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Abstract We study the dynamics of an infinite system of point particles of two types. They
perform random jumps in Rd in the course of which particles of different types repel each
other whereas those of the same type do not interact. The states of the system are probability
measures on the corresponding configuration space. The main result is the construction of
the global (in time) Markov evolution of such states by means of correlation functions. It is
proved that for each initial sub-Poissonian state μ0, the states evolve μ0 �→ μt in such a
way that μt is sub-Poissonian for all t > 0. The mesoscopic (approximate) description of
the evolution of states is also given. The stability of translation invariant stationary states
is studied. In particular, we show that some of such states can be unstable with respect to
space-dependent perturbations.

Keywords Configuration space · Stochastic semigroup · Correlation function · Scale of
Banach spaces · Denjoy–Carleman theorem · Mesoscopic limit · Kinetic equation
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1 Introduction

1.1 Posing

In this paper, we study the dynamics of an infinite systemof point particles of two types placed
inRd . The particles perform random jumps in the course of which particles of different types
repel each other whereas those of the same type do not interact. We do not require that the
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repulsion is of hard-core type. This model can be viewed as a dynamical version of the
Widom–Rowlinson model [15] of equilibrium statistical mechanics – one of the few models
of phase transitions in continuum particle systems, see the corresponding discussion in [7]
where a similar birth-and-death model was introduced and studied. Note that the latter paper
and this our work are the only publications where the dynamics of two-component infinite
systems of interacting particles have been studied so far.

The phase space of our model is defined as follows. Let� denote the set of all γ ⊂ Rd that
are locally finite, i.e., such that γ ∩� is a finite set whenever � ⊂ Rd is compact. Thus, � is
a configuration space as defined in [1,3,8,11]. In order to take into account the particle’s type
we use the Cartesian product �2 = � × �, see [5,7,9], the elements of which are denoted
by γ = (γ0, γ1). In a standard way, �2 is equipped with a σ -field of measurable subsets
which allows one to deal with probability measures as states of the system. Among them
one may distinguish Poissonian states in which the particles are independently distributed
over Rd . Sub-Poissonian states are characterized by a rather weak dependence between the
particle’s positions, see Definition 2.1 below. As was shown in [10], for infinite particle
systems with birth-and-death dynamics the evolution of states exists and is such that they
remain sub-Poissonian globally in time if the birth of the particles is in a sense controlled
by their state-dependent death. For conservative dynamics, in which the particles do not
appear or disappear and only change their positions, the interaction may in general change
the sub-Poissonian character of the state in finite time (even cause an explosion), e.g., due
to an infinite number of simultaneous correlated jumps. Thus, the conceptual outcome of
the present study is that this is not the case for the considered model. Note that we do not
impose any kind of restrictions on the model parameters, and the existence of the global in
time evolution of states is proved to hold even if there may exist multiple equilibrium states
(phase transitions), and hence no ergodicity can be expected. Our another aim in this paper
is to study the dynamics of the considered model in the mesoscopic limit, which yields its
though an approximate (mean-field like) but more detailed picture. We do this and show how
this approximate picture and the description of the evolution of states are related to each
other.

1.2 Presenting the Results

The Markov evolution of states of the system which we consider is described by the Kol-
mogorov equation

d

dt
Ft = LFt , Ft |t=0 = F0, (1.1)

where Ft : �2 → R is an observable and the operator L specifies the model. It has the
following form

(LF)(γ0, γ1) =
∑

x∈γ0

∫

Rd
c0(x, y, γ1)[F(γ0\x ∪ y, γ1) − F(γ0, γ1)]dy

+
∑

x∈γ1

∫

Rd
c1(x, y, γ0)[F(γ0, γ1\x ∪ y) − F(γ0, γ1)]dy. (1.2)

The evolution of states is supposed to be obtained by solving the Fokker-Planck equation

d

dt
μt = L∗μt , μt |t=0 = μ0, (1.3)
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related to that in (1.1) by the duality

∫

�2
Ft (γ )μ0(dγ ) =

∫

�2
F0(γ )μt (dγ ). (1.4)

As is usual for models of this kind, the direct meaning of (1.1) or (1.3) can only be given for
states of finite systems, cf. [12]. In this case, the Banach space where the Cauchy problem in
(1.3) is defined can be the space of signed measures with finite variation. For infinite systems,
the evolution of states is constructed indirectly, by employing correlation functions and or
the related Bogoliubov functionals, see [3,6–10] and the references quoted therein.

In this paper, in describing the evolution of states, seeTheorem3.5 below,wemostly follow
the scheme elaborated in [10]. It consists in: (a) constructing the evolution of correlation
functions k0 �→ kt , t < T < +∞, based on the Cauchy problem in (3.1); (b) proving that
each kt is the correlation function of a unique sub-Poissonian state μt ; (c) constructing the
continuation of thus obtained evolution kμ0 = k0 �→ kt = kμt to all t > 0. Step (a) is
performed by means of Ovcyannikov-like arguments similar to those used, e.g., in [3,6,7].
Step (b) is based on the use of the Denjoy–Carleman theorem [4]. In realizing step (c), we
crucially use the result of (b). Our description of the mesoscopic limit is based on the scaling
procedure described in Sect. 4. It is equivalent to the Lebowitz-Penrose scaling used in [7],
and also to the Vlasov scaling used in [3,6]. In this procedure, passing to themesoscopic level
amounts to considering the system at different spatial scales parameterized by ε ∈ (0; 1] in
such a way that ε = 1 corresponds to the micro-level, whereas the limit ε → 0 yields the
meso-level description in which the corpuscular structure disappears and the system turns
into a (two-component) medium characterized by a density function. The evolution of the
latter is supposed to be found from the kinetic equation (3.15). In Theorem 3.8, we show
that the kinetic equation has a unique global (in time) solution in the corresponding Banach
space. In Theorem 3.9, we demonstrate that the micro- and meso-scopic descriptions are
indeed connected by the scaling procedure in the sense of Definition 3.6. In Theorems 3.10
and 3.11, we describe the stability of translation invariant stationary solutions of the kinetic
equation. In particular, we show that some of such solutions can be unstable with respect to
space-dependent perturbations.

The rest of the paper has the following structure. In Sect. 2, we give necessary information
on the analysis on configuration spaces and on the description of sub-Poissonian states on such
spaces with the help of Bogoliubov functionals and correlation functions. We also describe
in detail the model which we consider. In Sect. 3, we formulate the results mentioned above
and prove Theorems 3.10 and 3.11. We also provide some comments; in particular, we relate
our results with those of [7] describing a birth-and-death version of the Widom–Rowlinson
dynamics in the continuum. Section 4 is dedicated to developing our main technical tool—
Proposition 4.2. By means of it we realize step (a) in proving Theorem 3.5, see above. Steps
(b) and (c) are based on Lemmas 5.1, 5.2, 5.4 and 5.5 proved in Sect. 5. Section 6 is dedicated
to the proof of Theorems 3.8 and 3.10.

2 Preliminaries and the Model

2.1 Two-Component Configuration Spaces

Here we present necessary information on the subject. A more detailed description can be
found in, e.g., [5,7,9].
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Let B(Rd) and Bb(R
d) denote the sets of all Borel and all bounded Borel subsets of

Rd , respectively. The configuration space � mentioned above is equipped with the vague
topology and thus with the corresponding Borel σ -field B(�). It is known, see [11, Sect. 2.2],
that B(�) = σ {N� : � ∈ Bb(R

d)}, that is, B(�) is generated by the counting maps
� 
 γ �→ N�(γ ) := |γ ∩ �|, where | · | denotes cardinality. The elements of �2 := � × �

are γ = (γ0, γ1), i.e., the one-component configurations are alwayswrittenwith the subscript
i = 0, 1. By B(�2) we denote the corresponding product σ -field. For �i ∈ B(Rd), i = 0, 1,
we denote � = �0 × �1 and set

�2
� = {

γ = (γ0, γ1) ∈ �2 : γi ⊂ �i , i = 0, 1
}
.

Clearly �2
� ∈ B(�2) and hence

B(�2
�) := {

A ∩ �2
� : A ∈ B(�2)

}

is a sub-field of B(�2). Let p� : �2 → �2
� be the projection

p�(γ ) = γ� := (γ0 ∩ �0, γ1 ∩ �1).

It is clearly measurable, and thus the sets

p−1
� (A�) := {γ ∈ �2 : p�(γ ) ∈ A�}, A� ∈ B(�2

�),

belong to B(�2) for each Borel �i , i = 0, 1.
Let P(�2) denote the set of all probability measures on (�2,B(�2)). For a given μ ∈

P(�2), its projection on (�2
�,B(�2

�)) is

μ�(A�) := μ
(
p−1
� (A�)

)
, A� ∈ B(�2

�). (2.1)

Let π be the standard homogeneous Poisson measure on (�,B(�)) with density (intensity)
	 = 1. Then the product measure π2 := π ⊗ π is a probability measure on (�2,B(�2)).
By Pπ (�2) we denote the set of all μ ∈ P(�2), for each of which the projections μ�, with
all possible � = �0 × �1, �i ∈ Bb(R

d), i = 0, 1, are absolutely continuous with respect
to the corresponding projections of π2. It is known, see [5, Proposition 3.1], that for each
μ ∈ Pπ (�2) the following holds

μ
({γ = (γ0, γ1) ∈ �2 : γ0 ∩ γ1 = ∅}) = 1.

Since we are going to deal with elements of Pπ (�2) only, from now on we assume that the
configurations γ0 and γ1 are subsets of one and the same spaceRd .

Let �0 ⊂ � be the set of all finite configurations. It is known that �0 ∈ B(�), see [11,
Sect. 2.2]. Hence B̃(�0) := {A ⊂ �0 : A ∈ B(�)} ia a sub-σ -field of B(�). At the same
time, �0 can be equipped with the topology related to the Euclidean topology ofRd , see [11,
Sect. 2.1]. Let B(�0) be the corresponding Borel σ -field of subsets of �0. Clearly, a function,
g : �0 → R is B(�0)/B(R)-measurable if and only if there exist symmetric Borel functions
g(n) : (Rd)n → R such that g({x1, . . . , xn}) = g(n)(x1, . . . , xn), n ∈ N. The relationship
between thismeasurability and the corresponding property of g : �0 ⊂ � → R is clarified by
Obata’s result, see Lemma 1.1 and Proposition 1.3 in [14], by which B̃(�0) = B(�0). Thus,
such a function g is B(�)/B(R)-measurable if and only if there exist {g(n) : n ∈ N} with
the above mentioned properties. For completeness, one adds to this family also g(0) = g(∅).

By the very definition of B(�2) we have that �0 ×�0 =: �2
0 ∈ B(�2). SetN0 = N∪{0},

and also N2
0 = {n = (n0, n1) : ni ∈ N0, i = 0, 1}. Then a function G : �2

0 → R

is B(�2)/B(R)-measurable if and only if for each n ∈ N2
0, there exists a Borel function
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G(n) : (Rd)n0 ×(Rd)n1 → R, symmetric with respect to the permutations of the components
of each of ηi , i = 0, 1, such that

G(η) = G(η0, η1) = G(n)(x1, . . . , xn0 ; y1, . . . , yn1),
for η0 = {x1, . . . , xn0} and η1 = {y1, . . . , yn1}.

