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Abstract We study the classical 0–1 knapsack problem with additional restrictions
on pairs of items. A conflict constraint states that from a certain pair of items at most
one item can be contained in a feasible solution. Reversing this condition, we obtain
a forcing constraint stating that at least one of the two items must be included in
the knapsack. A natural way for representing these constraints is the use of conflict
(resp. forcing) graphs. By modifying a recent result of Lokstanov et al. (Proceedings
of the 25th annual ACM-SIAM symposium on discrete algorithms, SODA, pp 570–
581, 2014) we derive a fairly complicated FPTAS for the knapsack problem onweakly
chordal conflict graphs. Next, we show that the techniques of modular decompositions
and clique separators, widely used in the literature for solving the independent set
problem on special graph classes, can be applied to the knapsack problemwith conflict
graphs. In particular, we can show that every positive approximation result for the
atoms of prime graphs arising from such a decomposition carries over to the original
graph. We point out a number of structural results from the literature which can be
used to show the existence of an FPTAS for several graph classes characterized by
the exclusion of certain induced subgraphs. Finally, a PTAS for the knapsack problem
with H-minor free conflict graph is derived. This includes planar graphs and, more
general, graphs of bounded genus. The PTAS is obtained by expanding a general
result of Demaine et al. (Proceedings of 46th annual IEEE symposium on foundations
of computer science, FOCS 2005, pp 637–646, 2005). The knapsack problem with
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forcing graphs can be transformed into aminimization knapsack problemwith conflict
graphs. It follows immediately that all our FPTAS results of the current and a previous
paper carry over from conflict graphs to forcing graphs. In contrast, the forcing graph
variant is already inapproximable on planar graphs.

Keywords Knapsack problem · Conflict graph · Weakly chordal graph · Planar
graph · Graph decomposition

1 Introduction

The classical 0–1 knapsack problem is an NP-hard discrete optimization problem
known to be relatively easy to solve in practice. This pleasant behavior usually changes
as soon as additional constraints are imposed in addition to the standard weight
constraint. In this paper we consider disjunctive constraints on pairs of items as a
structurally simple but highly relevant class of conditions. In particular, we will study
the following two types of restrictions:

– A conflict constraint (negative disjunctive constraint) on a pair of items expresses
an incompatibility between these items. For each conflicting pair, at most one item
can occur in a feasible knapsack solution.

– A forcing constraint (positive disjunctive constraint) enforces that at least one item
from the underlying pair of items has to be included in a feasible solution.

It is natural to represent these conflict and forcing constraints bymeans of an undirected
graphG = (V, E)with |V | = n and |E | = m,where eachvertex corresponds uniquely
to one item and an edge (i, j) ∈ E indicates that items i and j are in a conflict (resp.
forcing) relation.

Introducing the standard knapsack problem K P with n items, each of them with
profit p j and weight w j , j = 1, . . . , n, and a knapsack capacity c [cf. Kellerer et al.
(2004)], we obtain the knapsack problem with conflict graph (KCG) by imposing the
above conflict constraints on the solution of K P .

(KCG) max
n∑

j=1

p j x j (1)

s.t.
n∑

j=1

w j x j ≤ c (2)

xi + x j ≤ 1 ∀ (i, j) ∈ E (3)

x j ∈ {0, 1} j = 1, . . . , n. (4)

It is sometimes also referred to as disjunctively constrained knapsack problem, e.g.
in the first paper dealing with KCG due to Yamada et al. (2002) where a branch-
and-bound algorithm was presented. For more recent work on exact algorithms and
heuristics for KCG seeHifi andOtmani (2012) andHifi et al. (2014) and the references
therein.

Conflict graphs were also considered for many other combinatorial optimization
problems such as bin packing [see e.g.Muritiba et al. (2010); Sadykov andVanderbeck
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(2013)], scheduling problems [see e.g. Even et al. (2009)]. Recently, positive and
negative disjunctive constraintswere considered forminimum spanning tree,matching
and shortest path in Darmann et al. (2011), for matching in Öncan et al. (2013), for
minimum spanning tree in Zhang et al. (2011) and for the maximum flow problem
in Pferschy and Schauer (2013).

