecol. 94: 893–904.

    Article  CAS  Google Scholar 

  • Bochoráková, H., Paulová, H., Slanina, J., Musil, P., AND Táborská, E. 2003. Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytother. Res. 17, 640–644.

    Article  PubMed  CAS  Google Scholar 

  • Bonanomi, G., Giannino, F., and Mazzoleni, S. 2005. Negative plant–soil feedback and species coexistence. Oikos 111: 311–321.

    Article  Google Scholar 

  • Bonanomi, G., Del Sorbo, G., Mazzoleni, S., and Scala, F. 2007. Autotoxicity of decaying tomato residues affects susceptibility of tomato to Fusarium wilt. J. Pathol. 89: 219–226.

    Google Scholar 

  • Calabrese, E. J., and Baldwin, L. A. 2003. Hormesis: the dose-response revolution. Annu. Rev. Pharmacol. Toxicol. 43:175–97.

    Article  CAS  PubMed  Google Scholar 

  • Canals, R. M., Emeterio, L. S. L., and Peralta, J. 2005. Autotoxicity in Lolium rigidum: analyzing the role of chemically mediated interactions in annual plant populations. J. Theor. Biol. 235:402–407.

    Article  CAS  PubMed  Google Scholar 

  • Chang, J., Yang, Y. X., Dan, J. Y., Zhang, H. K., and Feng, J. K. 2007. Research on main pathogenic disease and its integrated control in Shanxi. J. Xi’an Univ. Arts & Sci. (Nat Sci. Ed).

  • Chou, C.H., and Lin, H. J. 1976. Autotoxication mechanism of Oryza sativa. I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2: 353–367.

    Article  CAS  Google Scholar 

  • Christie, P., Newman, E. I., and Campbell, R. 1974. Grassland species can influence abundance of microbes on each others roots. Nature 250:570–571.

    Article  Google Scholar 

  • Curl, E. and Truelove, B. 1986. The Rhizosphere. Springer, Berlin, p. 288.

    Google Scholar 

  • Eppinga, M. B., Rietkerk, M., Dekker, S. C., and De Ruiter, P. C. 2006. Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos 114:1.

    Article  Google Scholar 

  • Fang, Z. D. 1998. Research Methods of Plant Pathology. Beijing: Agricultural Publishing House p.141.

    Google Scholar 

  • Fernandez, C., Voiriot, S. B., Mèvy, J. P., Vila, B., Ormeño, E., Dupouyet, S., and Bousquet-Mèlou, A. 2008. Regeneration failure of Pinus halepensis Mill.: The role of autotoxicity and some abiotic environmental parameters. Forest Ecol. Manag. 255: 2928–2936.

    Article  Google Scholar 

  • Grayston, S. J., Wang, S., Campbell, C. D., and Edwards, A. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem. 30: 369–378.

    Article  CAS  Google Scholar 

  • Hao, Z. P., Wang, Q., Christie, P., and Li, X. L. 2007. Allelopathic potential of watermelon tissues and root exudates. Sci. Hortic. 112:315–320.

    Article  CAS  Google Scholar 

  • He, C. N., Gao, W. W., Yang, J. X., Bi, W., Zhang, X. S., and Zhao, Y. J. 2009. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant Soil 318:63–72.

    Article  CAS  Google Scholar 

  • Hoagland, D. R. and Arnon, D. I. 1950. The water-culture method for growing plants without soil. Circular 347.

  • Inderjit. 2005. Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 53: 97–104.

    CAS  Google Scholar 

  • Janssens, F., Peeters, A., Tallowin, J. R. B., Bakker, J. P., Fillat, F., and Oomes, M. J. M. 1998. Relationship between soil chemical factors and grassland diversity. Plant Soil 202: 69–78.

    Article  CAS  Google Scholar 

  • Kandeler, E., Marschner, P., Tscherko, D., Gahoonia, T. S., and Nielsen, N. E. 2002. Microbial community composition and functional diversity in the rhizosphere of maize. Plant Soil 238: 301–312.