By Bbs(�
2
0) we denote the set of all measurable functions G : �2

0 → R that have the
following properties: (a) there exists CG > 0 such that |G(η)| ≤ CG for all η ∈ �2

0; (b)
there exists � = �0 × �1 with �i ∈ Bb(R

d), i = 0, 1, such that G(η) = 0 whenever
ηi ∩ �c

i �= ∅ for either of i = 0, 1; (c) there exists N ∈ N0 such that G(η) = 0 whenever
maxi=0,1 |ηi | > N . Here �c

i := Rd \�i . By �(G) and N (G) we denote the smallest � and
N with the properties just described.

By standard arguments Bbs(�
2
0) is a measure-defining class for measures on (�2

0,B(�2
0)).

The Lebesgue-Poisson measure λ on (�2
0,B(�2

0)) is then defined by the following formula,
see [5] and [9, page 130],

∫

�2
0

G(η)λ(dη) =
∞∑

n0=0

∞∑

n1=0

1

n0!n1!
∫

(Rd )n0

∫

(Rd )n1
G(n)(x1, . . . , xn0 ; y1, . . . , yn1)

×dx1 · · · dxn0dy1 · · · dyn1 , (2.2)

which has to hold for all G ∈ Bbs(�
2
0) with the usual convention regarding the cases ni = 0.

The same can also be written as
∫

�2
0

G(η)λ(dη) =
∫

�0

∫

�0

G(η0, η1)(λ0 ⊗ λ1)(dη0, dη1), (2.3)

where both λi are the copies of the standard Lebesgue-Poisson measure on the single-
component set �0, see, e.g., [11]. In the sequel, both Lebesgue-Poisson measures on �2

0
and on �0 will be denoted by λ if no ambiguity may arise.

For γ ∈ �2, by writing η � γ we mean that ηi � γi , i = 0, 1, i.e., both ηi are finite
subsets of the corresponding γi . For G ∈ Bbs(�

2
0), we set

(KG)(γ ) :=
∑

η�γ

G(η) =
∑

η0�γ0

∑

η1�γ1

G(η0, η1), (2.4)

see [5,9]. Note that the sums in (2.4) are finite and KG is a cylinder function on�2. The latter
means that it is B(�2

�(G))-measurable. Moreover, cf. [9, Eqs. (2.3) and (2.4), page 129],

|(KG)(γ )| ≤ CG (1 + |γ0 ∩ �0(G)|)N0(G) (1 + |γ1 ∩ �1(G)|)N1(G) . (2.5)

2.2 Correlation Functions

In the approach we follow, see [3,6,10], the evolution of states is constructed in the next way.
LetΘ denote the set of all compactly supported continuous maps θ = (θ0, θ1) : Rd ×Rd →
(−1, 0]2. For each θ ∈ Θ , the map

�2 
 γ �→
∏

x∈γ0

(1 + θ0(x))
∏

y∈γ1

(1 + θ1(y))

is measurable and bounded. Hence, for a state μ, one may define

Bμ(θ) =
∫

�2

∏

x∈γ0

(1 + θ0(x))
∏

y∈γ1

(1 + θ1(y))μ(dγ ), (2.6)
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– the so called Bogoliubov functional corresponding to μ, considered as a map Θ → R.

Definition 2.1 By Pexp(�
2) we denote the set of sub-Poissonian states consisting of all

those μ ∈ Pπ (�2) for which Bμ can be continued to an exponential type entire function of
θ ∈ L1(Rd × Rd → R2).

It can be shown that a given μ ∈ Pπ (�2) is sub-Poissonian if and only if Bμ can be written
in the form, cf. (2.3),

Bμ(θ) =
∫

�2
0

kμ(η)E(θ; η)λ(dη), (2.7)

cf. (2.2), with kμ : �2
0 → [0,+∞) such that k(n)

μ ∈ L∞((Rd)n0 × (Rd)n1 → R) and

E(θ; η) = e(θ0; η0)e(θ1; η1) :=
∏

x∈η0

θ0(x)
∏

y∈η1

θ1(y). (2.8)

This, in particular, means that kμ is essentially bounded with respect to the Lebesgue-Poisson
measure λ defined in (2.2). For the (heterogeneous) Poisson measure π�, the Bogoliubov
functional is

Bπ� (θ) = exp

⎛

⎝
∑

i=0,1

∫

Rd
θi (x)�i (x)dx

⎞

⎠ , (2.9)

where � = (�0, �1) is the (two-component) density function. Then by (2.2) and (2.7) we
have

kπ� (η) = E(�; η) = e(�0; η0)e(�1; η1). (2.10)

If one rewrites (2.6) in the form

Bμ(θ) =
∫

�2
Fθ (γ )μ(dγ ),

then the action of L on F as in (1.2) can be transformed to the action of L� on kμ according
to the following rule

∫

�2
(LFθ )(γ )μ(dγ ) =

∫

�2
0

(L�kμ)(η)E(θ; η)λ(dη) (2.11)

The main advantage of this is that kμ is a function of finite configurations.
For μ ∈ Pexp(�

2) and � = (�0,�1), �i ∈ Bb(R
d), let μ� be as in (2.1). Then μ� is

absolutely continuous with respect to the corresponding restriction λ� of themeasure defined
in (2.2), and hence we may write

μ�(dη) = R�
μ (η)λ�(dη), η ∈ �2

�. (2.12)

Then the correlation function kμ and the Radon-Nikodym derivative R�
μ are related to each

other by, cf. (2.3),

kμ(η) =
∫

�2
�

R�
μ (η ∪ ξ)λ�(dξ)

=
∫

��0

∫

��1

R�
μ (η0 ∪ ξ0, η1 ∪ ξ1)(λ

�0
0 ⊗ λ

�1
1 )(dξ0, dξ1), η ∈ �2

�. (2.13)

Note that (2.13) relates R�
μ with the restriction of kμ to �2

�. The fact that these are the
restrictions of one and the same function kμ : �2

0 → R corresponds to the Kolmogorov
consistency of the family {μ�}�.
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By (2.4), (2.1), and (2.12) we get
∫

�2
(KG)(γ )μ(dγ ) = 〈〈G, kμ〉〉,

holding for each G ∈ Bbs(�
2
0) and μ ∈ Pexp(�

2). Here

〈〈G, k〉〉 :=
∫

�2
0

G(η)k(η)λ(dη), (2.14)

for suitable G and k. Define

B�
bs(�

2
0) = {G ∈ Bbs(�

2
0) : (KG)(γ ) ≥ 0 for all γ ∈ �2}. (2.15)

By [11, Theorems 6.1 and 6.2 and Remark 6.3] one can prove that the following holds.

Proposition 2.2 Let a measurable function k : �2
0 → R have the following properties:

(a) 〈〈G, k〉〉 ≥ 0, for all G ∈ B�
bs(�

2
0);

(b) k(∅, ∅) = 1; (c) k(η) ≤ C |η0|+|η1|, (2.16)

with (c) holding for some C > 0 and λ-almost all η ∈ �2
0 . Then there exists a unique

μ ∈ Pexp(�
2) for which k is the correlation function.

2.3 The Model

The model we consider is specified by the operator L given in (1.2) where the coefficients
are supposed to be of the following form

c0(x, y, γ1) = a0(x − y) exp

⎛

⎝−
∑

z∈γ1

φ0(y − z)

⎞

⎠ ,

c1(x, y, γ0) = a1(x − y) exp

⎛

⎝−
∑

z∈γ0

φ1(y − z)

⎞

⎠ , (2.17)

with jump kernels ai : Rd → [0,+∞) such that ai (x) = ai (−x) and
∫

Rd
ai (x)dx =: αi < ∞, i = 0, 1. (2.18)

The repulsion potentials in (2.17) φi : Rd → [0,+∞) are supposed to be symmetric,
φi (x) = φi (−x), and such that

∫

Rd
φi (x)dx =: 〈φi 〉 < ∞, ess sup

x∈Rd
φi (x) =: φ̄i < ∞. (2.19)

Then ∫

Rd

(
1 − exp(−φi (x))

)
dx ≤ 〈φi 〉, i = 0, 1. (2.20)

By (1.2) and (2.11) one obtains the action of L� in the following form. For x ∈ Rd , we set

τ ix (y) = exp(−φi (x − y)), t ix (y) = τ ix (y) − 1, y ∈ Rd , i = 0, 1. (2.21)
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Next, for a function k(η) = k(η0, η1), cf. (2.3), we introduce the maps

(Q0
yk)(η0, η1) =

∫

�0

k(η0, η1 ∪ ξ)e(t0y ; ξ)λ(dξ),

(Q1
yk)(η0, η1) =

∫

�0

k(η0 ∪ ξ, η1)e(t
1
y ; ξ)λ(dξ), (2.22)

where e is as in (2.8). Then

(L�k)(η0, η1) =
∑

y∈η0

∫

Rd
a0(x − y)e(τ 0y ; η1)(Q

0
yk)(η0 \ y ∪ x, η1)dx

−
∑

x∈η0

∫

Rd
a0(x − y)e(τ 0y ; η1)(Q

0
yk)(η0, η1)dy

+
∑

y∈η1

∫

Rd
a1(x − y)e(τ 1y ; η0)(Q

1
yk)(η0, η1 \ y ∪ x)dx

−
∑

x∈η1

∫

Rd
a1(x − y)e(τ 1y ; η0)(Q

1
yk)(η0, η1)dy. (2.23)

This expression can be derived from the general form obtained in [9, Eqs. (4.4) and (4.5),
page 142] by using the concrete form of the kernels given in (2.17). It can also be obtained
directly from (1.2) and (2.11). Note that in (2.23) we use the convention

∑
x∈∅

= 0.

3 The Results

3.1 The Microscopic Level

As mentioned above, instead of directly studying the evolution of states by solving the
problem in (1.3), we pass from μ0 to the corresponding correlation function kμ0 and then
consider the problem

d

dt
kt = L�kt , kt |t=0 = kμ0 , (3.1)

where L� is given in (2.23). For this problem, we prove the existence of a unique global
solution kt which is the correlation function of a unique state μt ∈ Pexp(�

2).
We begin by defining the problem (3.1) in the corresponding spaces of functions k : �2

0 →
R. From the very representation (2.7), see also (2.2), it follows that μ ∈ Pexp(�

2) implies

|kμ(η)| ≤ C exp
(
ϑ (|η0| + |η1|)

)
,

holding for λ-almost all η ∈ �2
0 , some C > 0, and ϑ ∈ R. Keeping this in mind we set

‖k‖ϑ = ess sup
η∈�2

0

{|kμ(η)| exp ( − ϑ (|η0| + |η1|)
)}

. (3.2)

Then
Kϑ := {k : �2

0 → R : ‖k‖ϑ < ∞}
is a Banach space with norm (3.2) and the usual linear operations. In fact, we are going to
use the ascending scale of such spaces Kϑ , ϑ ∈ R, with the property

Kϑ ↪→ Kϑ ′ , ϑ < ϑ ′, (3.3)
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where ↪→ denotes continuous embedding. Set, cf. (2.14) and (2.15),

K�
ϑ = {k ∈ Kϑ : 〈〈G, k〉〉 ≥ 0 for all G ∈ B�

bs(�
2
0)}. (3.4)

It is a subset of the cone

K+
ϑ = {k ∈ Kϑ : k(η) ≥ 0 for λ − almost all η ∈ �2

0}. (3.5)

By Proposition 2.2 it follows that each k ∈ K�
ϑ such that k(∅, ∅) = 1 is the correlation

function of a unique μ ∈ Pexp(�
2). Then we define

K =
⋃

ϑ∈R
Kϑ , K� =

⋃

ϑ∈R
K�

ϑ . (3.6)

As a sum of Banach spaces, the linear space K is equipped with the corresponding inductive
topology which turns it into a locally convex space.

