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Abstract
We study a multidimensional hyperbox packing with one active bin. The items (d-
dimensional hyperboxes of edge length not greater than 1) arrive one by one. Each item
must be packed online into a hypercube bin of edge 1 and 90◦-rotations are allowed.
If it is impossible to pack an item into an active bin, we close the bin and open a new
active bin to pack that item. In this paper, we present a 3.5d -competitive as well as a
12 ·3d -competitive online d-dimensional hyperbox packing algorithm with one active
bin.

Keywords Online algorithms · Bin packing · Multidimensional · One-space bounded

Mathematics Subject Classification 68W27

1 Introduction

A finite sequence S of items is given. When all the items of S are accessible, the
packing method is called offline. When items arrive one by one and each item that has
arrived must be packed into a bin and cannot be moved thereafter, the packing method
is called online. In the online version of packing a crucial parameter is the number of
bins available for packing, i.e., active bins. It is natural to expect a packing method to
be less efficient with fewer number of active bins. Online packing methods are further
divided into two classes: unbounded spacewhen no restriction on the number of active
bins occurs and t-space bounded with the maximum of t active bins at the same time.
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In this paper we consider an online version of packing with only one active bin,
i.e., a 1-space bounded model. Each item of the sequence S is packed into the active
bin. When the packing is not possible, the bin is closed and is never used again. A new
active bin is opened.

Let A(S) be the number of bins used by the algorithm A to pack a sequence S.
Let OPT (S) be the number of bins used to pack items from S with the most efficient
offline method, i.e., the minimum number of bins containing whole sequence S. The
asymptotic competitive ratio for algorithm A is defined as:

R∞
A = lim

n→∞ sup
S

{
A(S)

OPT (S)
| OPT (S) = n

}
.

The online bin packing is a classical problem studied for more than 40 years. One-
dimensional bin packing was first investigated in Ullman (1971) (see also Johnson
et al. 1974), where the performance ratio of the First Fit algorithm was proved to be
17/10. The analysis of the Next Fit algorithm can be found in Johnson (1974), where
the author shows that the performance ratio is not greater than 2. Revised First Fit
presented in Yao (1980) has performance ratio 5/3. The article also gives the lower
bound 3/2 of one dimensional online bin packing. The improvement of this result can
be found in Brown (1979) and Liang (1980), who proved that the lower bound is not
smaller than 1.53635. Currently the best know lower bound is 1.54014, proved by van
Vliet (1992).

Concerning the two-dimensional online bin packing algorithms Coppersmith and
Raghavan (1989) presented the algorithm with competitive ratio 3.25. The result was
later improved by Csirik et al. (1993) to 3.0625 and by Han et al. (2001) to 2.7834.
Further improvements can be found in Seiden and van Stee (2003), where the authors
show the upper bound 2.66013 of the asymptotic competitive ratio. The upper bound
currently stands at 2.5545 (see Han et al. 2011).

One can also consider general bounded space packing methods, where the number
of active bins is finite, but not specified. Lee and Lee (1985) presented the Harmonic
algorithm with competitive ratio not greater than 1.63597. Ramanan et al. (1989)
showed that the upper bound can be improved to 1.61217 and gave the lower bound
1.58333. Seiden (2002) further improved the upper bound to 1.58889. The best know
upper bound 1.5813 is proved in Heydrich and van Stee (2016).

In optimal algorithms (Harmonic algorithm and its improvements)when the asymp-
totic competitive ratio approaches the optimal value, the number of active bins diverges
to infinity. It is hard to expect to use this result in practical applications. Thus a ques-
tion arises: What asymptotic competitive ratio can we achieve when the number of
active bins is bounded above by a given (small) natural number? This question was
addressed by Woeginger (1993) whose Simplified Harmonic 6-space bounded online
algorithm has competitive ratio beneath 17/10.

Different types of items in the sequence S can be considered. In d-dimensional bin
packing problem a bin is a unit hypercube and each item of S is a hyperbox of edge
lengths not greater than 1. Items can be rotated by 90◦ in any plane defined by arbitrary
two of the item’s edges.
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For d-dimensional hyperbox packing Epstein and van Stee (2005) gave a (Π∞)d -
competitive space bounded algorithm, where Π∞ ≈ 1.69103 . . . is the competitive
ratio of the one-dimensional harmonic algorithm, see Lee and Lee (1985). Algorithms
with only one active bin and 2-dimensional items were presented for the first time in
Zhang et al. (2010b),where amethodwith competitive ratio 8.84was given.Apaper by
Zhang et al. (2010a) gives an online packing algorithmwith competitive ratio 5.155 for
rectangles and a 4.5-competitive algorithm for squares. Another result was obtained
by Zhang et al. (2014) with competitive ratios 5.06 and 4.3 achieved for squares.
Also a paper by Grzegorek and Januszewski (2015) presents a 3.883-competitive
online square packing algorithm. In an article by Januszewski and Zielonka (2018)
the authors describe a 4.84-competitive 1-space bounded 2-dimensional bin packing
algorithm and present the lower bound of 3.246 for the competitive ratio. In a paper
by Januszewski and Zielonka (2016) the reader can find a 3.8165-competitive 2-
space bounded algorithm for rectangles and a 3.6-competitive model for squares.
A 3-space bounded 3.577-competitive square packing method is given in Grzegorek
and Januszewski (2014). The d-dimensional case of one-space bounded hyperbox
packing is considered in Zhang et al. (2013). The authors give an online algorithmwith
competitive ratio equal to 4d . Two-space bounded hypercube packingwith competitive
ratio 32/21·2d is discussed in Zhao and Shen (2015). Online packing of d-dimensional
hypercubes with total volume not greater than (n + 1)2−d into n unit d-dimensional
hypercubes is considered in Zielonka (2016).

We focus on the problem of online packing of d-dimensional hyperboxes into one
active bin. The paper contains two algorithms D1(d) and D2(d): the first method is
a 3.5d -competitive algorithm and for d < 17 works better than the second algorithm
having the 12 · 3d competitive ratio, which is a significant improvement of the ratio
4d from Zhang et al. (2013). Both algorithms are defined inductively from lower
dimensions to higher. The inductive step goes two dimensions back and thus the core
of the algorithm is the method of packing rectangles on the front wall of the unit
hypercube. Since in three-dimensions this looks a lot like drawers we decided to name
it: the drawer method. As a base, for d = 1 both algorithms take the Next Fit algorithm
and for d = 2 the 1-space bounded algorithm from Zhang et al. (2014).

2 Intuitions on how algorithms work

We give several examples of packing some ‘easy’ items to introduce the reader to
general rules of packing used by both algorithms. Since it is difficult to handle items
of completely arbitrary size, we decided to assign two-dimensional items into cate-
gories, called λ-rectangles (and their analogue r -rectangles for the second algorithm)
depending on lengths of their edges. λ-rectangles also differ in size, however there are
only countably many of them.

Each drawer is a hyperbox with d − 2 edges of length 1 and two edges forming a
λ-rectangle. Thus to define a drawer we only need to provide the size of the front wall,
i.e., lengths of the two smallest edges of the hyperbox. An algorithm for choosing the
right place for a drawer is described in Sect. 3: Λ1-method for packing λ-rectangles.
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Fig. 1 The packing of the first two items. a A bin with the first packed item. b A bin with two packed items
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Fig. 2 21 hyperboxes 1d−2 × 1/7 × 2/7

During packing, there are no empty drawers in the bin (a hypercube of edge 1).
A new drawer is opened only when an item arrives and there is no place to pack it
in matching drawers opened earlier. Two smallest edges of the item are taken into
account and a drawer with appropriate front wall is created. The item is packed into
the new drawer immediately. The rest of the bin is not divided into drawers until a
need for a specific drawer occurs.

In the following examples λ = 2/7. We chose such λ to balance the average
packing ratio of big and small (see Sect. 4 for the definitions) hyperboxes for the
D1(d)-algorithm.

In Examples 1–3 each drawer is entirely packed because the items are as big as
drawers. Examples 4–6 could picture an actual situation where incoming items are of
arbitrary size and do not fill entire drawers.

Example 1 The packing of 21 congruent hyperboxes 1d−2 × 1/7 × 2/7, see Figs. 1
and 2. Front walls of the hyperboxes are λ-rectangles 1/7× 2/7. Upon arrival of each
hyperbox a new drawer of opened. Each item is packed into an individual drawer.
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Fig. 3 42 hyperboxes 1d−3 × 1/2 × 1/7 × 2/7
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Fig. 4 42 hyperboxes 1d−2 × 1/14 × 2/7

Example 2 The packing of 42 congruent hyperboxes 1d−3 × 1/2 × 1/7 × 2/7, see
Fig. 3. Each drawer is packed with two items.