    Article  CAS  Google Scholar 

  • Kong, C. H., Chen, C., Xu, X. H., Wang, P., and Wang, S. L. 2008. Allelochemicals and Activities in a Replanted Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) Tree Ecosystem. J. Agric. Food Chem. 56, 11734–11739.

    Article  CAS  PubMed  Google Scholar 

  • Kovacs, GY., Kuzovkina, I. N., Szoke, E., and Kursinszki, L. 2004. HPLC Determination of Flavonoids in Hairy-Root Cultures of Scutellaria baicalensis Georgi. Chromatographia Supplement 60.

  • Larkin, R. P. 2008. Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne disease of potato. Soil Biol Biochem. 40: 1341–1351.

    Article  CAS  Google Scholar 

  • Liu, Y. H., Zeng, R. S., Chen, S., Liu, D. L., Luo, S. M., Wu, H., and An, M. 2007. Plant autotoxicity research in southern China. Allelopathy J. 19: 61–74.

    CAS  Google Scholar 

  • Mahall, B. E. and Callaway, R. M. 1992. Root communication mechanisms and intracommunity distributions of Mojave Desert shrubs. Ecology 73:2145–2151.

    Article  Google Scholar 

  • Mangla, S., Inderjit, and Callaway, R. M. 2008. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J. Ecol. 96: 58-67.

    Google Scholar 

  • Manici, L. M., Caputo, F., and Bambini, V. 2004. Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems. Plant Soil 263: 133–142.

    Article  CAS  Google Scholar 

  • Matamala, R., Gonzàlez-Meler, M. A., Jastrow, J. D., Norby, R. J., and Schlesinger, W. H. 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302: 1385–1387.

    Article  CAS  PubMed  Google Scholar 

  • Miethling, R., Wieland, G., Backhaus, H., and Tebbe, C. C. 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Micobiol. Ecol. 40: 43–56.

    CAS  Google Scholar 

  • Miller, D. A. 1996. Allelopathy in forage crop systems. Agron. J. 88: 854–859.

    Article  Google Scholar 

  • Nicol, R.W., Yousef, L., Traquair, J.A., and Bernards, M. A. 2003. Gingsenosides stimulate the growth of soilborne pathogens of American gingseng. Phytochemistry 64: 257–264.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell, A. G., Seasman, M., Macrae, A., Waite, I., and Davies, J. T. 2001. Plants and fertilizers as drivers of change in microbial community structure and function in soils. Plant Soil 232: 135–145.

    Article  Google Scholar 

  • Packer, A. and Clay, K. 2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404: 278–281.

    Article  CAS  PubMed  Google Scholar 

  • Pedrol, N., Gonzalez, L., and Reigosa, M. J. 2006. Allelopathy and abiotic stress, pp. 171–209 in M. J. Reigosa, N. Pedrol, and L. Gonzalez (eds.). Allelopathy: A Physiological Process with Ecological Implications. Springer, Netherlands.

    Google Scholar 

  • Pramanik, M. H. R., Asao, T., Yamamoto, T., and Matsui, Y. 2001. Sensitive bioassay to evaluate toxicity of aromatic acids to cucumber seedlings. Allelopathy J. 8, 161–170.

    Google Scholar 

  • Qiu, F., Tang, X., He, Z. G., and Li, H. Z. 2004. Stability of Baicalin aqueous solution by validated RP-HPLC. J. Chinese Pharmaceutical Sci. 13: 134–137.

    CAS  Google Scholar 

  • Qu, X. H. and Wang, J. G. 2008. Effects of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl. Soil Ecol. 39: 172–179.

    Article  Google Scholar 

  • Qu, H. B., Ma, Y. H., Yu, K., and Cheng, Y. Y. 2007. Development of an HPLC Method for the Quality Evaluation of ‘Ge-Gen-Qin-Lian’ Tablets Derived Traditional Chinese Medicine. Chromatographia 65: 11–12.