For a given ϑ ∈ R, by (2.21)–(2.23) we define L�
ϑ as a linear operator inKϑ with domain

D(L�
ϑ ) = {k ∈ Kϑ : L�k ∈ Kϑ }. (3.7)

Lemma 3.1 For each ϑ ′′ < ϑ , cf. (3.3), it follows that Kϑ ′′ ⊂ D(L�
ϑ ).

Proof For ϑ ′′ < ϑ , by (2.20), (2.21), (2.22), and (3.2) we have
∣∣∣(Q0

yk)(η0, η1)
∣∣∣ ≤ ‖k‖ϑ ′′ exp

(
ϑ ′′|η0| + ϑ ′′|η1|

)

×
∫

�0

exp
(
ϑ ′′|ξ |)

∏

z∈ξ

(
1 − exp (−φ0(z − y))

)
λ(dξ)

≤ ‖k‖ϑ ′′ exp
(
ϑ ′′|η0| + ϑ ′′|η1|

)
exp

(
〈φ0〉eϑ ′′)

. (3.8)

Likewise ∣∣∣(Q1
yk)(η0, η1)

∣∣∣ ≤ ‖k‖ϑ ′′ exp
(
ϑ ′′|η0| + ϑ ′′|η1|

)
exp

(
〈φ1〉eϑ ′′)

. (3.9)

Now we apply the latter two estimates together with (2.18) in (2.23) and obtain
∣∣(L�k)(η0, η1)

∣∣ ≤ 2‖k‖ϑ ′′ exp
(
ϑ ′′|η0| + ϑ ′′|η1|

)

×
(

α0|η0| exp
(
〈φ0〉eϑ ′′) + α1|η1| exp

(
〈φ1〉eϑ ′′)

)
. (3.10)

By means of the inequality x exp(−σ x) ≤ 1/eσ , x, σ > 0, we get from (3.2) and (3.10) the
following estimate

‖L�k‖ϑ ≤ 4‖k‖ϑ ′′

e(ϑ − ϑ ′′)
max
i=0,1

αi exp
(
〈φi 〉eϑ ′′)

, (3.11)

which yields the proof. ��
Corollary 3.2 For each ϑ, ϑ ′′ ∈ R such that ϑ ′′ < ϑ , the expression in (2.23) defines a
bounded linear operator L�

ϑϑ ′′ : Kϑ ′′ → Kϑ the norm of which can be estimated by means
of (3.11).

In what follows, we consider two types of operators defined by the expression in (2.23): (a)
unbounded operators (L�

ϑ ,D(L�
ϑ )), ϑ ∈ R, with domains as in (3.7) and Lemma 3.1; (b)
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bounded operators L�
ϑϑ ′′ described in Corollary 3.2. These operators are related to each other

in the following way:
∀ϑ ′′ < ϑ ∀k ∈ Kϑ ′′ L�

ϑϑ ′′k = L�
ϑ k. (3.12)

By means of the bounded operators L�
ϑϑ ′′ : Kϑ ′′ → Kϑ we define also a continuous linear

operator L� : K → K, see (3.6). In view of this, we consider the following two equations.
The first one is

d

dt
kt = L�

ϑ kt , kt |t=0 = kμ0 , (3.13)

considered as an equation in a given Banach spaceKϑ . The second equation is (3.1) with L�

given in (2.23) considered in the locally convex space K.

Definition 3.3 By a solution of (3.13) on a time interval, [0, T ), T ≤ +∞, we mean a
continuous map [0, T ) 
 t �→ kt ∈ D(L�

ϑ ) such that the map [0, T ) 
 t �→ dkt/dt ∈
Kϑ is also continuous and both equalities in (3.13) are satisfied. Likewise, a continuously
differentiable map [0, T ) 
 t �→ kt ∈ K is said to be a solution of (3.1) inK if both equalities
therein are satisfied for all t . Such a solution is called global if T = +∞.

Remark 3.4 The map [0, T ) 
 t �→ kt ∈ K is a solution of (3.1) if and only if, for each
t ∈ [0, T ), there exists ϑ ′′ ∈ R such that kt ∈ Kϑ ′′ and, for each ϑ > ϑ ′′, the map t �→ kt is
continuously differentiable at t in Kϑ and dkt/dt = L�

ϑ kt = L�
ϑϑ ′′kt .

The main result of this subsection is contained in the following statement.

Theorem 3.5 Assume that (2.18) and (2.19) hold. Then for eachμ0 ∈ Pexp(�
2), the problem

(3.1) with L� given in (2.23) and k0 = kμ0 has a unique global solution kt ∈ K� ⊂ K
which has the property kt (∅, ∅) = 1. Therefore, for each t ≥ 0 there exists a unique state
μt ∈ Pexp(�

2) such that kt = kμt . Moreover, let k0 andC > 0 be such that k0(η) ≤ C |η0|+|η1|
for λ-almost all η ∈ �2

0 , see (2.16). Then the mentioned solution satisfies

∀t ≥ 0 0 ≤ kt (η) ≤ C |η0|+|η1| exp {t (α0|η0| + α1|η1|)} . (3.14)

3.2 The Mesoscopic Level

As is commonly recognized, see [2, Chapter 8] and [13], the comprehensive understanding of
the behavior of an infinite interacting particle system requires its multi-scale analysis. In the
approachwhichwe follow, see [3] (jump dynamics) and [7] (two-component system), passing
from themicro- to themesoscopic levels amounts to considering the system at different spatial
scales parameterized by ε ∈ (0, 1] in such a way that ε = 1 corresponds to the micro-level,
whereas the limit ε → 0 yields the meso-level description in which the corpuscular structure
disappears and the system turns into a (two-component) medium characterized by a density
function � = (�0, �1), �i : Rd → [0,+∞), i = 0, 1. Then the evolution �0 �→ �t , obtained
from a kinetic equation, approximates (in the mean-field sense) the evolution of the system’s
states as it may be seen from the mesoscopic level.

3.2.1 The Kinetic Equation

Keeping in mind that the Poissonian state π� is completely characterized by the density �,
see (2.9) and (2.10), we introduce the following notion, cf. [3, p. 1046] and [7, p. 70].
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Definition 3.6 A state μ ∈ Pexp(�
2) is said to be Poisson-approximable if: (i) there exist

ϑ ∈ R and � = (�0, �1), �i ∈ L∞(Rd → R), �i ≥ 0, i = 0, 1, such that both kμ and kπ� lie
in Kϑ ; (ii) for each ε ∈ (0, 1], there exists qε ∈ Kϑ such that q1 = kμ and ‖qε − kπ�‖ϑ → 0
as ε → 0.

Our aim is to show that the evolution μ0 �→ μt obtained in Theorem 3.5 preserves the
property just defined relative to the time dependent density �t = (�0,t , �1,t ), obtained from
the following system of kinetic equations

{ d
dt �0,t = (a0 ∗ �0,t ) exp

(−(φ0 ∗ �1,t )
) − �0,t

(
a0 ∗ exp

(−(φ0 ∗ �1,t )
))

,
d
dt �1,t = (a1 ∗ �1,t ) exp

(−(φ1 ∗ �0,t )
) − �1,t

(
a1 ∗ exp

(−(φ1 ∗ �0,t )
))

,
(3.15)

where ∗ denotes convolution; e.g.,

(ai ∗ �i,t )(x) =
∫

Rd
ai (x − y)�i,t (y)dy, i = 0, 1.

Definition 3.7 By the global solution of the system of kinetic equations (3.15), subject to
an initial condition, we understand a continuously differentiable map

[0,+∞) 
 t �→ (�0,t , �1,t ) ∈ L∞(Rd → R2) (3.16)

such that both equalities in (3.15) hold. This solution is called positive if �i,t (x) ≥ 0, i = 0, 1,
for all t ≥ 0 and Lebesgue-almost all x ∈ Rd . By the positive solution of (3.15) on the time
interval [0, T ], 0 < T < ∞, we mean the corresponding restriction of this map.

Let ‖ · ‖L∞ stand for the norm in L∞(Rd → R). In Theorem 3.8, the space L∞(Rd → R2)

is equipped with the norm
‖�‖∞ = max

i=0,1
‖�i‖L∞ . (3.17)

Theorem 3.8 For each positive �0 = (�0,0, �1,0) ∈ L∞(Rd → R2), the system of kinetic
equations (3.15)with the initial condition (�0,t , �1,t )|t=0 = (�0,0, �1,0) has a unique positive
global solution such that

∀t ≥ 0 �i,t (x) ≤ ‖�i,0‖L∞ exp(αi t), i = 0, 1, (3.18)

where αi are defined in (2.18).

The relationship between the micro- and mesoscopic descriptions is established by the fol-
lowing statement.