Example 3 The packing of 42 congruent hyperboxes 1d−2 × 1/14 × 2/7, see Fig. 4.
Front walls of the hyperboxes are λ-rectangles. For each item an appropriate drawer
is created and the item is packed into it.

The following examples are for d = 3.

Example 4 The packing of 21 congruent boxes 0.6 × 0.1 × 0.2, see Fig. 5. In this
example lengths of edges of the front wall of each box satisfy: 1/14 < 0.1 < 1/7 and
1/7 < 0.2 < 2/7. If we let H = 0.6× 0.1× 0.2, then the smallest λ-rectangle P(H)

containing the front wall of H (see Sect. 4 for precise definitions) is 1/7 × 2/7. For
each item a new drawer with front wall P(H) is opened. Each item is packed into an
individual drawer.

Example 5 The packing of 42 congruent boxes 0.4×0.1×0.2, see Fig. 6. This example
is a mix of Examples 2 and 4. If we let H = 0.4 × 0.1 × 0.2, then the smallest λ-
rectangle P(H) containing the front wall of H (see Sect. 4 for precise definitions) is
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Fig. 5 21 boxes 0.6 × 0.1 × 0.2
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Fig. 6 42 boxes 0.4 × 0.1 × 0.2

1/7× 2/7. Items are packed into drawers 1× 1/7× 2/7. It is possible to fit two items
in one drawer, thus each drawer is packed with two boxes 0.4 × 0.1 × 0.2.

Example 6 The packing of 56 boxes: 26 boxes 0.45×0.1×0.25 (we name them thick)
and 30 boxes 0.35× 0.06× 0.2 (we name them slim), see Fig. 7. The order of arrival
of items is the following: 8 thick boxes, 24 slim boxes, 14 thick boxes, 6 slim boxes
and 4 thick boxes.

Two types of drawerswere created. Since 1/7 < 0.25 < 2/7 and 1/14 < 0.1 < 1/7
each thick box is packed into a drawer with the front wall 1/7× 2/7, two thick boxes
per drawer. Since 1/7 < 0.2 < 2/7 and 1/28 < 0.06 < 1/14 each slim box is packed
into a drawer with the front wall 1/14 × 2/7, again two slim boxes per drawer.

3 31-method for packing �-rectangles

Let λ > 0 and let k be a non-negative integer. A λk-unit is a rectangle with height
λ/2k and width λ/2k+1. A basic unit is λ0-unit. See Fig. 8.

For basic units we consider rectangles with side ratio 1:2. It makes possible to pack
a square in a union of two such rectangles. During packing basic units are divided into
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Fig. 7 26 boxes 0.45 × 0.1 × 0.25 and 30 boxes 0.35 × 0.06 × 0.2
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Fig. 8 λ-units and λ-rectangles

smaller rectangles. Every division creates four congruent rectangles, each one being
similar to a basic unit.

Consider a square I = 1× 1. For ε > 0 the square I is divided into two rectangles
Iε = 1× (1− ε) and Tε = 1× ε. The rectangle Tε will be used for packing big items,
while Iε—for small items (definitions can be found in Sect. 4).

Small items are packed into basic units λ/2×λ and to obtain high packing ratio, we
wish to fit in Iε as many basic units as possible. Of course, we also want to divide the
whole Iε , therefore the widths of basic units in one row must sum up to 1. For D1(d)-
algorithm the following values are sufficient: ε = 1/7 and λ = 2/7. The rectangle Iε
(called B1 in this case) with edges 1× (1− 1/7) = 3.5λ × 3λ is divided into 21 basic
units λ/2 × λ.

Suppose we pack rectangles R1, R2, . . . with side lengths smaller than or equal to
2/7 into B1. For each Ri we find the smallest λ-rectangle containing Ri (the area of
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Fig. 9 The rectangle B1
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Fig. 10 The division of a
λk−1-unit into four λk -units
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this λ-rectangle is smaller than the area of four Ri ’s). Then this λ-rectangle (along
with Ri inside) is packed into B1.

In the next section we will pack d-dimensional hyperboxes into d-dimensional
drawers. The first stage is finding the proper drawer: since we consider only front
walls (of the hyperbox and of the drawer) it is exactly the same as packing rectangles
with side lengths smaller or equal to 2/7 into B1. That is why the method of packing
λ-rectangles into B1 is crucial in D1(d)-algorithm.

We decided to describe the general case with an arbitrary λ, since some of the
reasoning is used again in Sect. 5 for λ = 1/3.

Denote by B1 a rectangle 3.5λ×3λ divided into twenty one basic units numbered
with natural numbers in the order showed on Fig. 9. During the packing process basic
units will be divided into smaller units. When a λk−1-unit (for k ≥ 1) numbered with
q is partitioned into four λk-units, these λk-units are numbered from 4q − 3 to 4q as
on Fig. 10.

Let λ-rectangle be a rectangle of width λ j = λ/2 j and height λi = λ/2i for
some 0 ≤ i ≤ j . λ-max is a square of side length λ (see Fig. 8). A unit is called empty,
if its interior has an empty intersection with any packed λ-rectangle.

�1-method of packing λ-rectangles into B1

1. A λ-rectangle of height λ and width less then λ is packed as much to the left as
possible into the lowest indexed basic unit in B1 that has enough empty space.

2. λ-max is packed into the union of two consecutive, empty, lowest indexed basic
units. Clearly, λ-max cannot be packed into units 7 and 8 or into units 14 and 15.

3. A λ-rectangle of height λi = λ/2i , i ≥ 1 that is not a square is packed as much
to the left as possible into the lowest indexed λi -unit and, obviously, with enough
empty space.
If there is no such unit, find the greatest k ≤ i such that there is an empty λk-unit.
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Fig. 11 Packing items into basic units 1–7 by Λ1-method. Numbers indicate the order in which the items
arrive

From among empty λk-units choose the lowest indexed one and then divide it into
four λk+1-units. If λk+1 > λi , then the lowest indexed λk+1-unit is divided again
into four smaller units. The division is repeated until a λi -unit is created. Now
the λ-rectangle is packed into the lowest indexed λi -unit as much to the left as
possible.

4. A λ-rectangle that is a square of side length λi , i ≥ 1, is packed, if possible, into
two empty λi -units, that were created through the division of one λi−1-unit.
If there are no such units the division of a bigger unit is conducted as described in
the previous case. Finally a λ-rectangle is packed into two lowest indexed λi -units
(such that the union of these units is a square).

Example 7 Figure 11 illustratesΛ1-method. The first λ-rectangle, by Rule 1, is packed
into the first basic unit asmuch to the left as possible. The second λ-rectangle is packed
byRule 3: it must be packed into aλ1-unit. These units are created through the division,
see Fig. 10, solely from empty units, thuswe cannot take the first basic unit. The second
basic unit is divided and the second item is packed into it. The third item is packed by
Rule 1 and so is the fourth: we look for a basic unit with enough empty space. The
fifth item is λ-max, therefore by Rule 2 it is packed into the union of two consecutive,
empty, lowest indexed basic units. To pack the sixth item we use Rule 3: a division
of an empty, lowest indexed (which would be 6 in this example) λ1-unit is conducted
and the item is packed. The seventh item can be fitted into the first basic unit (Rule
1). The eighth λ-rectangle is packed by Rule 4 into two empty λ1-units contained in
the second basic unit. Since after this packing there is no empty λ1-unit left to pack
the ninth item, we perform a new division (Rule 3). Enough empty space for the tenth
item is only in a new, empty basic unit. The last, eleventh item is packed by Rule 4
into freshly created λ3-units from the lowest indexed λ2-unit.

λ-rectangles shown on Fig. 11 can be front walls of drawers with (d − 2) edges of
length 1 (see Sect. 4).

Lemma 1 Let k ≥ 3 and let a λ-rectangle of width smaller then λ be packed into the
unit number k in B1. The empty space in units numbered from 1 to k is smaller than
7λ2/6.

Proof First, we will show that the empty space in all units that are partially packed is
smaller than 2

3λ
2.
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λi

λjn+1
bn+1b1 b2 bn

Fig. 12 Units of height λi

Let i ≥ 0. Consider all units of height λi (and width 1
2λi ) into which an item of

height λi was packed. Let bn+1 be the last such unit. From among remaining units
(different from bn+1) we choose units b1, b2, . . . , bn that are not entirely packed (see
Fig. 12). Let R ji be an itemwith the smallest width λ ji (and of height λi ) packed into bi
for i = 1, . . . , n + 1. The width of empty space in bn is smaller than λ jn+1 , otherwise
R jn+1 can be packed into this unit. This implies that λ jn < λ jn+1 (a rectangle of width
smaller than λ jn+1 was packed into bn). Since the width of empty space in bn must be
a multiple of λ jn (the width of bn as well as the width of each item packed into bn is
a multiple of λ jn ), it follows that the width of empty space in bn is not greater than
λ jn+1 − λ jn . For the same reason the width of empty space in bn−1 is not greater than
λ jn − λ jn−1 . Repeating this argument, we get that the sum of widths of empty space
in all b1, b2, . . . , bn is not greater than

λ jn+1 − λ jn + λ jn − λ jn−1 + · · · + λ j2 − λ j1 < λ jn+1 .