A related problem is the knapsack problem with forcing graph (K FG) which was,
to the best of our knowledge, not considered in the literature before. Given a forcing
graph G = (V, E) it follows from KCG by replacing (3) by

xi + x j ≥ 1 ∀ (i, j) ∈ E . (5)

We can also take a different view at these two problems from a graph theoretic
perspective. Clearly, KCG is equivalent to amaximumweight independent set problem
(MW I S) maximizing the sum of p j when an additional weight constraint imposed.
MW I S is known as a famousNP-hard problem and even hard to approximate within
a factor of n1−ε even in the unweighted case with p j = 1 [Håstad (1999)].

A large body of literature exists for identifying special graph classes where MW I S
is still polynomially solvable or allows a positive approximation result. In this paperwe
will proceed in the same direction for KCG, i.e. for MW I S with a budget constraint.

Problem K FG is closely related to a minimum weight vertex cover problem but
with a different objective function. We will come back to this relation in Sect. 5. For
the minimumweight vertex cover problem it is known that no PTAS exists, but various
papers study the approximability on special graph classes. Both independent set and
vertex cover are polynomially solvable on perfect graphs. In contrast, it can be shown
that both KCG and K FG are strongly NP-hard for perfect graphs.

Because of this inherent difficulty of KCG and K FG we concentrate in this paper
on the identification of special graph classes as conflict (resp. forcing) graphs to derive
positive approximation results. In Pferschy and Schauer (2009) we derived FPTASs
for KCG on graphs of bounded treewidth and on chordal graphs. These are both
based on tree structures representing the graph G and dynamic programming. In this
paper we make considerable progress by applying much more complicated methods
to derive approximation results for larger graph classes.

The contributions of this paper are the following:

1. An important generalization of chordal graphs are weakly chordal graphs. It will
be shown in Sect. 2 that KCG still permits an FPTAS on weakly chordal graphs
(andmore generally on all graphs whose relevant potential maximal cliques can be
listed in polynomial time, e.g. P5-free graphs). The underlying technique of this
construction was developed by Fomin and Villanger (2010). It was expanded by
Lokshtanov et al. (2014) who recently gave a polynomial time algorithm for the
weighted independent set problem on P5-free graphs. Note that this technique is
crucial for KCG on weakly chordal graphs since it allows dynamic programming.

2. A general algorithmic strategy for solving difficult optimization problems on
graphs is graph decomposition. A frequently applied pattern (see e.g. the extensive
work by Brandstädt and co-authors) applies modular decomposition followed by
clique decomposition to break down the graph into much smaller and sometimes
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Table 1 Complexity results for KCG and K FG on special graph classes

Graph class KCG K FG

General StronglyNP-hard Feasibility NP-complete

Bounded treewidth FPTAS FPTAS

Chordal FPTAS FPTAS

Weakly chordal FPTAS FPTAS

Planar PTAS, no FPTAS Feasibility NP-complete

Perfect Strongly NP-hard StronglyNP-hard

“benevolent” subgraphs. In fact, there are a number of graph classes for which
special structural properties of the resulting atoms of prime graphs are known. We
will show in Sect. 3 that KCG allows an FPTAS on any graph for which the atoms
of its prime components allow an FTPAS. A number of examples for such graph
classes is described in Sect. 3.3.

3. It is well known that planar graphs allow positive approximation results for vertex
cover and independent set. Therefore, planar graphs are obvious candidates for
seeking further positive results for disjunctively constrained knapsack problems.
Indeed, we show in Sect. 4 that KCG allows a PTAS (but not an FPTAS) for H -
minor free conflict graphs. We will more generally show that a result of Demaine
et al. (2005) can be expanded to guarantee PTASs for a more general class of graph
problems. This result includes KCG on graphs of bounded genus.

4. Considering FCG in Sect. 5 it turns out that all results for an FPTAS carry over
from KCG to K FG by means of a simple transformation. Interestingly, this
analogy breaks down for planar graphs: In fact, even finding a feasible solution
for K FG on planar graphs is strongly NP-complete while there exists a PTAS
for KCG.