Theorem 3.9 Let (2.19) hold and kt and �t be the solutions described in Theorems 3.5 and
3.8, respectively. Assume also that the initial state μ0 is Poisson-approximable by π�0 , see
Definition 3.6. That is, there exist ϑ∗ ∈ R and q0,ε, ε ∈ (0, 1], such that kμ0 = q0,1 and
‖q0,ε − kπ�0

‖ϑ∗ → 0 as ε → 0. Then there exist ϑ > ϑ∗ and T > 0 such that

lim
ε→0

sup
t∈[0,T ]

‖qt,ε − kπ�t
‖ϑ = 0. (3.19)

Theorems 3.8 and 3.9 are proved in Sect. 6 below.
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3.2.2 The Stationary Solutions

Stationary solutions �i,t = �i , t ≥ 0, of the system in (3.15) are supposed to solve the
following system of equations

{
(a0 ∗ �0) exp (−(φ0 ∗ �1)) = �0 (a0 ∗ exp (−(φ0 ∗ �1))) ,

(a1 ∗ �1) exp (−(φ1 ∗ �0)) = �1 (a1 ∗ exp (−(φ1 ∗ �0))) .
(3.20)

It might be instructive to rewrite it in the form
{

ψ0(x) = ∫
Rd ã0(x, y)ψ0(y)dy,

ψ1(x) = ∫
Rd ã1(x, y)ψ1(y)dy,

(3.21)

where

ã0(x, y) := a0(x − y) exp (−(φ0 ∗ �1)(y))∫
Rd a0(x − y) exp (−(φ0 ∗ �1)(y)) dy

,

ã1(x, y) := a1(x − y) exp (−(φ1 ∗ �0)(y))∫
Rd a1(x − y) exp (−(φ1 ∗ �0)(y)) dy

,

and
ψ0 := �0 exp (φ0 ∗ �1) , ψ1 := �1 exp (φ1 ∗ �0) . (3.22)

For each C̃i > 0, i = 0, 1, the system in (3.21) has constant solutions ψi ≡ C̃i . Then the
corresponding �i are to be found from

{
�0 = C̃0 exp (−(φ0 ∗ �1)) ,

�1 = C̃1 exp (−(φ1 ∗ �0)) .
(3.23)

Those in (3.23) may be called birth-and-death solutions since they solve the corresponding
equation for the birth-and-death version of the Widom–Rowlinson dynamics with specific
values of C̃i , expressed in terms of the model parameters, see [7, eq. (4.13)]. The translation
invariant (i.e., constant) solution of (3.23) is �i ≡ Ci , i = 0, 1, with Ci satisfying, cf. (3.22),

C̃0 = C0 exp (〈φ0〉C1) , C̃1 = C1 exp (〈φ1〉C0) . (3.24)

For given C̃0, C̃1 > 0, let S(C̃0, C̃1) be the set of all positive (�0, �1) ∈ L∞(Rd → R2) that
satisfy (3.23). Let also Sc(C̃0, C̃1) be the subset of S(C̃0, C̃1) consisting of constant solutions
�i ≡ Ci , i = 0, 1,withCi satisfying (3.24). The symmetric case of (3.24)with specific values
of C̃i (as mentioned above) was studied in [7, Sect. 5]. Namely, for 〈φ1〉C̃0 = 〈φ0〉C̃1 =: a,
the set Sc(C̃0, C̃1) is a singleton {C0,C1} whenever a ≤ e. Here

C0 = x0/〈φ1〉, C1 = x0/〈φ0〉, (3.25)

with some x0 ∈ (0, 1). This solution is a stable node for a < e. For a > e, there exist
three solutions: (a) C0 = x1/〈φ1〉, C1 = x3/〈φ0〉; (b) C0 = x3/〈φ1〉, C1 = x1/〈φ0〉;
(c) C0 = x2/〈φ1〉, C1 = x2/〈φ0〉. The first two solutions are stable nodes and x3 > 1.
The stability means the existence of a small neighborhood in Sc(C̃0, C̃1) of the mentioned
solution, which does not contain any other solution.

Let us now turn to the study of the stability of the constant solutions of (3.23)with respect to
perturbations �i = Ci + εi , i = 0, 1. By (3.23) and (3.24) we conclude that the perturbations
ought to satisfy {

ε0 = C0
[
exp {− (φ0 ∗ ε1)} − 1

]
,

ε1 = C1
[
exp {− (φ1 ∗ ε0)} − 1

]
.

(3.26)
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Theorem 3.10 The solution �i ≡ Ci , i = 0, 1, of the system of equations in (3.20) is locally
stable inS(C̃0, C̃1), with C̃i andCi satisfying (3.24), whenever the following holds, cf. (3.25),

C0C1〈φ0〉〈φ1〉 < 1. (3.27)

This means that there exists δ > 0 such that �i ≡ Ci , i = 0, 1, is the only solution in the set
Kδ := S(C̃0, C̃1) ∩ {� : ‖� − C‖∞ < δ}, cf. (3.17).
Proof Assume that ‖ε0‖L∞ > 0. By means of the inequality |e−α −1| ≤ |α|e|α| we get from
(3.26)

‖ε0‖L∞ ≤ C0C1〈φ0〉〈φ1〉 exp [δ (〈φ0〉 + 〈φ1〉)] · ‖ε0‖L∞ < ‖ε0‖L∞ ,

holding for small enough δ in view of (3.27). This contradicts the assumption, and hence
yields ε0 = 0. The corresponding estimate for ‖ε1‖L∞ is obtained analogously. ��
Assume now that both εi satisfy εi ∈ L∞(Rd → R) ∩ L1(Rd → R). Then each solution
of (3.26) is a fixed point of the nonlinear map � : L∞(Rd → R2) ∩ L1(Rd → R2) →
L∞(Rd → R2)∩ L1(Rd → R2) defined by the right-hand of (3.26). Note that this � takes
values in L∞(Rd → R2) ∩ L1(Rd → R2) in view of (2.19). The zero solution of (3.26)
gets unstable whenever there exist nonzero ε = (ε0, ε1) in the kernel of I − �′, where �′ is
the Fréchet derivative of � at ε = (0, 0). By (3.26) we have

�′ε := �′
(

ε0
ε1

)
=
(−C0(φ0 ∗ ε1)

−C1(φ1 ∗ ε0)

)
. (3.28)

Since �′ contains convolutions, it can be partially diagonalized by means of the Fourier
transform

φ̂i (p) =
∫

Rd
φi (x) exp (i(p, x)) dx, p ∈ Rd , i = 0, 1.

Note that both φ̂i are uniformly continuous on Rd and satisfy |φ̂i (p)| ≤ φ̂i (0) = 〈φi 〉,
that follows from their positivity. Moreover, |φ̂i (p)| → 0 as |p| → +∞ (by the Riemann-
Lebesgue lemma). Note also that ε̂i , i = 0, 1, exist since εi are supposed to be integrable.

Theorem 3.11 Assume that the following holds, cf. (3.27),

C0C1〈φ0〉〈φ1〉 > 1. (3.29)

Then the constant solution �i ≡ Ci of (3.23), and hence of (3.20), is unstable with respect
to the perturbation �i = Ci + εi , i = 0, 1, with εi ∈ L∞(Rd → R) ∩ L1(Rd → R).

Proof In view of the mentioned continuity of φ̂i and the Riemann-Lebesgue lemma, the
condition in (3.29) implies the existence of p ∈ Rd \ {0} such that

C0C1φ̂0(p)φ̂1(p) = 1. (3.30)

The instability in question takes place whenever the equation�′ε = ε, cf. (3.28), has nonzero
solutions in the considered space. By means of the Fourier transform it can be turned into

ε̂i (p) = C0C1φ̂0(p)φ̂1(p)ε̂i (p), i = 0, 1, (3.31)

that has to hold for some p ∈ R \ {0}, which is certainly the case in view of (3.30). ��
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Given Ci , i = 0, 1, let ε = (ε0, ε1) solve (3.26). Then � = (C0 + ε0,C1 + ε1) solves (3.23)
with C̃i as in (3.24) and hence lies in S(C̃0, C̃1). Then Theorem 3.11 describes the instability
of the solution � ≡ (C0,C1) in the latter set. For this reason, it is independent of the jump
kernels ai . In order to study the corresponding instability in the set of all solutions of (3.20),
one has to rewrite (3.20) in the form�(�) = 0 and then to show that the Fréchet derivative� ′
of � at � ≡ (C0,C1), defined as a bounded linear self-map of L∞(Rd → R) ∩ L1(Rd →
R), has nonzero ε in its kernel. By means of the arguments used in the proof of Theorem
3.11 one readily obtains that this is equivalent to, cf. (3.31),

ε̂i (p)
[
1 − C0C1φ̂0(p)φ̂1(p)

]
· [αi − âi (p)

] = 0, i = 0, 1,

that has to hold for some nonzero p ∈ Rd . Here âi (p), i = 0, 1, are the Fourier transforms
of the jump kernels, see (2.18). Thus, if both these kernels are such that âi (p) < âi (0) = αi

for all nonzero p, then the latter condition turns into that in (3.31).

3.3 Comments

3.3.1 The Microscopic Description

The existence of the global in time evolution stated in Theorem3.5 is proved in the subsequent
sections without any restrictions on themodel parameters αi and 〈φi 〉, i = 0, 1, see (2.18) and
(2.19), respectively. That is, the global evolution exists, however, its ergodicity can hardly be
expected. The analysis of the kinetic equation made in Theorem 3.11 points to the possibility
of having a phase transition in the model, i.e., to the possibility of having multiple stationary
states μ ∈ Pexp(�

2).
The only work on the Widom–Rowlinson dynamics of an infinite particle system is that

in [7] where a birth-and-death (rather immigration-emigration) version was studied. In that
version, the particles of two types appear and disappear at random; the appearance is subject
to the repulsion from the particles of the other type. The system’s evolution was described
by means of the corresponding initial value problem for the Bogoliubov functional. Namely,
for t < T , where T < ∞ is expressed via the model parameters, in [7, Theorem 1] there was
constructed the evolution Bμ0 �→ Bt , where Bt : L1(Rd → R2) → R is an exponential
type entire function and hence can be written down as, cf. (2.7),

Bt (θ) =
∫

�2
0

kt (η)E(θ; η)λ(dη).

However, it was not shown that Bt is the Bogoliubov functional, i.e., that kt above is the
correlation function, of some state μ ∈ Pexp(�

2). In the present work, for the jump version
of the Widom–Rowlinson model we show (Theorem 3.5) that: (a) the evolution kμ0 �→ kt ,
and hence also Bμ0 �→ Bt , can be continued to all t > 0; (b) for each t > 0, Bt is the
Bogoliubov functional of a unique sub-Poissonian state μt .

3.3.2 The Mesoscopic Description

In passing to the mesoscopic level of description, we use a scaling procedure described in
Sect. 4 below. It is equivalent to the Lebowitz-Penrose scaling used in [7], and also to the
Vlasov scaling used in [3,6]. Our Theorem 3.9 is analogous to [7, Theorem 2] proved for the
birth-and-death version. Note that the convergence in (3.19) is uniform in t , whereas in the
mentioned statement of [7] the convergence is point-wise.
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Now we turn to the stationary solutions of (3.15) which one obtains from the system in
(3.20), or, equivalently, in (3.21). The latter may have nonconstant solutions ψi , which then
can be used to find the corresponding �i from (3.22). These solutions may depend on the
jump kernels ai . The set of all solutions of (3.20) contains the sets S(C̃0, C̃1) for each pair
C̃0, C̃1 > 0. The corresponding solutions �i are independent of the jump kernels. Moreover,
S(C̃0, C̃1) is exactly the set of solutions of the birth-and-death kinetic equation [7, Eq. (5.1)]
corresponding to the specific values of C̃i . Thus, our Theorems 3.10 and 3.11 describe also
the birth-and-death kinetic equation, which is an extension of the study in [7, Sect. 5].

4 The Rescaled Evolution

In this section, we construct the evolution q0,ε �→ qt,ε , ε ∈ (0, 1], which then will be used
for: (a) obtaining the evolution stated in Theorem 3.5 in the form kt = qt,1; (b) proving
Theorem 3.9. To this end along with L� defined in (2.23) we will use

Lε,� = R−1
ε L�

ε Rε, ε ∈ (0, 1], (4.1)

where L�
ε is obtained from L� by multiplying both φi by ε, and

(Rεq)(η0, η1) = ε−|η0|−|η1|q(η0, η1).