The empty space in bn+1 is not greater than the area of this unit (λ2i /2) minus the area
of R jn+1 . Consequently, the empty space in all units b1, . . . , bn+1 (of height λi ) is
less than

λ jn+1 · λi + 1

2
λ2i − λ jn+1 · λi = 1

2
λ2i .

Finally, the empty space in partially packed units of all heights is not greater than

∑
i≥0

1

2
λ2i = 1

2
· λ2

∑
i≥0

1

4i
= 1

2
λ2 · 4

3
= 2

3
λ2.

Entirely packed units do not add anything to the empty space, therefore they are
omitted.

Now, we will calculate the number of empty units of all sizes. There is no empty
basic unit, otherwise it would be used for packing. Smaller units are created during
the division to pack smaller items. At each step four units are created, but at least one
unit is immediately used either for the next division or for packing. Thus at most 3
units of height smaller than λ can be empty. This gives
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3 ·
∑
i≥1

1

2
λ2i = 3

2
λ2 ·

∑
i≥1

1

4i
= 1

2
λ2.

The empty space in all basic units numbered from 1 to k is less than

2

3
λ2 + 1

2
λ2 = 7

6
λ2.

�	
Lemma 2 Let R be λ-max. If R is packed into B1 into the union of two consecutive
units numbered k − 1 and k, where 2 ≤ k ≤ 21 and, obviously, k 
= 8 as well as
k 
= 15, then the empty space in units 1 to k is not greater than

– 13λ2/6, for k ∈ {16, 18, 19, 20, 21}
– 5λ2/3, for k ∈ {9, 11, 13},
– 7λ2/6, for k ∈ {2, 3, 4, 5, 6, 7, 10, 12, 14, 17}.
Moreover, if there is not enough space to pack λ-max into B1, then the empty space in
B1 is smaller than 8λ2/3.

Proof Bottom row, 2 ≤ k ≤ 7
If R is packed in the bottom row, there are no empty basic units preceding R, thus by
Lemma 1 we get that the empty space is not greater than 7λ2/6.

Middle row, 9 ≤ k ≤ 14

Case M1 R is packed into units 8–9. Use Lemma 1 or the case above to show that
when unit 7 is

– occupied by a λ-rectangle, then the empty space is at most 7λ2/6,
– empty, then unit 6 is not empty (otherwise R can be packed into the union of two
consecutive units 6 and 7). Empty space is at most

7

6
λ2 + 1

2
λ2 = 5

3
λ2.

Case M2 R is packed into units 9–10. Unit 8 contains a smaller λ-rectangle, thus by
Lemma 1 the empty space in units 1 to 10 is not greater than 7λ2/6.

Case M3 R is packed into units 10–11 or 12–13. If R is packed into units 12–13
and unit 11 does not contain λ-max, then the empty space is smaller then 7λ2/6. If
units 10–11 contain λ-max , then consider the contents of unit 9. If there is a smaller
λ-rectangle use Lemma 1 (7λ2/6 of the empty space), otherwise use Case M1. The
empty space does not exceed 5λ2/3.

Case M4 R is packed into units 11–12 or 13–14. Use the similar reasoning as in the
Case M3. By Lemma 1 and Case M2 the empty space does not exceed 7λ2/6.

Upper row, k ≥ 16

Case U1 λ-max is packed into units 15–16.
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ad−1

ad

H

ad

ad−1 H−

Fig. 13 H and H−

– If unit 14 contains a λ-rectangle, then by Lemma 1 or Case M4 there is at most
7λ2/6 empty space.

– If unit 14 is empty, then unit 13 is not empty. It contains either λ-max (CaseM3) or
a smaller λ-rectangle. Consequently, the empty space is at most 5λ2/3+ λ2/2 =
13λ2/6.

Case U2 λ-max is packed into units 16–17. Unit 15 must be packed with a smaller
λ-rectangle. By Lemma 1 the empty space is less than 7λ2/6.

Case U3 λ-max is packed into two consecutive units from 17–21. Use Lemma 1 or
Case U1 or Case U2. The empty space is less than 13λ2/6.

Case E: There is not enough space to pack λ-max into B1. The worst case is when
unit 21 is empty. Empty space in B1 does not exceed 13λ2/6 + λ2/2 = 8λ2/3. �	

4 First drawer algorithm

Let λ = 2/7. In this section a drawer algorithm D1(d)with the asymptotic competitive
ratio not greater than 3.5d is presented.

The value of λwas chosen to ensure that the average packing ratios of big and small
items were similar to each other and were both not smaller than (2/7)d .

The ratio of packing big items is of the form c · λd , thus smaller λ gives smaller
packing ratio.On the other hand, ifλ is greater than2/7, then Iε contains less basic units.
Moreover the volume of open drawers (in the proof of Theorem 1 it is showed to be
bounded from above by 8λ2/3) and the empty space (see Lemmas 1 and 2) increases.
The average occupation in closed drawers would be smaller and consequently the
packing ratio of small items is less than (2/7)d .

Each hyperbox H is rotated to satisfy

a1 ≥ · · · ≥ ad−2 ≥ ad ≥ ad−1,

where a j is the length of the j th edge of H (see Fig. 13, left).
IfW is a hyperbox [v1, w1]× · · · × [vd , wd ], i.e.,W = {(x1, . . . , xd) : v1 ≤ x1 ≤

w1, . . . , vd ≤ xd ≤ wd}, then by the front wall of W we mean the set of its points

123



Journal of Combinatorial Optimization (2019) 37:1011–1044 1023

H1

P (H1)

H1 is of type (0, 1)

H2

P (H2)

H2 is of type (0, 2)

H3

P (H3)

H3 is of type (1, 2)

Fig. 14 Hyperboxes Hi and their λ-rectangles P(Hi )

with x1 = v1, . . . , xd−2 = vd−2. Without loss of generality we can assume that the
active bin is [0, 1]d . Let B1(d) = [0, 1]d−1 × [0, 6/7]. Obviously, the front wall of
B1(d) is the set of its points with x1 = · · · = xd−2 = 0.

A hyperbox with ad > λ is called big, otherwise it is called small. Note that big
hyperboxes fulfill a1 ≥ · · · ≥ ad−2 ≥ ad > λ, while small hyperboxes satisfy
ad−1 ≤ ad ≤ λ.
For each small hyperbox H , let P(H) be the smallest λ-rectangle containing the

front wall of H . There are integers i and j such that the height of P(H) equals
λ/2i , the width of P(H) equals λ/2 j and moreover λ/2i+1 < ad ≤ λ/2i and
λ/2 j+1 < ad−1 ≤ λ/2 j , see Fig. 14. We say then that H is of type (i, j).

Using the division of B1, the hyperbox B1(d) can be divided into 21 hyperboxes
1 × · · · × 1 × 1/7 × 2/7 that will be called basic drawers or drawers (see Fig. 17).
During the packing process each drawer can be divided into smaller drawers, i.e.,
hyperboxes of edges 1× · · · × 1× λ/2 j × λ/2i called (i, j)-drawers. As described
above, the front wall of any (i, j)-drawer is a rectangle λ/2 j × λ/2i and B1 is the
front wall of B1(d).

Drawers are created for packing items: there can be drawers of different sizes and
many drawers of the same size, however at most one drawer of a fixed size is open at
each stage of the packing process. Moreover, any two (open or closed) drawers have
disjoint interiors. For example, if we treat the numbered rectangles on Fig. 11 as the
front walls of all drawers used for the packing, then drawers with numbers 2, . . . , 10
are open while the drawer with number 1 must be closed (its size is equal to the size
of the drawer with number 4). Let us add that the proper drawer for a hyperbox with
1/7 < ad−1 ≤ ad ≤ 2/7 is the union of two adjacent basic drawers (see 5 on Fig. 11).

Since the D1(d)-algorithm is defined inductively two dimensions back, for d = 1
and d = 2 we use some already known algorithms. The exact method of packing is not
crucial, we only need to achieve a certain average occupation. For d = 1, we chose the
Next Fit algorithm as the D1(1)-algorithm, i.e., we pack any item into the active bin as
much to the left as it is possible. Clearly, the average occupation in each bin is greater
than 1/2, however any other method with the average occupation greater than 1/3.5 is
also suitable. For d = 2, as D1(2)-algorithm we use the method described in Zhang
et al. (2014) (average occupation greater than 0.197). Again, the reader can take any
other 1-space bounded packing algorithm with the average occupation greater than
1/(3.5)2 ≈ 0.0816.