Table 1 gives an overview of our main results for KCG and K FG

1.1 Basic definitions

In this section we give some definitions and concepts that are used throughout the
paper. Mostly, we stick to standard notation as it is used in textbooks such as Diestel
(2012).

Definition Upper bound Throughout the paper we will frequently require an upper
bound on the objective function value (1). While for practical applications the quality
of an upper bound is crucial, a trivial bound of P := ∑n

j=1 p j suffices for our
theoretical results.

Definition Neighborhood For a given subset of vertices A, the neighborhood N [A]
contains A and all vertices adjacent to at least one vertex in A (analogous for a single
vertex v we have N [v]) and N (A) := N [A] \ A.
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Definition ab-separator
A set of vertices V ′ ⊂ V is called ab-separator if the vertices a and b belonging to

the same connected component of G are in different components of G \ V ′.

Definition Separator
A set V ′ ⊂ V is a separator if there are vertices a and b in G such that V ′ is an

ab-separator. A separator V ′ is a minimal ab-separator if any proper subset of V ′ is
not an ab-separator in G. A separator V ′ is a minimal separator if there are vertices a
and b in G such that V ′ is a minimal ab-separator.

Definition Tree-decomposition [cf.Diestel (2012), Sec. 12]
Let G = (V, E) be a graph, T a tree, and let V = (VI )I∈V (T ) be a family of vertex

sets VI ⊆ V (G) indexed by the vertices I of T . By capital letters we refer to vertices
from T , whereas by lower case letters we refer to vertices from G. The pair (T,V) is
called a tree-decomposition if it satisfies the following three properties:

1. V (G) = ⋃
I∈T VI ;

2. for every edge e ∈ G there exists I ∈ T such that both ends of e lie in VI ;
3. VI1 ∩ VI3 ⊆ VI2 whenever I2 lies on the path from I1 to I3 in T .

Definition Treewidth
The width of (T,V) is defined as max{|VI | − 1 | I ∈ T }. The treewidth of G is the

smallest width of any tree-decomposition of G.

Note that deciding whether a tree-decomposition of treewidth at most k exists, and
if so, finding such a tree-decomposition (for constant k) can be done in linear time
[cf. Bodlaender and Koster (2008)].

Definition Graphs having a property nearly [cf. Brandstädt and Hoàng (2007)]
For a given graph propertyP a graph is nearlyP , if for all vertices v of G the graph

induced by V without the neigborhood of v, i.e. G[V \ N (v)], fulfills P .

For KCG it is easy to see that any pseudopolynomial algorithm for graphs with
property P will trivially imply a pseudopolynomial algorithm for nearly P graphs. It
suffices to go through all vertices v and determine the best solution including v. Such
a solution consists of the best solution which is compatible with v, i.e. the optimal
solution of KCG for capacity c − w(v) on G[V \ N [v]], which can be computed in
pseudopolynomial time by assumption.

As an example for the above argument, it follows immediately from Pferschy and
Schauer (2009) that KCG allows a pseudopolynomial algorithm and also an FPTAS
for nearly chordal graphs.

The next definition is a variant of the more general definition that can be found in
Pruhs and Woeginger (2007).

Definition Subset selection problem
A subset selection problem is defined by a ground set X with n elements each of

which has associated a positive profit p(x) for x ∈ X and for each subset Y of X it
can be decided in polynomial time whether Y is feasible. Moreover assume that every
instance of the subset selection problem has a feasible solution. Then we are looking
for a feasible subset of X with maximum total profit.
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The following general result about the existence of an FPTAS based on a given
pseudopolynomial algorithm will be applied frequently throughout this paper.

Theorem 1 [Pruhs and Woeginger (2007)] If there exists an exact algorithm for a
subset selection problem with running time polynomial in n and in

∑
x∈X p(x) then

there exists also an FPTAS for this problem.