We refer the reader to [3,7] for more information on deriving operators as in (4.1). Denote,
cf. (2.21),

τ ix,ε(y) = exp (−εφi (x − y)) , t ix,ε(y) = ε−1
[
τ ix,ε(y) − 1

]
, i = 0, 1. (4.2)

Observe that
τ ix,ε(y) → 1, t ix,ε(y) → −φi (x − y), as ε → 0. (4.3)

For ε ∈ (0, 1], let Qi
y,ε be as in (2.22) with t

i
x replaced by t

i
x,ε given in (4.2). Then the action

of Lε,� is given by the right-hand side of (2.23) with both Qi
y replaced by the corresponding

Qi
y,ε and τ ix replaced by τ ix,ε. Note that, cf. (2.19),

ε−1
∫

Rd

(
1 − e−εφi (x)

)
dx ≤ 〈φi 〉, i = 0, 1. (4.4)

For eachϑ ′′ ∈ R, k ∈ Kϑ ′′ , and ε ∈ (0, 1], by (4.4) both Qi
y,εk satisfy the estimates as in (3.8)

and (3.9). Therefore, Lε,�k satisfies (3.10), which allows one to introduce the corresponding
linear operators Lε,�

ϑ : D(L�
ϑ ) → Kϑ and Lε,�

ϑ ′ϑ : Kϑ → Kϑ ′ , where D(L�
ϑ ) is defined in

(3.7), see also Corollary 3.2 and (3.12). Thus, along with (3.13) we will consider the problem

d

dt
qt,ε = Lε,�

ϑ qt,ε, qt,ε|t=0 = q0,ε ∈ Kϑ0 , ϑ0 < ϑ. (4.5)

Its solutions qt,ε ∈ D(L�
ϑ ) ⊂ Kϑ are defined analogously as in Definition 3.3.

For ϑ, ϑ ′ ∈ R such that ϑ < ϑ ′, we set, cf. (3.11),

T (ϑ ′, ϑ) = ϑ ′ − ϑ

4α
exp

(
−ceϑ ′)

, α = max
i=0,1

αi , c = max
i=0,1

〈φi 〉. (4.6)
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For a fixed ϑ ′ ∈ R, T (ϑ ′, ϑ)) can be made as big as one wants by taking small enough ϑ .
However, if ϑ is fixed, then

sup
ϑ ′>ϑ

T (ϑ ′, ϑ) = δ(ϑ)

4α
exp

(
− 1

δ(ϑ)

)
=: τ(ϑ) < ∞, (4.7)

where δ(ϑ) is the unique positive solution of the equation

δeδ = exp (−ϑ − log c) . (4.8)

Remark 4.1 The supremum in (4.7) is attained at

ϑ ′ = ϑ + δ(ϑ).

Note also that δ(ϑ) → 0, and hence τ(ϑ) → 0, as ϑ → +∞.

Proposition 4.2 For arbitrary ϑ0 ∈ R and ε ∈ (0, 1], the problem in (4.5) with q0,ε ∈ Kϑ0

and ϑ = ϑ0 + δ(ϑ0) has a unique solution qt,ε ∈ Kϑ on the time interval [0, τ (ϑ0)).

Proof Take T < τ(ϑ0) and then pick ϑ ′ ∈ (ϑ0, ϑ0 + δ(ϑ0)) such that T < T (ϑ ′, ϑ0). Our
aim is to construct the family

{Sε
ϑ ′ϑ0

(t) ∈ L(Kϑ0 ,Kϑ ′) : t ∈ [0, T (ϑ ′, ϑ0))}, (4.9)

defined by the series

Sε
ϑ ′ϑ0

(t) =
∞∑

n=0

tn

n!
(
Lε,�

)n
ϑ ′ϑ0

. (4.10)

In (4.9), L(Kϑ0 ,Kϑ ′) stands for the Banach space of bounded linear operators acting from

Kϑ0 to Kϑ ′ equipped with the corresponding operator norm. In (4.10),
(
Lε,�

)0
ϑ ′ϑ0

is the
embedding operator and

(
Lε,�

)n
ϑ ′ϑ0

:=
n∏

l=1

Lε,�
ϑlϑl−1

, ϑl = ϑ0 + l(ϑ ′ − ϑ0)/n, (4.11)

for n ∈ N. Now we take into account that ϑl − ϑl−1 = (ϑ ′ − ϑ0)/n and that Lε,� satisfies
(3.11) for all ε ∈ (0, 1]. This yields the following estimate

‖Lε,�
ϑlϑl−1

‖ ≤
(n
e

)
(ϑ ′ − ϑ0)

{
2α0 exp

(
〈φ0〉eϑ ′) + 2α1 exp

(
〈φ1〉eϑ ′)}−1

≤ n
/
eT (ϑ ′, ϑ0), (4.12)

see (3.11) and (4.6). Then we apply (4.12) in (4.11) and conclude that the series in (4.10)
converges in the operator norm, uniformly on [0, T ], to the operator-valued function [0, T ] 

t �→ Sε

ϑ ′ϑ0
(t) ∈ L(Kϑ0 ,Kϑ ′) such that

∀t ∈ [0, T ] ‖Sε
ϑ ′ϑ0

(t)‖ ≤ T (ϑ ′, ϑ0)

T (ϑ ′, ϑ0) − t
. (4.13)

In a similar way, we get

d

dt
Sε
ϑϑ0

(t) =
∞∑

n=0

tn

n!
(
Lε,�

)n+1
ϑϑ0

=
∞∑

n=0

tn

n! L
ε,�
ϑϑ ′

(
Lε,�

)n
ϑ ′ϑ0

= Lε,�
ϑϑ ′ Sε

ϑ ′ϑ0
(t), t ∈ [0, T ] (4.14)
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Then
qt,ε = Sε

ϑ ′ϑ0
(t)q0,ε ∈ Kϑ ′ ⊂ D(Lε,�

ϑ ), (4.15)

see Lemma 3.1, is a solution of (4.5) on the time interval [0, τ (ϑ0)) since T < τ(ϑ0) has
been taken in an arbitrary way and Lε,�

ϑϑ ′qt = Lε,�
ϑ qt whenever qt ∈ Kϑ ′ , see (3.12).

Let us prove that the solution given in (4.15) is unique. In view of the linearity, to this
end it is enough to show that the problem in (4.5) with the zero initial condition has a unique
solution. Assume that vt ∈ D(Lε,�

ϑ ) is one of such solutions. Then vt lies in Kϑ ′′ for each
ϑ ′′ > ϑ , see (3.3). Fix any such ϑ ′′ and then take t < τ(ϑ0) such that t < T (ϑ ′′, ϑ). Then,
cf. (3.12),

vt =
∫ t

0
Lε,�

ϑ ′′ϑvsds

=
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0

(
Lε,�

)n
ϑ ′′ϑ vtn dtn · · · dt1,

where n ∈ N is an arbitrary number. Similarly as above we get from the latter

‖vt‖ϑ ′′ ≤ tn

n!
(

n

eT (ϑ ′′, ϑ)

)n

sup
s∈[0,t]

‖vs‖ϑ .

Since n is an arbitrary number, this yields vs = 0 for all s ∈ [0, t]. The extension of this
result to all t < τ(ϑ0) can be done by repeating this procedure due times. ��
Remark 4.3 Similarly as in obtaining (4.14) we have that, for each ε ∈ (0, 1] and all
ϑ0, ϑ1, ϑ2 ∈ R such that ϑ0 < ϑ1 < ϑ2, the following holds

Sε
ϑ2ϑ0

(t + s) = Sε
ϑ2ϑ1

(t)Sε
ϑ1ϑ0

(s), t ∈ [0, T (ϑ2, ϑ1)), s ∈ [0, T (ϑ1, ϑ0)). (4.16)

5 The Proof of Theorem 3.5

With the help of Proposition 4.2 we have already obtained the unique solution of (3.13) in
the form

kt = S1ϑϑ0
(t)kμ0 , t < τ(ϑ0), (5.1)

where kμ0 ∈ Kϑ0 and ϑ ∈ (ϑ0, ϑ0 + δ(ϑ0)) is taken such that t < T (ϑ0 + δ(ϑ0), ϑ). To
prove Theorem 3.5 we first show (Lemma 5.1) that kt lies in the cone (3.4) and hence is
a correlation function of a unique state μt . Then, in Lemma 5.2, we construct an auxiliary
evolution u0 �→ ut , withwhichwe compare the evolution kμ0 �→ kt defined in (5.1). Thereby,
we construct the extension of kμt to all t > 0 as stated in the theorem.

5.1 The Identification Lemma

Our aim now is to show that the solution of (3.13) given in (5.1) has the property kt ∈ K�
ϑ , see

(3.4). By this one can identify kt as kμt for a unique state μt . Recall that bounded operators
L�

ϑϑ ′′ , ϑ ′′ < ϑ , were introduced in Corollary 3.2.

Lemma 5.1 For arbitrary ϑ ∈ R and ϑ0 < ϑ , and for each t ∈ [0, T (ϑ, ϑ0)), the operator
defined in (4.10) has the property

S1ϑϑ0
(t) : K�

ϑ0
→ K�

ϑ . (5.2)
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Proof We follow the line of arguments used in the proof of Theorem 3.8 of [3], see also
[10, Lemma 4.8]. Let μ0 ∈ Pexp(�

2) be such that kμ0 ∈ K�
ϑ0
, see Proposition 2.2. For

� = (�0,�1), �i ∈ Bb(R
d), i = 0, 1, let μ�

0 and R�
μ0

be as in (2.12). For N ∈ N, we then
set

R�,N
0 (η) = R�

μ0
(η)IN (η), η ∈ �2

0, (5.3)

where IN (η) = 1 whenever maxi=0,1 |ηi | ≤ N and IN (η) = 0 otherwise. Set

R = L1(�2
0, dλ), Rβ = L1(�2

0, bβdλ),

bβ(η) := exp
(
β (|η0| + |η1|)

)
, β > 0. (5.4)

Let ‖ · ‖R and ‖ · ‖Rβ be the norms of the spaces introduced in (5.4) and R+ and R+
β be

the corresponding cones of positive elements (in the usual L1-sense). For each β > 0, R�,N
0

defined in (5.3) lies in R+
β ⊂ R+ and is such that ‖R�,N

0 ‖R ≤ 1. Then one can define a
(non-normalized) measure

μ
�,N
0 (η) = R�,N

0 (η)λ(dη), η ∈ �2
0 .