123



1024 Journal of Combinatorial Optimization (2019) 37:1011–1044

Assume that d ≥ 3.
If H = a1 × · · · × ad−2 × ad−1 × ad is a hyperbox such that a1 ≥ · · · ≥ ad−2 ≥

ad ≥ ad−1, then H− = a1 ×· · ·× ad−2 × ad × ad−1 is the image of H in rotation of
90◦ on the plane xd−1xd (see Fig. 13). By the height h of H− we mean ad−1. Clearly,
h = min(a1, . . . , ad) and h is the length of the edge of H− parallel to the xd -axis.

If W is a hyperbox [v1, w1] × · · · × [vd , wd ], then by the the top of W we mean
the set of its points with xd = wd . The (d − 2)-dimensional bottom of W is the set
of its points with xd = vd and xd−1 = vd−1. We say that W is packed along the
right edge of the bin [0, 1]d provided W is contained in the bin and there is pd ∈
[0, 1 − wd + vd ] such that W contains the segment with endpoints (0, . . . , 0, 1, pd)
and (0, . . . , 0, 1, pd + wd − vd).

D1(d)-algorithm of packing a hyperbox H

– If H is big, it is rotated to obtain H−. Then H− is packed into the active bin from
top to bottom along the right edge of the bin (see Fig. 17) provided the interior
of the packed hyperbox is disjoint with those basic drawers that already contain
small hypercubes. If that is not possible, we close the active bin and open a new
active bin to pack H .

– If H is a small hyperbox of type (i, j), then

– it is packed into the open (i, j)-drawer in such a way that the (d − 2)-
dimensional bottom of H is packed into the (d − 2)-dimensional bottom of
the drawer (i.e., is packed into the (d − 2)-dimensional unit hypercube) using
the D1(d − 2)-algorithm.

– If there is not enough empty space in the open (i, j)-drawer to pack H , close
this drawer. A new drawer is opened in the following way. First, determine the
proper place Q ⊂ B1 to pack the rectangle P(H) into B1 by Λ1-method.

• If the drawer with the front wall equal to Q is disjoint with the interior of
any packed big hypercube, then the new open (i, j)-drawer is the one with
the front wall equal to Q. The rectangle Q ⊂ B1 is treated as a λ-rectangle
packed into B1 in Λ1-method. The hyperbox H is packed into this open
(i, j)-drawer in such a way that the (d − 2)-dimensional bottom of H is
packed into the (d − 2)-dimensional bottom of the drawer by using the
D1(d − 2)-algorithm.

• Otherwise we close the active bin and open a new active bin to pack H .

Three examples presented below illustrate the packing method.

Example 8 A list of 3-dimensional boxes H1 = (1/7 + ε, 1/14 + ε, 1/7 + ε),
H2 = (1, ε, 1/7 + ε), H3 = (1/7 + 2ε, 1/14 + 2ε, 1/7 + 2ε), H4 = (1, 2ε, 1/7 +
2ε), . . . , H240, for sufficiently small ε > 0 is packed as shown on Figs. 15 and 16
(on these figures ε equals 1/70).

The front wall of H1 is a rectangle (1/14 + ε) × (1/7 + ε) and F1 = P(H1) =
1/7 × 2/7 is the smallest λ-rectangle containing this rectangle. We open a drawer
with the front wall F1, i.e., the first basic drawer. H1 is packed into this drawer in the
place [0, 1/7 + ε] × [0, 1/14 + ε] × [0, 1/7 + ε].

Let j be the greatest integer such that ε ≤ λ/2 j and let ζ = λ/2 j . The front wall
of H2 is a rectangle ε × (1/7 + ε) and F2 = P(H2) = ζ × 2/7 is the smallest
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H1
H3

H5

H7

H2 H4

H6

F1 F4 F6

first two basic units of B1

H7

H5

H3
H1

first drawer

H2 H4 H6

(a) (b) (c)

Fig. 15 Example 8, first drawer after packing H1, H3, H5 and H7 and next three drawers created in the
second basic drawer for packing: a H2, b H4, c H6

Fig. 16 Example 8, the bin

λ-rectangle containing this rectangle. Since there is no open drawer with front wall
F2, we open a new drawer [0, 1] × [1/7, 1/7 + ζ ] × [0, 2/7] and pack H2 in the
place [0, 1] × [1/7, 1/7 + ε] × [0, 1/7 + ε].

H3 is packed similarly to H1. The front wall of H3 is a rectangle (1/14 + 2ε) ×
(1/7 + 2ε) and F3 = P(H3) = 1/7 × 2/7 . There is an open drawer with the front
wall F3 = F1 (the first basic unit) with enough empty space, so we pack H3 in the
place [1/7 + ε, 2/7 + 3ε] × [0, 1/14 + 2ε] × [0, 1/7 + 2ε].

The front wall of H4 is a rectangle 2ε × (1/7+2ε) and F4 = P(H4) = 2ζ ×2/7
is the smallest λ-rectangle containing this rectangle. There is no open drawer with
front wall F4, therefore we open such drawer [0, 1]× [1/7+ ζ, 1/7+ 3ζ ]× [0, 2/7]
and pack H4 in the place [0, 1]× [1/7+ ζ, 1/7+ ζ +2ε]× [0, 1/7+ ε]. We continue
to pack odd items into the first drawer as long as it is possible. Then a new drawer will
be opened for them. Each even item is packed into an individual drawer of height λ.
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xd−1

1/7 1

xd

2/7

4/7

6/7

1

x1

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

Fig. 17 Drawers in B1(d), d = 3

Note that ε is relatively large on Fig. 15. However, if ε is sufficiently small, for
example smaller than10−6, then H2, H4, . . . , H240 are packed into individual drawers
of height λ created in the second basic drawer. Six items H1, H3, H5, H7, H9, H11 are
packed into the first basic drawer.Moreover,we pack six items H12k−23, H12k−21, . . . ,

H12k−13 into the kth basic drawer, for k = 3, 4, . . . , 21. Clearly, H241 = H12·22−23
is the first item that cannot be packed into the active bin by D1(d)-algorithm.

Example 9 The following example is a precise description of the packed items showed
on Fig. 17. Let d = 3 and let H1 = · · · = H5 = 0.9×0.1×0.2, H6 = 0.05×0.05×
0.05, H7 = 0.17 × 0.1 × 0.17, H8 = 0.49 × 0.13 × 0.13, H9 = 0.2 × 0.1 × 0.23,
H10 = 1 × 0.6 × 0.05 , H11 = 0.9 × 0.34 × 0.08 and H12 = 0.95 × 0.51 × 0.05.

For i = 1, . . . , 5, each item Hi is packed into the (0, 1)-drawer (i.e., the basic
drawer) number i in the place [0, 0.9]×[(i−1)/7, (i−1)/7+0.1]×[0, 0.2]. The item
H6 is packed into the drawer 1×1/14×1/14 with the front wall contained in the unit
number 6 in the place: [0, 0.05]×[5/7, 5/7+0.05]×[0, 0.05], H7 is packed into the
drawerwith the frontwall contained in the unit number 7 so that its (d−2)-dimensional
bottom (the segment of length 0.17) is packed into the (d − 2)-dimensional bottom of
the drawer (the segment of length 1) by the D1(1)method, i.e., we pack H7 in the place
[0, 0.17] × [ 6/7, 6/7+ 0.1] × [0, 0.17]. Since P(H8) 
= P(H6), the item H8 cannot
be packed in one drawer with H6. Notice that P(H8) = P(H7) as well as P(H9) =
P(H7) and since there is enough space in drawer with the front wall contained in the
unit number 7 we do not open a new drawer for H8 or H9. According to the Next
Fit algorithm H8 is packed in [0.17, 0.17 + 0.49] × [6/7, 6/7 + 0.13] × [0, 0.13]
and H9 in [0.66, 0.66 + 0.2] × [6/7, 6/7 + 0.1] × [0, 0.23]. The big item H10 is
packed in [0, 1]× [1−0.6, 1]× [1−0.05, 1] (along the right edge of the bin, i.e., the
segment with endpoints (0, 1, 0.95) and (0, 1, 1) is contained in this box), H11 in
[0, 0.9] × [1− 0.34, 1] × [0.95− 0.08, 0.95] and H12 in [0, 0.95] × [1− 0.51, 1] ×
[0.87 − 0.05, 0.87].
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Example 10 Assume that d = 5 and that the (d − 2)-dimensional bottoms of hyper-
boxes Ui (for i = 1, . . . 12) are boxes Hi described in Example 9. Let the length of
the 4th and the 5th edge of each Ui be equal to 0.01, i.e., U1 = 0.9 × 0.1 × 0.2 ×
0.01 × 0.01, . . . , U12 = 0.95 × 0.51 × 0.05 × 0.01 × 0.01.