It is easy to see that KCG belongs to this family of subset selection problems.
Note that it is trivial to find a feasible solution for KCG (take the empty set or any
single item as a solution). However, for K FG on a general forcing graph it is strongly
NP-complete to determine even the existence of a feasible solution: Indeed, given an
arbitrary instance of the minimum vertex cover problem, one could define an instance
of K FG on the same graph with all item weights equal to one. Then there exists a
vertex cover of size at most c iff K FG with capacity c has a feasible solution.

However, the vertex cover problem is polynomially solvable on all graph classes
for which we apply Theorem 1 in this paper. Thus, one can check the feasibility of an
instance in a preprocessing step and restrict K FG to instances with a feasible solution.

2 Weakly chordal conflict graphs

The main goal of this section is to derive an FPTAS for KCG on weakly chordal
graphs, which are a well studied superclass of chordal graphs [e.g. Cameron et al.
(2003); Hayward et al. (2007)]. It is known that weakly chordal graphs are perfect.

A hole is an induced cycle with five (i.e. a C5) or more vertices and an anti-hole is
the complement of a hole. A graph is chordal (also known as triangulated graph) if
it contains neither induced holes nor a C4. In other words, any cycle with more than
three vertices must contain a chord. A graph is weakly chordal if it does not contain
induced holes and anti-holes.

The weighted independent set problemwas polynomially solved onweakly chordal
graphs by Hayward et al. (1989). Their algorithm was later improved by Spinrad and
Sritharan (1995). However these algorithms cannot be adopted to solve the knapsack
problem with conflicts: They perform a sequence of iterations to transform the given
weakly chordal graph into intermediate graphs, which are all weakly chordal, until
finally a clique is obtained. In every transformation step the weight of the maximum
weight independent set of the involved graphs stays the same. Unfortunately the algo-
rithms modify non-optimal independent sets which might represent optimal solution
sets in the disjunctively constrained knapsack problem.

As usual we define a triangulation of a graph G = (V, E) as a chordal supergraph
G ′ = (V, E ∪ E ′) of G, where the edges from E ′ are called fill edges. A minimal
triangulation of G is a triangulation G ′ such that removing any edge from E ′ results
in a non-chordal graph. If there exists a minimal triangulation G ′ such that V ′ ⊆ V
induces a maximal clique in G ′, then V ′ is called a potential maximal clique.

Bouchitté and Todinca (2002) proved that all potential maximal cliques of a graph
can be generated in time that is polynomial in the number of minimal separators of
a graph. Moreover Bouchitté and Todinca (2001) proved that weakly chordal graphs
contain polynomially many minimal separators. Combining these results leads to the
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well known result that weakly chordal graphs contain only a polynomial number of
potential maximal cliques.

Fomin and Villanger (2010) gave an algorithm that finds large induced subgraphs
of bounded treewidth of a graph G which contains only polynomially many potential
maximal cliques. Noting that an independent set has treewidth 0, Lokshtanov et al.
(2014) showed that the algorithmgiven by Fomin andVillanger (2010) can bemodified
in order to solve the weighted independent set problem.

Theorem 2 [Lokshtanov et al. (2014), Proposition1] There is an algorithm that given
as input a vertex weighted graph G on n vertices and m edges, together with a list �
of potential maximal cliques, outputs in time O(|�|n5m) the weight of the maximum
weight independent set I such that there exists a minimal triangulation H of G such
that every maximal clique C of H is on the list � and satisfies |C ∩ I | ≤ 1.

Fomin and Villanger (2010) use minimal triangulations in their dynamic program,
whereas Lokshtanov et al. (2014) use a special tree-decomposition which is related
to the clique tree of a minimal triangulation. We recapitulate their main definitions
and technical prerequisites: let I be an independent set in G. An I -good minimal
triangulation is a minimal triangulation of G such that no vertex of I is incident to
a fill edge. A tree-decomposition (T,X ) of G is called I -sparse if each bag B ∈ X
contains at most one vertex from I (i.e. |I ∩ B| ≤ 1). A rooted tree-decomposition
is simple if no bag B is a subset of any other bag B ′ and for every u, v ∈ V (T )

where v is a descendant of u in T , there exists a component C ∈ C(X (u)) such that
X (v) ⊂ X (u) ∪ C .