Similarly as for theKawasakimodel, see [3, Sect. 3.2], it is possible to show that L∗, related by
(1.4) to L given in (1.2), generates an evolution μ0 �→ μt , t ≥ 0, for which 0 ≤ μt (�

2
0) ≤ 1

whenever μ0 has such a property, that is the case for μ
�,N
0 . Moreover, for each t ≥ 0, the

mentioned μt is absolutely continuous with respect to λ, and the equation for Rt = dμt/dλ

corresponding to (1.3) can be written in the form

d

dt
Rt = L†Rt , Rt |t=0 = Rμ0 , (5.5)

where, cf. (2.23), L† is defined by the relation L†R = d(L∗μ)/dλ, and hence acts according
to the following formula

(L†R)(η0, η1) =
∑

y∈η0

∫

Rd
a0(x − y)e(τ 0y ; η1)R(η0 \ y ∪ x, η1)dx

+
∑

y∈η1

∫

Rd
a1(x − y)e(τ 1y ; η0)R(η0, η1 \ y ∪ x)dx

−�(η0, η1)R(η0, η1),

�(η0, η1) :=
∑

x∈η0

∫

Rd
a0(x − y)e(τ 0y ; η1)dy

+
∑

x∈η1

∫

Rd
a1(x − y)e(τ 1y ; η0)dy. (5.6)

Like in [3, Theorem 3.7], one shows that L† generates a stochastic C0-semigroup, SR :=
{SR(t)}t≥0, on R, which leaves invariant each Rβ , β > 0. Then the solution of (5.5) is
Rt = SR(t)R0. For R

�,N
0 as in (5.3), we thus set

R�,N
t (t) = SR(t)R�,N

0 , t > 0. (5.7)

Then R�,N
t ∈ R+

β ⊂ R+ and ‖R�,N
t ‖R ≤ 1. This yields that, for each G ∈ B�

bs(�
2
0), see

(2.14) and (2.15), the following holds
〈〈
KG, R�,N

t

〉〉
≥ 0, t ≥ 0. (5.8)
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The integral in (5.8) exists as R�,N
t ∈ Rβ and KG satisfies (2.5). Moreover, like in (3.11)

and (5.21), for each β ′ such that 0 < β ′ < β, we derive from (5.6) the following estimate

‖L†R‖Rβ′ ≤ 4α‖R‖Rβ

e(β − β ′)
.

This allows us to define the corresponding bounded operators (L†)n
β ′β : Rβ → Rβ ′ , n ∈ N,

cf. (4.11) and (5.23), the norms of which satisfy

‖(L†)nβ ′β‖ ≤ nn
(
eT̄ (β, β ′)

)−n
. (5.9)

On the other hand, we have that

k�,N
0 (η) :=

∫

�2
0

R�,N
0 (η ∪ ξ)λ(dξ)

=
∫

�2
0

R�,N
0 (η0 ∪ ξ0, η1 ∪ ξ1)(λ0 ⊗ λ1)(dξ0, dξ1), (5.10)

cf. (2.13) and (5.3), lies in K�
ϑ0

⊂ Kϑ0 , and hence we may get

k�,N
t = S1ϑϑ0

(t)k�,N
0 , t ∈ [0, T (ϑ, ϑ0)), (5.11)

where S1ϑϑ0
(t) = Sε

ϑϑ0
(t)|ε=1 is given in (4.10). Then the proof of (5.2) consists in showing:

(i) ∀G ∈ B�
bs(�

2
0)

〈〈
G, k�,N

t

〉〉
≥ 0;

(ii)
〈〈
G, S1ϑϑ0

(t)k0
〉〉

= lim
�→Rd×Rd

lim
N→+∞

〈〈
G, k�,N

t

〉〉
. (5.12)

To prove claim (i) of (5.12), for a given G ∈ B�
bs(�

2
0), one sets

ϕG(t) =
〈〈
KG, R�,N

t

〉〉
, ψG(t) =

〈〈
G, k�,N

t

〉〉
, (5.13)

where ψG is defined for t as in (5.11). For a given t ∈ (0, T (ϑ, ϑ0)), we pick ϑ ′ < ϑ such
that t < T (ϑ ′, ϑ0), and hence k�,N

s ∈ Kϑ ′ for s ∈ [0, t]. Then the direct calculation based
on (4.14) yields for the n-th derivative

ψ
(n)
G (t) =

〈〈
G, (L�)nϑϑ ′k

�,N
t

〉〉
, n ∈ N.

As in obtaining (4.13) we then get from the latter
∣∣∣ψ(n)

G (t)
∣∣∣ ≤ AnnnCϑ ′(G) sup

s∈[0,t]

∥∥∥k�,N
s

∥∥∥
ϑ ′ . (5.14)

Here A = 1/eT (ϑ, ϑ ′) and

Cϑ ′(G) =
∫

�2
0

|G(η)| exp (ϑ ′|η0| + ϑ ′|η1|
)
λ(dη) < ∞,

as G ∈ Bbs(�
2
0). Likewise, from (5.7) we have

ϕ
(n)
G (t) =

〈〈
KG, (L†)nβ ′β R

�,N
t

〉〉

For the same t as in (5.14), by (5.9) we have from the latter
∣∣∣ϕ(n)

G (t)
∣∣∣ ≤ ĀnnnC̄β ′(G) sup

s∈[0,t]

∥∥∥R�,N
s

∥∥∥
β ′ . (5.15)

123



656 J Dyn Diff Equat (2018) 30:637–665

Here Ā = 1/eT̄ (β ′, β) and

C̄β ′(G) = ess sup
η∈�2

0

|KG(η)| exp (−β ′|η0| − β ′|η1|
)

< ∞

which holds in view of (2.5). By (2.23), (5.6), and (5.10) it follows that

(L�k�,N
0 )(η) =

∫

�2
0

(L†R�,N
0 )(η ∪ ξ)λ(dξ),

which then yields
∀n ∈ N0 ϕ

(n)
G (0) = ψ

(n)
G (0). (5.16)

By the Denjoy–Carleman theorem [4], (5.15) and (5.14) imply that both functions defined in
(5.13) are quasi-analytic on [0, t]. Then (5.16) implies

∀t ∈ [0, T (ϑ, ϑ0)) ϕG(t) = ψG(t), (5.17)

which by (5.8) yields the first line in (5.12). The convergence claimed in (ii) of (5.12) is
proved in a standard way, see Appendix in [3]. ��
Note that (5.17) yields also that

∀t ∈ [0, T (ϑ, ϑ0))
〈〈
G, q�,N

t

〉〉
=
〈〈
G, k�,N

t

〉〉
, (5.18)

where G and k�,N
t are as in (5.13) and

q�,N
t (η) :=

∫

�2
0

R�,N
t (η ∪ ξ)λ(dξ), (5.19)

cf. (5.10).

5.2 An Auxiliary Evolution

The evolution which we construct now will be used to continue the solution kt given in (5.1)
to all t > 0 as stated in Theorem 3.5. The construction employs the operator

(L̄k)(η0, η1) =
∑

y∈η0

∫

Rd
a0(x − y)k(η0 \ y ∪ x, η1)dx

+
∑

y∈η1

∫

Rd
a1(x − y)k(η0, η1 \ y ∪ x)dx (5.20)

obtained from L� given in (2.23) by putting φi = 0, i = 0, 1, and then dropping the second
and fourth terms. Note that L̄ does not correspond to any Markov evolution as it describes
(free) “half-jumps”. Similarly as in (3.11), we get

‖L̄k‖ϑ ≤ 4α‖k‖ϑ ′′

e(ϑ − ϑ ′′)
, (5.21)

which allows us to introduce the operators (L̄ϑ ,D(L̄ϑ)) and L̄ϑϑ ′′ ∈ L(Kϑ ′′ ,Kϑ) such that,
cf. (3.12),

∀k ∈ ϑ ′′ L̄ϑϑ ′′k = L̄ϑk, ϑ ′′ < ϑ.

Like above, we have that

Kϑ ′′ ⊂ D(L̄ϑ) := {k ∈ Kϑ : L̄k ∈ Kϑ }, ϑ ′′ < ϑ.
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Note that
L̄ϑϑ ′′ : K+

ϑ ′′ → K+
ϑ , ϑ ′′ < ϑ, (5.22)

see (3.5). For n ∈ N, we define (L̄)n
ϑ ′ϑ similarly as in (4.11) and denote, cf. (4.6),

T̄ (ϑ ′, ϑ) = (ϑ ′ − ϑ)/4α, ϑ < ϑ ′. (5.23)

Our aim is to study the operator valued function defined by the series

S̄ϑ ′ϑ(t) =
∞∑

n=0

tn

n!
(
L̄
)n
ϑ ′ϑ . (5.24)

Lemma 5.2 For each ϑ0, ϑ ∈ R such that ϑ0 < ϑ , the series in (5.24) defines a continuous
function

[0, T̄ (ϑ, ϑ0)) 
 t �→ S̄ϑϑ0(t) ∈ L(Kϑ0 ,Kϑ), (5.25)

which has the following properties:

(a) For t as in (5.25), let ϑ ′′ ∈ (ϑ0, ϑ) be such that t < T̄ (ϑ ′′, ϑ0). Then, cf. (4.14),

d

dt
S̄ϑϑ0(t) = L̄ϑϑ ′′ S̄ϑ ′′ϑ0(t). (5.26)

(b) The problem
d

dt
ut = L̄ϑut , ut |t=0 = u0 ∈ K+

ϑ0
, (5.27)

has a unique solution ut ∈ K+
ϑ on the time interval [0, T̄ (ϑ, ϑ0)) given by

ut = S̄ϑ ′′ϑ0(t)u0, (5.28)

where, for a fixed t ∈ [0, T̄ (ϑ, ϑ0)), ϑ ′′ is chosen to satisfy t < T̄ (ϑ ′′, ϑ0).

Proof Proceeding as in the proof of Proposition 4.2, by means of the estimate in (5.21) we
prove the convergence of the series in (5.24). This allows also for proving (5.26), which
yields the existence of the solution of (5.27) in the form given in (5.28). The uniqueness is
proved analogously as in the case of Proposition 4.2. The stated positivity of ut follows from
(5.24) and (5.22). ��
Corollary 5.3 For a given C > 0, we let in (5.27) and (5.28) ϑ0 = logC and u0(η) =
C |η0|+|η1|. Then the unique solution of (5.27) is

ut (η) = C |η0|+|η1| exp {t (α0|η0| + α1|η1|)} . (5.29)

This solution can naturally be continued to all t > 0 for which it lies in Kϑ(t) with

ϑ(t) = logC + t max
i=0,1

αi . (5.30)

Proof In view of the lack of interaction in (5.20), the equations for particular u(n)
t take the

following (decoupled) form

d

dt
u(n)
t (x1, . . . , xn0 ; y1, . . . , yn1)

=
n0∑

i=1

∫

Rd
a0(x − xi )u

(n)
t (x1, . . . , xi−1, x, xi+1, . . . , xn0 ; y1, . . . , yn1)dx

+
n1∑

i=1

∫

Rd
a1(y − yi )u

(n)
t (x1, . . . xn0 ; y1, . . . yi−1, y, yi+1, . . . yn1)dy, n ∈ N2,
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which for the initial translation invariant u0 yields (5.29). ��
5.3 The Global Solution

As follows from Proposition 4.2 and Lemma 5.1, the unique solution of the problem (3.13)
with k0 ∈ K�

ϑ0
lies in K�

ϑ for t ∈ (0, T (ϑ, ϑ0)). At the same time, for fixed ϑ0, T (ϑ, ϑ0) is
bounded, see (4.7). This means that the mentioned solution cannot be directly continued to
all t > 0. In this subsection, by a comparison method we prove that, for t ∈ (0, T (ϑ, ϑ0)), kt
satisfies (3.14) which is then used to get the continuation in question, cf. Corollary 5.3. Recall
that the operators Qi

y , i = 0, 1, were introduced in (2.22) and the cone K+
ϑ was defined in

(3.5).