Since 0.01 < 2/7 all these hyperboxes are small items. Let U13 be a big item of
the size 0.4 × 0.4 × 0.4 × 0.4 × 0.1.

All small items U1, . . . ,U12 are packed into the first drawer 1× 1× 1× 1/56×
1/56 with the front wall contained in the first unit so that the (d − 2)-dimensional
bottoms of Ui (the boxes Hi ) are packed into the (d − 2)-dimensional bottom of
the drawer (the unit cube) as in Example 9. For instance, U8 is packed in the place
[0.17, 0.66] × [6/7, 6/7 + 0.13] × [0, 0.13] × [0, 0.01] × [0, 0.01], U11 is packed
in [0, 0.9]× [0.66, 1]× [0.87, 0.95]× [0, 0.01]× [0, 0.01]. The only big itemU13 is
packed in [0, 0.4]×[0, 0.4]×[0, 0.4]×[0.6, 1]×[0.9, 1] along the right edge of the
bin, i.e., the segment with endpoints (0, 0, 0, 1, 0.9) and (0, 0, 0, 1, 1) is contained
in U13.

Theorem 1 The asymptotic competitive ratio for the D1(d)-algorithm is not greater
than 3.5d .

Proof We show that the average occupation in each bin is greater than

σd = (2/7)d .

The proof is inductive.
For d = 1 the average occupation in each bin is greater than 1/2 > 2/7, for d = 2

(see Zhang et al. 2014) it is not smaller than 0.197 > (2/7)2.
Let d ≥ 3. Assume that the statement holds in each dimension n ∈ {1, 2, . . . , d −

1}.
Denote by σ(l) the total volume of items packed into the lth bin Bl . To prove that

the average occupation in each bin is greater than σd it suffices to show that either
σ(l) > σd or σ(l) plus the volume of the first item that cannot be packed into Bl is
greater than 2σd (consequently, σ(l) + σ(l + 1) > 2σd ).

Consider a few cases depending on the size of the first hyperbox item

Hu = u1 × · · · × ud−1 × ud ,

where u1 ≥ · · · ≥ ud−2 ≥ ud ≥ ud−1, that cannot be packed into Bl . Denote by h
the sum of heights of big items packed into Bl and let hu = ud−1.

By the inductive assumption (for n = d − 2) and by the fact that the smallest
λ-rectangle containing a rectangle R = ad−1 × ad is of area smaller than 4 times the
area of R, the average occupation in any closed (i, j)-drawer Λi, j is greater than

1

4
· σd−2 · vol(Λi, j ),

where vol(D) denotes the d-dimensional volume of a drawer D. The total volume
of items packed in any open drawer can be close to 0. There is at most one open
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(i, j)-drawer for any integers i and j . The total volume of open drawers of height λ is
smaller than λ ·λ+ 1

2λ ·λ+ 1
4λ ·λ+· · · = 2λ2. The sum of volumes of open drawers

of height λ/2 is smaller than 1
2λ · 1

2λ + 1
4λ · 1

2λ + · · · = 1
2λ

2. The total volume of
open drawers of height λ/4 is smaller than 1

4λ · 1
4λ + 1

8λ · 1
4λ + · · · = 1

8λ
2 and so

on. Consequently, the sum of volumes of open drawers is smaller than

2λ2 + 1

2
λ2 + 1

8
λ2 + · · · = 8

3
λ2.

Denote by k ∈ {1, . . . , 21} the greatest integer such that the interior of a drawer
with the front wall contained in the kth basic unit has a non-empty intersection with
a packed small item.

Case 1 Hu is small and h ≤ 1/7.
For amoment we forget about drawers and consider only two-dimensional packing.

We count the sum of areas of λ-rectangles being the front walls of all open and closed
drawers. Let Fu = P(Hu) be the smallest λ-rectangle containing the front wall of Hu

(i.e, containing the rectangle ud−1 × ud ). Clearly, Fu cannot be packed into B1 by
Λ1-method. If Fu is λ-max, then by Lemma 2 the empty space in B1 is smaller than
8λ2/3. Otherwise, k = 21. If a λ-rectangle of width smaller than λ was packed in
the unit number 21, then by Lemma 1 the empty space in B1 is smaller than 7λ2/6.
If a rectangle λ-max was packed in the union of units with number 20 and 21, then
by Lemma 2 the empty space in B1 is smaller than 13λ2/6. This means that the total
area of λ-rectangles packed into B1, i.e., the sum of areas of front walls of all open
and closed drawers, is greater than 21 · 1

2λ
2 − 8

3λ
2 = 47

6 λ2.
Consequently, the total volume of all closed and open drawers is greater than 47

6 λ2.
Since the sum of volumes of open drawers is smaller than 8λ2/3, it follows that the
total volume of closed drawers is greater than 47

6 λ2 − 8
3λ

2 = 31
6 λ2. Hence, total

volume of small items packed into Bl is greater than

1

4
· σd−2 · 31

6
λ2 = 1

4
·
(2
7

)d−2 · 31
6

·
(2
7

)2
>

(2
7

)d = σd .

Case 2 Hu is small and 1/7 < h < 2/7. Clearly, k ≥ 13.
The total volume of big items packed into Bl is greater than h · (2/7)d−1. The total

volumeof open and closeddrawers, byLemma2, is greater than 13· 12λ2− 5
3λ

2 = 29
6 λ2.

The total volume of closed drawers is greater than 29
6 λ2− 8

3λ
2 = 13

6 λ2. Consequently,

σ(l) ≥ 1

4
· σd−2 · 13

6
λ2 + h ·

(2
7

)d−1
>

(13
24

+ 1

7
· 7
2

)
·
(2
7

)d
> σd .

Case 3 h ≥ 2/7. The total volume of big items packed into Bl is greater than

h · (2/7)d−1 ≥ (2/7)d .

In the next cases we will assume that h < 2/7 and that Hu is big.
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1 2 3 4 5

Fig. 18 Case 4

1 2 3 4 5 6 7

8 9 10 11

ud

Fig. 19 Case 5, k = 11

Case 4 Hu is big and k ∈ {1, . . . , 7}. Since h < 2/7 and h + hu > 5/7 (see Fig.
18, where the front wall of the active bin and front walls of big items are shown), it
follows that hu > 3/7 and

σ(l) + σ(l + 1) ≥ vol(Hu) >
(3
7

)d
> 2 ·

(2
7

)d = 2σd .

Case 5 Hu is big and k ∈ {8, . . . , 11}. If h + hu > 5/7, then we proceed as in Case
4. Otherwise, ud > 3/7 and h + hu > 3/7 (see Fig. 19). Since h < 2/7, it follows
that

σ(l) + vol(Hu) > h
(2
7

)d−1 + hu · (ud)
d−1 > h

(2
7

)d−1 +
(3
7

− h
)

·
(3
7

)d−1

=
[
h +

(3
7

− h
)(3

2

)d−1] ·
(2
7

)d−1

≥
[
h +

(3
7

− h
)(3

2

)2] ·
(2
7

)d−1

>
[2
7

+
(3
7

− 2

7

)
· 9
4

]
· 7
2

·
(2
7

)d = 17

8
·
(2
7

)d
> 2σd .
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1 2 3 4 5 6 7

8 9 10 11 12

Fig. 20 Case 6, k = 12

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16

5/7 < ud

Fig. 21 Case 7, k = 16

Case 6 Hu is big and k ∈ {12, 13, 14}. If k = 12, then the total volume of small
items in Bl is, by Lemma 2, greater than

(
12 · 1

2
λ2 − 7

6
λ2 − 8

3
λ2

)
· 1
4
σd−2 = 13

24

(2
7

)d
.

If k ∈ {13, 14}, then the total volume of small items in Bl is greater than

(
13 · 1

2
λ2 − 5

3
λ2 − 8

3
λ2

)
· 1
4
σd−2 = 13

24

(2
7

)d
.

Since h + hu > 3/7 (see Fig. 20),

σ(l) + vol(Hu) ≥ 13

24
·
(2
7

)d + 3

7
·
(2
7

)d−1
> 2 ·

(2
7

)d
.

Case 7 Hu is big and k ∈ {15, 16}. In the case when k = 15, the total volume of
small items in Bl is by Lemma 1 greater than

(
15 · 1

2
λ2 − 7

6
λ2 − 8

3
λ2

)
· 1
4
σd−2 = 11

12

(2
7

)d
>

19

24

(2
7

)d
.
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In the case when k = 16, the total volume of small items inBl is, by Lemma 2, greater
than

(
16 · 1

2
λ2 − 13

6
λ2 − 8

3
λ2

)
· 1
4
σd−2 = 19

24

(2
7

)d
.