    Article  CAS  Google Scholar 

  • Rafin, C. and Tirilly, Y. 1995. Characteristics and pathogenicity of Pythium spp. associated with root rot of tomatoes in soilless culture in Brittany, France. Plant Pathol. 44: 779–785.

    Article  Google Scholar 

  • Rice, E. L. 1984. Allelopathy. 2nd ed., New York, Academic Press.

    Google Scholar 

  • Ridenour, W. L. and Callaway, R. M. 2003. Root herbivores, pathogenic fungi, and competition between Centaurea maculosa and Festuca idahoensi. Plant Ecol. 169: 161–170.

    Article  Google Scholar 

  • Singh, H. P., Batish, D. R., and Kohli, R. K. 1999. Autotoxicity: concept, organisms, and ecological Significance. Crit. Rev. Plant Sci.18: 757–772.

    Article  CAS  Google Scholar 

  • Sinkkonen, A. 2007. Modelling the effect of autotoxicity on density-dependent phytotoxicity. J. Theor. Biol. 244:218–227.

    Article  CAS  PubMed  Google Scholar 

  • Steinmaus, S. J., Prather, T. S., and Holt, J. S. 2000. Estimation of base temperatures for nine weed species. J. Exp. Bot. 51, 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Su, S., He, C. M., Li, L. C., Chen, J. C., and Zhou, T. S. 2008. Genetic characterization and phytochemical analysis of wild and cultivated populations of Scutellaria baicalensis Georgi. Chem. Biodivers. 5:1353–1363.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Putten, W. H. 2003. Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology 84: 2269–2280.

    Article  Google Scholar 

  • Van Der Putten, W. H., Van Dijk, C., AND Peters, B. A. M. 1993. Plant-specific soilborne diseases contribute to succession in foredune vegetation. Nature 362: 53–55.

    Article  Google Scholar 

  • Willamson, G. B. 1988. Bioassays for allelopathy: measuring treatment responses with independent control. J. Chem. Ecol. 14, 181–187.

    Article  Google Scholar 

  • Wu, F. Z., Wang, X. Z., AND Xue, C. Y. 2009. Effect of cinnamic acid on soil microbial characteristics in the cucumber rhizosphere. Eur. J. Soil Biol. 45: 356–362.

    Article  CAS  Google Scholar 

  • Yamamoto, H. 1991. pp. 398–418 in: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Medicinal and Aromatic Plants III. Springer, Berlin.

  • Yangui, T., Rhouma, A., Triki, M. A., Gargouri, K., AND Bouzid, J. 2008. Control of damping-off caused by Rhizoctonia solani and Fusarium solani using olive mill waste water and some of its indigenous bacterial strains. Crop Prot. 27: 189–197.

    Article  CAS  Google Scholar 

  • Yao, J. AND Allen, C. 2006. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol. 188: 3697–3708.

    Article  CAS  PubMed  Google Scholar 

  • Ye, S. F., Yu, J.Q., Peng, Y. H., Zheng, J. H., AND Zou, L. Y. 2004. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 143–150.

  • Yu, J. Q., Sen, S., Ya, Q., Zhu, Z., AND Wen, H. 2000. Autotoxic potential of cucurbit crops. Plant Soil 223:147–151.

    Article  CAS  Google Scholar 

  • Zhang, S. S., Jin, Y. L., Tang, J. J., AND Chen, X. 2009. The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy. Appl. Soil Ecol. 41:215–222.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Zhejiang Provincial Natural Science Foundation of China (No. Z0905024) and the Research Fund for the Doctoral Program of Higher Education of China (RFDP, No. 20070335079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Jin, Y., Zhu, W. et al. Baicalin Released from Scutellaria baicalensis Induces Autotoxicity and Promotes Soilborn Pathogens. J Chem Ecol 36, 329–338 (2010). https://doi.org/10.1007/s10886-010-9760-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9760-z

Keywords

Navigation