Lemma 5.4 For each k0 ∈ K�
ϑ0

and t ∈ (0, T (ϑ, ϑ0)), kt := S1ϑϑ0
k0 has the property

kt − e(τ iy; ·)Qi
ykt ∈ K+

ϑ , i = 0, 1, (5.31)

holding for Lebesgue-almost all y ∈ Rd .

Proof Clearly, it is enough to show that (5.31) holds for i = 0. For a fixed y, we denote

vt,1 = kt − Q0
ykt , vt,2 = [1 − e(τ 0y ; ·)]Q0

ykt .

The proof will be done if we show that, for all G ∈ Bbs(�
2
0) such that G(η) ≥ 0 for λ-almost

all η ∈ �2
0 , the following holds

〈〈G, vt, j 〉〉 ≥ 0, j = 1, 2. (5.32)

Let �, N , and k�,N
0 be as in (5.10), and then k�,N

t be as in (5.11). Next, let v�,N
t, j , j = 1, 2,

be defined as above with kt replaced by k�,N
t . By (5.18) and (5.19) we then get

〈〈G, Q0
yk

�,N
t 〉〉 =

∫

�2
0

G̃(η)k�,N
t (η)λ(dη) (5.33)

=
∫

�2
0

∫

�2
0

G̃(η)R�,N
t (η ∪ ξ)λ(dη)λ(dξ),

where
G̃(η0, η1) :=

∑

ξ⊂η1

e(t0y ; ξ)G(η0, η1 \ ξ).

Furthermore, by (5.33) we get
〈〈
G, Q0

yk
�,N
t

〉〉
=
∫

�2
0

G(η0, η1)

×
∫

�2
0

(∫

�0

e(t0y ; ζ )R�,N
t (η0 ∪ ξ0, η1 ∪ ξ1 ∪ ζ )λ1(dζ )

)
λ(dη)λ(dξ)

=
∫

�2
0

G(η0, η1)

∫

�2
0

⎛

⎝
∑

ζ⊂ξ1

e(t0y ; ζ )

⎞

⎠ R�,N
t (η0 ∪ ξ0, η1 ∪ ξ1)λ(dη)λ(dξ).

(5.34)

By (2.21) it follows that ∑

ζ⊂ξ1

e(t0y ; ζ ) = e(τ 0y ; ξ1).
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We apply this in the last line of (5.34) and obtain
〈〈
G, Q0

yk
�,N
t

〉〉
=
∫

�2
0

G(η0, η1)

∫

�2
0

e(τ 0y ; ξ1)R
�,N
t (η0 ∪ ξ0, η1 ∪ ξ1)λ(dη)λ(dξ)

≤
∫

�2
0

G(η0, η1)

∫

�2
0

R�,N
t (η0 ∪ ξ0, η1 ∪ ξ1)λ(dη)λ(dξ)

=
〈〈
G, k�,N

t

〉〉
, (5.35)

which after the limiting transition as in (5.12) yields (5.32) for j = 1. For the same G, we
set Ḡ = e(τ 0y ; ·)G. Then by (2.21) and the second line in (5.35) we get

〈〈
Ḡ, Q0

yk
�,N
t

〉〉
≤
〈〈
G, Q0

yk
�,N
t

〉〉
,

which after the limiting transition as in (5.12) yields (5.32) for j = 2. ��
Lemma 5.5 Let C > 0 be such that the initial condition in (3.13) satisfies kμ0(η) = k0(η) ≤
C |η0|+|η1|. Then for all t < T (ϑ, ϑ0) with ϑ0 = logC and any ϑ > ϑ0, the unique solution
of (3.13) given by the formula

kt = S1ϑϑ0
(t)k0 (5.36)

satisfies (3.14) for λ-almost all η ∈ �2
0 .

Proof Take any ϑ > ϑ0 and fix t < T (ϑ, ϑ0); then pick ϑ1 ∈ (ϑ0, ϑ) such that t <

T (ϑ1, ϑ0). Next take ϑ2, ϑ3 ∈ R such that ϑ1 < ϑ2 < ϑ3 and t < T̄ (ϑ3, ϑ2). The latter
is possible since T̄ depends only on the difference ϑ3 − ϑ2, see (5.23). For the fixed t ,
kt ∈ K�

ϑ1 ↪→ K�
ϑ3 , and hence one can write

ut = S̄ϑ3ϑ∗(t)u0

= (u0 − k0) + kt +
∫ t

0
S̄ϑ3ϑ2(t − s)Dϑ2ϑ1ksds, (5.37)

where
Dϑϑ ′′ = L̄ϑϑ ′′ − L�

ϑϑ ′′ , Dϑ = L̄ϑ − L�
ϑ ,

and the latter two operators are as in (5.27) and (3.13) respectively. By Lemma 5.1, for s ≤ t ,
ks ∈ K�

ϑ1 . By (2.23), (5.20), and Lemma 5.4 we have that Dϑ2ϑ1 : K�
ϑ1 → K+

ϑ2 . Then by

Lemma 5.2 the third summand in the second line in (5.37) is in K+
ϑ3 which completes the

proof since u0 − k0 is also positive. ��
Proof of Theorem 3.5. According to Definition 3.3 and Remark 3.4 the map [0,+∞) 
 t �→
kt ∈ K� is the solution in question if: (a) kt (∅,∅) = 1; (b) for each t > 0, there exists ϑ ′′ ∈ R

such that kt ∈ Kϑ ′′ and d
dt kt = L�

ϑ kt for each ϑ > ϑ ′′.
Let k0 and C > 0 be as in the statement of Theorem 3.5. Set ϑ∗ = logC . Then, for

ϑ = ϑ∗ + δ(ϑ∗), see (4.7) and (4.8), kt as given in (5.36) is a unique solution of (3.13) in
Kϑ on the time interval [0, T (ϑ, ϑ∗)). By (2.23) we have

(
d

dt
kt

)
(∅,∅) = (L�kt )(∅,∅) = 0,

which yields that kt (∅,∅) = k0(∅,∅) = 1. By Lemma 5.1 kt ∈ K�
ϑ , and hence kt is the

solution in question for t < τ(ϑ∗). According to Lemma 5.5 kt lies in Kϑ(t) with ϑ(t) given
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in (5.30). Fix any ε ∈ (0, 1) and then set s0 = 0, s1 = (1 − ε)τ (ϑ∗), and ϑ∗
1 = ϑ(s1).

Thereafter, set ϑ1 = ϑ∗
1 + δ(ϑ∗

1 ) and

kt+s1 = S1
ϑ1ϑ∗

1
(t)ks1 , t ∈ [0, τ (ϑ∗

1 )).

Note that for t such that t + s1 < τ(ϑ∗),

kt+s1 = S1
ϑ1ϑ∗(t + s1)k0,

see (4.16). Thus, by Lemmas 5.1 and 5.5 the map [0, s1 + τ(ϑ∗
1 )) 
 t �→ kt ∈ Kϑ(t) with

kt =
{
S1
ϑ∗
1ϑ∗(t)k0 t ≤ s1;

S1
ϑ1ϑ∗

1
(t − s1)ks1 t ∈ [s1, s1 + τ(ϑ∗

1 ))

is the solution in question on the indicated time interval. We continue this procedure by
setting sn = (1 − ε)τ (ϑ∗

n−1), n ≥ 2, and then

ϑ∗
n = ϑ(s1 + · · · + sn), ϑn = ϑ∗

n + δ(ϑ∗
n ). (5.38)

This yields the solution in question on the time interval [0, s1 + · · · + sn+1] which for
t ∈ [s1 + · · · + sl , s1 + · · · + sl+1], l = 0, . . . , n, is given by

kt = S1
ϑ lϑ∗

l
(t − (s1 + · · · + sl))ksl .

Then the global solution in question exists whenever the series
∑

n≥1

sn = (1 − ε)
∑

n≥1

τ(ϑ∗
n )

diverges. Assume that this is not the case. Then by (5.30) and (5.38) we get that both (a) and
(b) ought to be true, where (a) supn≥1 ϑ∗

n =: ϑ̄ < +∞ and (b) τ(ϑ∗
n ) → 0 as n → +∞.

However, by (4.7) and (4.8) it follows that (a) implies τ(ϑ∗
n ) ≥ τ(ϑ̄) > 0, which contradicts

(b). ��

6 The Proof of Theorems 3.8 and 3.9

6.1 The Kinetic Equations

Here we prove Theorem 3.8. For a continuous function

[0,+∞) 
 t �→ �t = (�0,t , �1,t ) ∈ L∞(Rd → R2),

cf. (3.16), let us consider

F0,t (�)(x) = �0,0(x)e
−α0t +

∫ t

0
e−α0(t−s)(a0 ∗ �0,s)(x) exp

[−(φ0 ∗ �1,s)(x)
]
ds

+
∫ t

0
e−α0(t−s)�0,s(x)

(
a0 ∗

[
1 − exp

[−(φ0 ∗ �1,s)
] ])

(x)ds,

F1,t (�)(x) = �1,0(x)e
−α1t +

∫ t

0
e−α1(t−s)(a1 ∗ �1,s)(x) exp

[−(φ1 ∗ �0,s)(x)
]
ds

+
∫ t

0
e−α1(t−s)�1,s(x)

(
a1 ∗

[
1 − exp

[−(φ1 ∗ �0,s)
] ])

(x)ds. (6.1)
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For a given T > 0, let CT stand for the Banach space of continuous functions

[0, T ] 
 t �→ (�0,t , �1,t ) ∈ L∞(Rd → R2), (6.2)

with norm
‖�‖T = max

i=0,1
sup

t∈[0,T ]
{‖�i,t‖L∞e−αi t

}
. (6.3)

Let also C+
T denote the set of all positive � ∈ CT , i.e., such that �i,t (x) ≥ 0 for all i = 0, 1,

t ∈ [0, T ], and Lebesgue-almost all x . By means of Fi,t introduced in (6.1) we then define
the map

CT 
 � �→ F(�) = (F0(�), F1(�)) ∈ CT
such that the values of Fi (�) are given in the right-hand sides of (6.1). By direct inspection
one concludes that both Fi,t (�), i = 0, 1, are continuously differentiable in t , and the function
as in (6.2) is a positive solution of (3.15) on [0, T ] if and only if it solves in C+

T the following
fixed-point equation

� = F(�). (6.4)

Let C > 0 be an arbitrary number and �i,0, i = 0, 1, be as in (3.18) and (6.1). Set

ΔC = {� ∈ C+
T : (�0,t , �1,t )|t=0 = (�0,0, �1,0), and ‖�‖T ≤ C}. (6.5)

By (6.1) one readily gets that F : C+
T → C+

T . Let us show that

∀C > 0 F : ΔC → ΔC . (6.6)

For � ∈ ΔC , from the first equation in (6.1) one gets

‖F0,t (�)‖L∞ ≤ Ce−α0t + 2α0e
−α0t

∫ t

0
eα0s‖�0,s‖L∞ds

≤ Ceα0t , t ∈ [0, T ]. (6.7)

Similarly, ‖F1,t (�)‖L∞ ≤ Ceα1t , which proves (6.6). To solve (6.4) we apply the Banach
contraction principle. To this end we pick T > 0 such that F is a contraction on (6.5). We
do this as follows. For �, �̄ ∈ ΔC , like in (6.7) we obtain

‖F0,t (�) − F0,t (�̄)‖L∞ ≤ 2α0e
−α0t

∫ t

0
eα0s‖�0,s − �̄0,s‖L∞ds

+2α0e
−α0t

∫ t

0
eα0s‖�̄0,s‖L∞‖�1,s − �̄1,s‖L∞ds.