If h ≥ 5/84, then

σ(l) >
19

24

(2
7

)d + 5

84
·
(2
7

)d−1 = σd .

If h + hu > 3/7, we proceed as in Case 6. If h + hu ≤ 3/7 and h < 5/84, then

hu > 1/7 − 5/84 = 1/12

and ud > 5/7 (see Fig. 21). This implies that

σ(l) + vol(Hu) >
19

24

(2
7

)d + 1

12
·
(5
7

)d−1
.

It is easy to check that

(5
7

)d−1
>

29

2

(2
7

)d

for d ≥ 3. Consequently,

σ(l) + vol(Hu) >
19

24

(2
7

)d + 1

12
· 29
2

(2
7

)d = 2
(2
7

)d
.

Case 8 Hu is big and k ≥ 17. According to Lemma 2, if k = 17, then the total volume
of small items in Bl is greater than

(
17 · 1

2
λ2 − 7

6
λ2 − 8

3
λ2

)
· 1
4
σd−2 = 7

6

(2
7

)d
> σd .

If k = 18, then the total volume of small items in Bl is greater than

(
18 · 1

2
λ2 − 13

6
λ2 − 8

3
λ2

)
· 1
4
σd−2 = 25

24

(2
7

)d
> σd .

If k ≥ 19, then the total volume of small items in Bl is greater than

(
19 · 1

2
λ2 − 8

3
λ2 − 8

3
λ2

)
· 1
4
σd−2 = 25

24

(2
7

)d
> σd .

The average occupation in each bin is greater than (2/7)d .Consequently, the asymp-
totic competitive ratio of this packing strategy is not greater than

[
(2/7)d

]−1 = 3.5d . �	
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Fig. 22 r -units and r -rectangles

λ/2k−1

λ/2k

4q − 3 4q − 1

4q − 2 4q

Fig. 23 The division of an rk−1-unit into four rk -units

5 32-method for packing r-rectangles

Let λ > 0 and let k be a non-negative integer. An rk-unit is a rectangle of width λ/2k

and height λ/2k+1 (see Fig. 22). A basic r-unit is r0-unit. Of course, an rk-unit is the
image of a λk-unit in rotation of 90◦. In Sect. 3, basic units were divided into smaller
units, and here basic r -units will be divided into smaller r -units in the same way (see
Fig. 23).

Let r -rectangle be a rectangle ofwidth λ/2m and heightλ/2n for some 0 ≤ m ≤ n.
Clearly, each r -rectangle is the image of a λ-rectangle in rotation of 90◦.

LetU be the union of k basic r-units with pairwise disjoint interiors numbered with
natural numbers from 1 to n. When an rk−1-unit (k ≥ 1) numbered with q is divided
into four rk-units, these rk-units are numbered from 4q − 3 to 4q as on Fig. 23.

Consider a sequence of r -rectangles R1, R2, . . . of widths not greater than λ/2.
Note than neither λ × λ nor λ × 1

2λ occurs in the sequence.
We will use the analogue of the Λ1-method of packing (see Fig. 24).

Λ2-method of packing an r -rectangle of width li = λ/2i into U

1. If an r -rectangle is not a square, then it is packed as low as possible into the lowest
indexed ri -unit and, obviously, with enough empty space.
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1
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3
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12 7 9

8
10

11

Fig. 24 Packing items into three basic r -units by Λ2-method. Numbers indicate the order in which the
items arrive

If there is no such unit, find the greatest k ≤ i such that there is an empty rk-unit.
From among empty rk-units choose the lowest indexed one and then divide it into
four rk+1-units. If rk+1 > ri , then the lowest indexed rk+1-unit is again divided
into four smaller units. The division is repeated until an ri -unit is created. Now
the r -rectangle is packed into the lowest indexed ri -unit as low as possible.

2. An r -rectangle that is a square of side length li = λ/2i , i ≥ 1, is packed, if
possible, into two empty ri -units, that were created through the division of one
ri−1-unit. If there are no such units the division of a bigger unit is conducted as
described in the previous case. Finally the r -rectangle is packed into two lowest
indexed r -units.

Example 11 Figure 24 illustratesΛ2-method. Themethod is very similar toΛ1-method
shown in Example 7. The main difference between the two methods is that Λ1 packs
as much to the left as possible, while Λ2 puts items as low as it is possible.

The first r -rectangle, by Rule 1, should be packed into an r1-unit. Since there is
no such unit, the first r0-unit is divided and the r -rectangle is then packed into the
lowest indexed r1-unit. The second item is packed, by Rule 1, into the lowest indexed
(the second) r1-unit as low as possible. The third item is a square thus we use Rule 2
and divide the lowest indexed r1-unit. The third r -rectangle is packed into two lowest
indexed r2-units. The fourth item is packed, by Rule 1, into an r1-unit with enough
empty space. To pack the fifth r -rectangle, we need to perform another division and
the item is packed, by Rule 2, into two r3-units. Items from 6 to 10 are all packed by
Rule 1 into lowest indexed r1-units with enough empty space as low as possible. The
eleventh item is a square and thus is packed by using Rule 2: the third basic r -unit
is partitioned and then the lowest indexed r1-unit is divided again. The eleventh item
is packed into two lowest indexed r2-units. We use Rule 1 for the twelfth r -rectangle
which can be fitted into an r2-unit in the first basic r -unit.

Lemma 3 Assume that a sequence of r-rectangles of width not greater than λ/2 was
packed into U by Λ2-method. Let W ⊂ U be the union of basic r-units into which
an r-rectangle was packed. The empty space in W is smaller than η = 2

3λ
2.

Proof We follow the same steps as in the proof of Lemma 1. However, now there are
no r -rectangles of width λ in the sequence.

First, we calculate the empty space in r-units that are partially packed. Using the
same arguments, we get that the empty space in all r-units of width λi = λ/2i is not
greater than 1

2λ
2
i . Since the sequence of items to pack consists of r -rectangles of width

smaller than λ, there are no partially packed basic r -units (of area λ2/2). Consequently,
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17/18

3λ = 1

R6, R7, . . . , R11

S2 S3

R2
R1

R3, R4, R5

R12

R13

L1

L2

Fig. 25 Λ+
2 -method

the empty space in partially packed r -units is not greater than

∑
i≥1

1

2
λ2i =

∑
i≥1

1

2

( 1

2i
λ
)2 = 1

2
λ2

∑
i≥1

1

4i
= 1

6
λ2.

Note that in the proof of Lemma 1 the empty space in partially packed λ-units was not
greater than 2λ2/3; now in r -units it is not greater than 2λ2/3 − λ2/2 = λ2/6.

The number of empty r-units in Λ2-method is the same as in Λ1-method, thus the
empty space in empty r-units is not greater than 1

2λ
2.

Finally, the empty space in W is less than

1

6
λ2 + 1

2
λ2 = 2

3
λ2.

�	
Let

λ = 1/3,

B2 = [0, 1] × [0, 1]

and let R1, R2, . . . be a sequence of r -rectangles. B2 is partitioned into three rectangles
Sw = [(w − 1)/3, w/3] × [0, 1] for w = 1, 2, 3.
As in Sect. 4 the value of λ is chosen to balance the average ratios of packing of big

and small items. Exactly the same reasoning is behind the choice of the height 17/18
of packing in S1, S2, S3.

We give an outline of the Λ+
2 -packing method presented below. All r -rectangles

are packed from bottom to top.

– Squares 1/3 × 1/3 are packed first into S3 up to the height 17/18, then into S2
up to the height 17/18 (see R2 on Fig. 25).

– r -rectangles of width smaller than 1/3 are packed into basic r -units 1/3 × 1/6,
called containers (see L1 and L2 on Fig. 25), by using the Λ2-method (see
R6, R7, . . . , R11 on Fig. 25).
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– Containers (see L1 and L2 on Fig. 25) are created and other items of width 1/3
that are not squares (as R1, R3, R4, R5, R12, R13 on Fig. 25) are packed first into
S1 up to the height 17/18, then into S2 up to the height 17/18, then into S3.

– If an r -rectangle cannot be packed or a container cannot be created under the height
17/18, it is packed or created in B2 as low as possible.

Let P be the topmost r -rectangle preceding Ri packed in Sw. Denote by bw(i) the
distance between the bottom of Sw and

– the top of P , provided the width of P is 1/3;
– the top of the container into which P was packed, provided the width of P is
smaller than 1/3.

Moreover, bmax(i) = max[b1(i), b2(i), b3(i)], bmin(i) = min[b1(i), b2(i), b3(i)].
For example, on Fig. 25, b1(1) = b2(1) = b3(1) = 0, b1(2) = b1(3) = 1/6, b3(3) =
1/3, b1(4) = 1/4, b1(5) = 7/24, b1(6) = 1/3, b1(7) = · · · = b1(11) = 1/2,
b1(12) = 2/3.

�+
2 -method of packing of an r-rectangle Ri into B2

1. Any item that is packed or any container that is created is placed in a bin in such
a way that its interior is disjoint with any r -rectangle packed so far and with any
container created earlier.

2. If Ri is a square 1/3 × 1/3, then

(a) if b3(i) ≤ 17/18 − 1/3 = 11/18, then Ri is packed into S3 as low as it is
possible, (see the two squares on the right on Fig. 31);

(b) if b3(i) > 11/18 and b2(i) ≤ 11/18, then Ri is packed into S2 as low as it
is possible, (see the middle square 1/3× 1/3 on Fig. 31; now b3(i) = 2/3 >

11/18 and b2(i) = 11/18);
(c) otherwise Ri is packed into Sq as low as it is possible, where q ∈ {1, 2, 3} is

an integer such that bq(i) = bmin(i). If bmin(i) is not unique then Ri is packed
into the lowest indexed bq(i) = bmin(i).

3. If Ri is a rectangle of width wi = 1/3 and height ti ≤ 1/6, then

(a) if b1(i) ≤ 17/18 − ti , then Ri is packed into S1 as low as it is possible, (see
R1, R3, R4, R5, R12, R13 on Fig. 25);

(b) if b1(i) > 17/18 − ti and b2(i) ≤ 17/18 − ti , then Ri is packed into S2 as
low as it is possible, (see the first r -rectangle packed in S2 on Fig. 29);

(c) if b1(i) > 17/18 − ti , b2(i) > 17/18 − ti and b3(i) ≤ 17/18 − ti , then
Ri is packed into S3 as low as it is possible (see the third, i.e., the topmost
r -rectangle packed in S3 on Fig. 29);

(d) otherwise, Ri is packed into Sq as low as it is possible, where q ∈ {1, 2, 3}
is an integer such that bq(i) = bmin(i) (see the patterned r -rectangle that we
try to pack in S2 on Fig. 29). If bmin(i) is not unique then Ri is packed into the
lowest indexed bq(i) = bmin(i).

4. If wi ≤ 1/6, then let U be the union of created containers contained in B2. If
U = ∅, then k = 0. Otherwise denote by k the number of created containers.
These containers are numbered from 1 to k.
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(a) if Ri can be packed intoU by Λ2-method, then we do it (R7, . . . , R10 on Fig.
25 are packed into the existing container L1);

(b) otherwise we open a new container of number k + 1 as follows:
– if b1(i) ≤ 17/18 − 1/6 = 7/9, then L is a basic r-unit packed into S1 as
low as it is possible,
For example, on Fig. 25, if i = 6, then there is no created container; the
new container L1 is opened (R6 is the first item packed into a freshly
created container) in such a place into which a basic r -unit should be
packed, i.e., in S1 as low as it is possible; if i = 11, then R11 cannot
be packed in L1; therefore we create a new container L2 (to pack this
rectangle) in such a place into which a basic r -unit should be packed, i.e.,
in S1 as low as it is possible;

– if b1(i) > 7/9 and b2(i) ≤ 7/9, then L is a basic r-unit packed into S2
as low as it is possible;

– if b1(i) > 7/9 , b2(i) > 7/9 and b3(i) ≤ 7/9, then L is a basic r-unit
packed into S3 as low as it is possible;

– otherwise, L is a basic r-unit packed into Sq as low as it is possible, where
bq(i) = bmin(i);

Ri is packed into U ∪ L by Λ2-method.

6 Second drawer algorithm

In this section a drawer algorithm D2(d) with the asymptotic competitive ratio not
greater than 12 · 3d is presented.

Let λ = 1/3. Each hyperbox H is rotated to satisfy a1 ≥ · · · ≥ ad−1 ≥ ad , where
a j is the length of the j th edge of H . By the height of H we mean ad . By the width
of H we mean ad−1. A hyperbox with ad−1 > λ = 1/3 is called big, otherwise it is
called small. Note that small hyperboxes satisfy ad ≤ ad−1 ≤ 1/3. For each small
hyperbox H , let Qm,n be an r -rectangle 1

3·2m × 1
3·2n such that 1

3·2m+1 < ad−1 ≤ 1
3·2m

and 1
3·2n+1 < ad ≤ 1

3·2n . We say then that H is of type (m, n).
By an (m, n)-drawer we mean a hyperbox

1 × · · · × 1 × 1

3 · 2m × 1

3 · 2n .

Items of type (m, n)will be packed into (m, n)-drawers. For example, item H1 of type
(0, 0) is packed into (0, 0)-drawer, see Fig. 26. The front wall of any (m, n)-drawer is
the rectangle 1

3·2m × 1
3·2n . We can also treat B2 as the front wall of [0, 1]d . Drawers are

created for packing items: there can be drawers of different sizes and many drawers of
the same size, however at most one drawer of a fixed size is open at each stage of the
packing process. Moreover, any two (open or closed) drawers have disjoint interiors.

For d = 1, D2(1)-algorithm is the Next Fit algorithm, i.e., we pack any item into
the active bin as much to the left as it is possible; the average occupation in each bin is
greater than 1/2. For d = 2, as D2(2)-algorithmwe use themethod described in Zhang
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H1=0.6×0.52×0.28×0.28×0.21

front wall (d − 2)-dimensional bottom

0.52

0.28

0.
6

0.28

0.21

a drawer into which H1 is packed

1

1

1

1/3

1/3

packing in a bin

x1

x2

10.48

x3

1

0.72

x4

2/3 1

x5

1/3

1

Fig. 26 d = 5: a drawer 1× 1× 1× 1/3× 1/3 is created in the active bin and an item H1 = 0.6× 0.52×
0.28 × 0.28 × 0.21 is packed into it

et al. (2014); the average occupation in each bin is greater than 0.197. Similarly as for
D1(d)-algorithm, the reader can take any other 1-space bounded packing algorithm
with the average occupation greater than 1/36 for d = 1 or greater than 1/108 for
d = 2.

Assume that d ≥ 3.

D2(d)-algorithm

– If H is big, then it is packed into the active bin from top to bottom along the
right edge of the bin (see Sect. 4 for the definition) provided the interior of the
packed item is disjoint with the union of open and closed drawers. If either H
should be packed so that its interior intersects a drawer that already contains a
small hypercube or there is not enough empty space to pack H , then we close the
active bin and open a new active bin to pack H.

– If H is a small hyperbox of type (m, n), then

– it is packed into the open (m, n)-drawer in such a way that the (d − 2)-
dimensional bottom of H is packed into the (d − 2)-dimensional bottom of
the drawer (i.e., into the (d − 2)-dimensional unit cube) using the D2(d − 2)-
algorithm.

– If there is not enough empty space in the open (m, n)-drawer to pack H , we
close this drawer. A new drawer in opened in the following way. First, use the
Λ+

2 -method to determine the proper rectangle to pack Qm,n into B2, let it be
called Q. The rectangle Q is treated as an r -rectangle packed into B2.
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F1

F3

H4

F5

F6

F7 L1

F9

Fig. 27 D2(d)-algorithm

• If the drawer with the front wall equal to Q is disjoint with the interior of
any packed big item, then the new open (m, n)- drawer is the one with the
front wall equal to Q. The hyperbox H is packed into this open drawer in
such a way that the (d − 2)-dimensional bottom of H is packed into the
(d−2)-dimensional bottom of the drawer using the D2(d−2)-algorithm.

• If either there is no empty space in B2 to pack Qm,n by Λ+
2 -method or

the drawer with the front wall equal to Q intersects the interior of a big
packed item, then we close the active bin and open a new active bin to
pack H.

Example 12 Figure 27 illustrates D2(d)-algorithm.Thefirst three 3-dimensional boxes
H1 = 0.4 × 0.2 × 0.2, H2 = 0.3 × 0.3 × 0.3, H3 = 0.8 × 0.3 × 0.2 are of type
(0, 0) and they are packed into (0, 0)-drawers: items H1 and H2 into the drawer
with the front wall F1 while H3 into the drawer with the front wall F3 (there is not
enough empty space to pack H3 in the drawer with the front wall F1). The next item
is big; H4 = 0.4 × 0.4 × 0.2 is packed at the top of the bin along its right edge.
H5 = 0.9× 0.2× 0.16 is of type (0, 1) and it is packed into the drawer with the front
wall F5. H6 = 0.2× 0.2× 0.1 and H8 = 0.35× 0.25× 0.15 are also of type (0, 1);
they are packed into the drawer with the front wall F6. H7 = 0.13 × 0.1 × 0.1 is of
type (1, 1) and it is packed into the drawer with the front wall F7. This front wall is
contained in the container L1. H9 = 1 × 0.3 × 0.08 is of type (0,2) and it is packed
into the drawer with the front wall F9.