≤ eα0t‖� − �̄‖T
(
1 − e−2α0t

[
1 − 2

3
C
(
e3α0t − 1

)])
.

The corresponding estimate for ‖F1,t (�) − F1,t (�̄)‖L∞ (with eα1t ) can be obtained in the
same way. Then according to (6.3) F is a contraction on ΔC whenever C > 0 and T satisfy

e3αT < 1 + 3

2C
, α := max

i=0,1
αi . (6.8)

This yields the existence of the unique positive solution of (3.15) on the time interval [0, T ],
where T is defined in (6.8) by the initial condition (�0,0, �1,0). This solution lies in ΔC and
hence

‖�i,T ‖L∞ ≤ eαT C, i = 0, 1. (6.9)
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Now we consider the problem (3.15) for �
(1)
i,t = �i,T+t , i = 0, 1, where � is the solution just

constructed. For this new problem, by (6.9) we have

‖�(1)
i,0 ‖L∞ ≤ C1 := eαT C, i = 0, 1.

Thenwe repeat the above construction and obtain the solution �(1) on the time interval [0, T1]
with T1 > 0 satisfying, cf. (6.8),

e3αT1 = 1 + 1

C
e−αT < 1 + 3

2C
e−αT = 1 + 3

2C1
.

By further repeating this construction we obtain �
(n)
i,t = �i,T+T1+···+Tn−1+t , i = 0, 1, t ∈

[0, Tn], where the sequence {Tn}n∈N is defined recursively by the condition

e3αTn = 1 + 1

C
exp

[−α (T + T1 + · · · + Tn−1)
]
, n ∈ N. (6.10)

Thus, the global solution in question exists if the series
∑

n Tn is divergent. Assume that this
is not the case. Then the right-hand side of (6.10) is bounded from below by some b > 1,
uniformly in n. This yields that Tn ≥ log b/3α > 0, holding for all n ∈ N, which contradicts
the summability of {Tn}n∈N and thus completes the proof of Theorem 3.8.

6.2 The Scaling Limit

For each k and λ-almost all η ∈ �2
0 , we have that the following holds, cf. (2.22) and (4.3),

(Q0
y,εk)(η0, η1) → (Q0

y,0k)(η0, η1)

:=
∫

�0

k(η0, η1 ∪ ξ)e(−φ0(y − ·); ξ)λ(dξ), ε → 0,

(Q1
y,εk)(η0, η1) → (Q1

y,0k)(η0, η1)

:=
∫

�0

k(η0 ∪ ξ, η1)e(−φ1(y − ·); ξ)λ(dξ), ε → 0.

Thus, for each k and λ-almost all η ∈ �2
0 ,

(Lε,�k)(η) → (Vk)(η), as ε → 0,

where, cf. (2.23), (4.3)

(Vk)(η0, η1) =
∑

y∈η0

∫

Rd
a0(x − y)(Q0

y,0k)(η0 \ y ∪ x, η1)dx

−
∑

x∈η0

∫

Rd
a0(x − y)(Q0

y,0k)(η0, η1)dy

+
∑

y∈η1

∫

Rd
a1(x − y)(Q1

y,0k)(η0, η1 \ y ∪ x)dx

−
∑

x∈η1

∫

Rd
a1(x − y)(Q1

y,0k)(η0, η1)dy. (6.11)

Like above, for each ϑ ′′ ∈ R and k ∈ Kϑ ′′ , both Qi
y,0k satisfy the estimates as in (3.8) and

(3.9). Then for ϑ, ϑ ′′ ∈ R such that ϑ ′′ < ϑ , ‖Vk‖ϑ is bounded by the right-hand side of

123



J Dyn Diff Equat (2018) 30:637–665 663

(3.11). This allows one to define the operators Vϑ and Vϑϑ ′′ analogous to L�
ϑ and L�

ϑϑ ′′ ,
respectively. For �t being the solution as in Theorem 3.8, kπ�t

satisfies

d

dt
kπ�t

= Vϑϑ ′′kπ�t
, t > 0, (6.12)

where ϑ ′′ ∈ R is such that kπ�t
∈ Kϑ ′′ , see (3.18), and ϑ > ϑ ′′ is arbitrary. This can be

checked by direct calculations based on (6.11) and (3.15). Moreover, if we set C = ‖�0‖∞,
see (3.17), then kπ�t

satisfies (3.14)with thisC , which follows from (3.18). Thus, byCorollary
5.3 we conclude that kπ�t

∈ Kϑ(t) for all t > 0.

The proof of Theorem 3.9 Let ϑ∗ be as assumed. As mentioned above, we then have that
kπ�t

∈ KϑT for all t ∈ [0, T ] with ϑT := ϑ∗ + αT and T such that

T < τ(ϑ∗ + αT ). (6.13)

The latter is possible since the function ϑ �→ τ(ϑ) is continuous and τ(ϑ∗) > 0, see (4.7).
Since the inequality in (6.13) is strict, we can also pick ϑ1 > ϑT such that T < τ(ϑ1).
Thereafter, we set ϑ = ϑ1 + δ(ϑ1), cf. Remark 4.1. For q0,ε with the assumed property, let
qt,ε be the solution of (4.5) in Kϑ . In view of (6.12), we then have

qt,ε − kπ�t
=
∫ t

0
Sε
ϑϑ1

(t − s)
(
Lε,�

ϑ1ϑT
− Vϑ1ϑT

)
kπ�s

ds (6.14)

+Sε
ϑϑ∗(t)

[
q0,ε − kπ�0

]
, t ∈ [0, T ].

Since ϑ �→ τ(ϑ) is decreasing, by (6.13) we have that T < τ(ϑ∗). By (4.13) we then get

∀t ∈ [0, T ] ‖Sε
ϑϑ∗(t)‖ ≤ T (ϑ, ϑ∗)

T (ϑ, ϑ∗) − T
,

which yields that the second term in (6.14) tends to zero uniformly on [0, T ]. Also by (4.13)
we have

∥∥∥∥
∫ t

0
Sε
ϑϑ1

(t − s)
(
Lε,�

ϑ1ϑT
− Vϑ1ϑT

)
kπ�s

ds

∥∥∥∥
ϑ

≤ ‖kπ�T
‖ϑT τ(ϑ1) log

T (ϑ, ϑ1)

T (ϑ, ϑ1) − T
‖Lε,�

ϑ1ϑT
− Vϑ1ϑT ‖. (6.15)

To estimate the latter term we set

Wi
y,εk = Qi

y,0k − Qi
y,εk, i = 0, 1, y ∈ Rd . (6.16)

By means of the inequality, cf. the proof of Theorem 4.6 in [3],

|b1 · · · bn − a1 · · · an | ≤
n∑

i=1

|bi − ai |
∏

j �=i

max{|a j |; |b j |},

and
0 ≤ ψ(t) := (t − 1 + e−t )/t2 ≤ 1/2, t ≥ 0,
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we obtain, cf. (3.8),
∣∣∣W 0

y,εk(η0, η1)
∣∣∣ ≤ ε‖k‖ϑ ′′ exp

(
ϑ ′′|η0| + ϑ ′′|η1|

)

×
∫

�0

(
eϑ ′′|ξ | ∑

x∈ξ

[φ0(y − x)]2 ψ (εφ0(y − x))
∏

z∈ξ\x
φ0(y − z)

)
λ(dξ)

≤ (ε/2)φ̄0‖k‖ϑ ′′ exp
(
ϑ ′′|η0| + ϑ ′′|η1|

)

×
∫

�0

(
|ξ |eϑ ′′|ξ | ∏

z∈ξ

φ0(y − z)

)
λ(dξ)

= (ε/2)φ̄0〈φ0〉 exp
(
〈φ0〉eϑ ′′) ‖k‖ϑ ′′ exp

(
ϑ ′′|η0| + ϑ ′′|η1| + ϑ ′′) .

(6.17)

Likewise,
∣∣∣W 1

y,εk(η0, η1)
∣∣∣ ≤ (ε/2)φ̄1〈φ1〉 exp

(
〈φ1〉eϑ ′′) ‖k‖ϑ ′′ exp

(
ϑ ′′|η0| + ϑ ′′|η1| + ϑ ′′) .

(6.18)

Next, by (2.23), (6.11), and (6.16) we have

(Lε,� − V )k(η0, η1) =
∑

y∈η0

∫

Rd
a0(x − y)(U 0

y,εk)(η0 \ y ∪ x, η1)dx

−
∑

x∈η0

∫

Rd
a0(x − y)(U 0

y,εk)(η0, η1)dy

+
∑

y∈η1

∫

Rd
a1(x − y)(U 1

y,εk)(η0, η1 \ y ∪ x)dx

−
∑

x∈η1

∫

Rd
a1(x − y)(U 1

y,εk)(η0, η1)dy. (6.19)

Here we use the following notations

(U 0
y,εk)(η0, η1) = e(τ 0y,ε; η1)(Q

0
y,εk)(η0, η1) − (Q0

y,0k)(η0, η1),

(U 1
y,εk)(η0, η1) = e(τ 1y,ε; η0)(Q

1
y,εk)(η0, η1) − (Q1

y,0k)(η0, η1).

Then, cf. (6.16),
∣∣∣(U 0

y,εk)(η0, η1)
∣∣∣ ≤

∣∣∣(W 0
y,εk)(η0, η1)

∣∣∣ + εφ̄0|η1|
∣∣∣(Q0

y,0k)(η0, η1)
∣∣∣ ,

∣∣∣(U 1
y,εk)(η0, η1)

∣∣∣ ≤
∣∣∣(W 1

y,εk)(η0, η1)
∣∣∣ + εφ̄1|η0|

∣∣∣(Q1
y,0k)(η0, η1)

∣∣∣ .

Now by (3.8), (3.9), (6.17), (6.18), and (6.19) we get
∣∣(Lε,� − V )k(η0, η1)

∣∣ ≤ εα‖k‖ϑ ′′ exp
[
ϑ ′′(|η0| + |η1|)

]
exp

(
ceϑ ′′)

×
(
2|η0||η1|

(
φ̄0 + φ̄1

) + eϑ ′′ (
φ̄0〈φ0〉|η0| + φ̄1〈φ1〉|η1|

) )

Like in obtaining (3.11) we then get from the latter

‖Lε,�
ϑ1ϑT

− Vϑ1ϑT ‖ ≤ εΦ(ϑ1, ϑT ),
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where Φ(ϑ1, ϑT ) > 0 depends on the choice of ϑ1, ϑT and on the model parameters only,
and may be calculated explicitly. Then the use of the latter estimate in (6.15) completes the
proof. ��
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