For d ≥ 3 we will also use the notion of b1(i), b2(i), b3(i). B2 is the front wall
of the active bin, thus we can adopt the definitions of bw(i) for higher dimensions.

Theorem 2 The asymptotic competitive ratio for the D2(d)-algorithm is not greater
than 12 · 3d .
Proof We show that the average occupation in each bin is greater than

ϑd = 1

12
·
(1
3

)d
.
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The proof is inductive. For d = 1 the average occupation in each bin is greater
than 1/2 > (1/12) · (1/3), for d = 2, (see Zhang et al. 2014) it is greater than
0.197 > (1/12) · (1/3)2. Assume that d ≥ 3 and that the statement holds in each
dimension n ∈ {1, 2, . . . , d − 1}.

Denote by ϑ(l) the total volume of items packed into the lth bin Bl . To prove that
the average occupation in each bin is greater than ϑd it suffices to show that either
ϑ(l) > ϑd or ϑ(l) plus the volume of the first item that cannot be packed into Bl is
greater than 2ϑd .

Consider a few cases depending on the size of the first hyperbox item

Hu = u1 × · · · × ud−1 × ud

that cannot be packed into Bl .
Denote by ω the sum of volumes of open drawers. There is at most one open

drawer of each size. The total volume of open drawers of width 1/3 is smaller than
1
3 · 1

3 + 1
3 · 1

6 + 1
3 · 1

12 + · · · = 2
9 . The sum of volumes of open drawers of width 1/6 is

smaller than 1
6 · 1

6 + 1
6 · 1

12 + 1
6 · 1

24 + · · · = 2
36 . The total volume of open drawers of

width λ/12 is smaller than 1
12 · 1

12 + 1
12 · 1

24 + · · · = 2
144 and so on. Consequently,

ω <
2

9
+ 2

36
+ 2

144
+ · · · = 2

9
· 4
3

= 8

27
.

By the inductive assumption and by the fact that the smallest r -rectangle containing
a rectangle R = ad−1 × ad is of area not greater than 4 times the area of R, the
average occupation in any closed (m, n)-drawer Lm,n is greater than

1

4
· ϑd−2 · vol(Lm,n).

On Figs. 28, 29, 30 and 31 the front wall of an active bin is shown. We use grey or
patterned rectangles to indicate one of the following things:

– front walls of big items;
– front walls of (0, n)-drawers;
– containers.

For example, on Fig. 28 the fifth and the sixth rectangle in S1 (the left column) can be
either front walls of (0, 1)-drawers or containers as L1 or L2 on Fig. 25. The patterned
rectangle is the front wall of the big item that cannot be packed in the bin.

Denote by h the sum of heights of big items packed into the active bin.
If Hu is big and if h + ud > 1/18 (see Fig. 28), then

ϑ(l) + vol(Hu) >
1

18
·
(1
3

)d−1 = 1

6
·
(1
3

)d = 2ϑd .

In the next cases we will assume that h + ud ≤ 1/18 provided Hu is big.

Case 1 bmax (u) ≤ 17/18 and ud ≤ 1/6.
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7/9

1

17/18S2 S3

Fig. 28 Big items: h + ud > 1/18

7/9

1

1− h

Fig. 29 Case 1

Since bmax (u) ≤ 17/18 (see Fig. 29), we can assume that Hu is small; otherwise
h + ud > 1/18.

The total volume of items packed into an open drawer can be close to 0, thuswe have
to subtract the sum of volumes of open drawers ω < 8/27. Moreover, by Lemma 3,
the area of empty space in B2 is not greater than η = 2

3 ·( 13)2. Therefore the area of the
part of B2 covered by the front walls of open and closed drawers and, consequently,
the volume of all open and closed drawers is greater than

1

3

[
b1(u) + b2(u) + b3(u)

] − η.

Since bw(u) > 1 − h − 1
6 for w = 1, 2, 3, it follows that

ϑ(l) >
(
1 − h − 1

6
− ω − η

)
· 1
4

· ϑd−2 + h ·
(1
3

)d−1

>
(
1 − 1

6
− 8

27
− 2

27

)
· 1
4

· 1

12
·
(1
3

)d−2
> ϑd .

Case 2 bmax (u) ≤ 17/18 and ud > 1/6. Similarly as in Case 1 we can assume
that Hu is small. Since ud−1 ≥ ud > 1/6, by the description of Λ+

2 method, Hu

should be packed into an open (0, 0)-drawer (i.e., drawer whose front wall is a square
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7/9

1

1− h

Fig. 30 Case 2

7/9

1

17/18

Fig. 31 Case 4

1/3 × 1/3). Since it is impossible, there is no open (0, 0)-drawer. This implies that
the total volume of open drawers is smaller than ω − 1

3 · 1
3 .

First assume that at least four (0, 0)-drawers are closed. The total volume of small
items is greater than 4 · 1

9 · 1
4 · ϑd−2 = ϑd .

Now assume that at most three (0, 0)-drawers are closed (see Fig. 30). By b1(u) >
17
18 − 1

6 = 7
9 (at least one item of height not greater than 1/6 was packed into S2 ∪ S3),

by b2(u) > 1 − h − 1
3 as well as by b3(u) > 1 − h − 1

3 we deduce that

ϑ(l) >
[7
9

· 1
3

+ 2
(
1 − h − 1

3

) · 1
3

−
(
ω − 1

9

)
− η

]
· 1
4

· ϑd−2 + h ·
(1
3

)d−1

>
( 7

27
+ 2 · 2

3
· 1
3

− 8

27
+ 1

9
− 2

27

)
· 1
4

· 1

12
·
(1
3

)d−2 = ϑd .

Case 3 bmax (u) > 17/18 and bmin(u) ≥ 7/9. In this case

ϑ(l) >
(
2 · 7

9
· 1
3

+ 17

18
· 1
3

− ω − η
)

· 1
4

· ϑd−2

>
(
2 · 7

9
· 1
3

+ 17

18
· 1
3

− 8

27
− 2

27

)
· 9
4

· 1

12
·
(1
3

)d
> ϑd .
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Case 4 bmax (u) > 17/18 and bmin(u) < 7/9.
If at least four (0, 0)-drawers are closed, then the total volume of small items is

greater than 4 · 1
9 · 1

4 · ϑd−2 = ϑd .
Now assume that at most three (0, 0)-drawers are closed (see Fig. 31). Observe

that at least one small item Rk of height not greater than 1/6 was packed into S2
(otherwise bmax(u) < 17/18). Thus 7/9 < b1(k) ≤ 17/18. Moreover, all small
items packed into S3 have height greater than 1/6. The reason is that if a small item
Rl of height not greater than 1/6 was packed into S3, then 7/9 < b1(l) ≤ 17/18 as
well as 7/9 < b2(l) ≤ 17/18, which is a contradiction with bmin(u) < 7/9 and
bmax(u) > 17/18. Consequently, at least two drawers of height 1/3 were opened into
S3 and b3(u) ≥ 2/3. Moreover, 7/9 ≤ b1(u) < 17/18.

Subcase 4a: A drawer of height smaller than 1/6 (i.e., not greater that 1/12) was
opened in S2. This implies that b1(u) > 17

18 − 1
12 = 31

36 (otherwise this drawer should
be created in S1). Hence

ϑ(l) >
(31
36

· 1
3

+ 17

18
· 1
3

+ 2

3
· 1
3

− ω − η
)

· 1
4

· ϑd−2

>
(31
36

· 1
3

+ 17

18
· 1
3

+ 2

3
· 1
3

− 8

27
− 2

27

)
· 9
4

· 1

12
·
(1
3

)d
> ϑd .

Subcase 4b: No drawer of height smaller than 1/6 was opened in S2. This implies that
b2(u) is a multiple of 1/6 (also b3(u) is a multiple of 1/6).

If bmax(u) = b2(u), then by bmax(u) > 17/18 we deduce that b2(u) = 1. As a
consequence,

ϑ(l) >
(7
9

· 1
3

+ 1 · 1
3

+ 2

3
· 1
3

− ω − η
)

· 1
4

· ϑd−2

>
(7
9

· 1
3

+ 1 · 1
3

+ 2

3
· 1
3

− 8

27
− 2

27

)
· 9
4

· 1

12
·
(1
3

)d = ϑd .

If bmax(u) = b3(u), then b3(u) = 1 and b2(u) ≥ 2/3. Hence

ϑ(l) >
(7
9

· 1
3

+ 2

3
· 1
3

+ 1 · 1
3

− ω − η
)

· 1
4

· ϑd−2 = ϑd .

The average occupation in each bin is greater than (1/12) · (1/3)d . Consequently,
the asymptotic competitive ratio of this packing strategy is not greater than 12 · 3d . �	
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source, provide a link to the Creative Commons license, and indicate if changes were made.
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