The connection between minimal triangulations and simple tree-decompositions
was established by Lokshtanov et al. (2014). They proved that every minimal triangu-
lation has a clique tree that is a simple tree-decomposition and on the other hand that
any simple tree-decomposition of G, whose bags are potential maximal cliques of G,
is a clique tree of a minimal triangulation H of G.

Moreover, they proved that for every independent set I in G there exists a minimal
triangulation which is I -good. With the above statement it follows that for such an I -
goodminimal triangulation there always exists an I -sparse simple tree-decomposition
since all bags of the tree-decomposition aremaximal cliques of the triangulation. Thus,
the following Theorem 3 (quoted from the original source) outputs an independent set
I which solves the weighted independent set problem on G if a complete list of all
potential maximal cliques is given.

Theorem 3 [Lokshtanov et al. (2014), Lemma 16] There is an algorithm that given
as input a vertex weighted graph G on n vertices and m edges, together with a list
� of potential maximal cliques of G, outputs in time O(|�|2n4m) the weight of
the maximum weight independent set I such that there exists an I -sparse simple
tree-decomposition (T,X ) of G such that X (v) ∈ � for all v ∈ V (T ). If no such
independent set exists, the algorithm outputs −∞.

Note that due to the different techniques used, Theorem 2 provides a better running
time than the algorithmofTheorem3.Due to themore accessible techniquewedecided
to follow the approach presented in Lokshtanov et al. (2014) and solve KCG by
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dynamic programming over tree-decompositions on all graph classes whose potential
maximal cliques can be listed in polynomial time.

Let B be a potential maximal clique from the set� of all potential maximal cliques.
We look at B as a graph separator and denote by CB = {C1

B, . . . ,CkB
B } the set of all

connected components of G \ B. The indices 1, . . . , kB are assigned according to
the size of the components with |Ci

B | ≤ |Ci+1
B | and ties are broken arbitrarily. Let

K j
B = ⋃ j

i=1 C
i
B denote the partial union of components. A restriction of the set of

components to those which are fully contained in some given set X ⊆ V is denoted
by CB(X) = {C ∈ CB | C ⊆ X}. The elements of CB(X) are ordered according to
indices given to the elements of CB : If CB(X) = {C1

B(X),C2
B(X), . . . ,CkB (X)

B (X)},
this means that two sets Ci

B(X), Ci+1
B (X) correspond to sets Ci ′

B and C j ′
B from CB

with i ′ < j ′. Note that this ordering is not strictly necessary for the correctness of the
described method but avoids recursive evaluations. Again, the partial union is defined
as K j

B(X) = ⋃ j
i=1 C

i
B(X).

In the following we proceed along the lines and notation layed out in Lokshtanov
et al. (2014). However, our approach is more complicated since it does not suffice to
collect “large” independent sets from subgraphs but the weight and profit values of
any possible subset of the solution has to be kept explicitly for further consideration.

We will introduce a dynamic programming function M = M(B, S, K j
B(X), p)

which takes as arguments a potential maximal clique B ∈ �, a set S ⊆ B which
contains either a single vertex of B or is empty (S represents the potential inclusion of
the associated item into the solution), a partial union K j

B(X) of components separated
by B according to the above definition for some restricting set X ⊆ V , and finally a
profit value p ∈ {0, 1, 2, . . . , P}. M is now a function that returns the weight of the
minimum weight independent set I ⊆ B ∪ K j

B(X) with a profit of p + p(S) such
that I ∩ B = S and the following property of a tree-decomposition: There exists an
I -sparse simple tree-decomposition (T,X ) of G[B ∪ K j

B(X)] such that all bags of
(T,X ) are potential maximal cliques and B is the root vertex of T . If no such I exists,
then M returns ∞.

Nowwe construct a recursion to determine the values of M as follows. For a certain
potential maximal clique B ∈ �, a single candidate vertex represented by S and some
restricting set X we consider the components CB(X) resulting from the separation by
B in increasing order of their size and add them one after the other. In the iteration
appending componentC j

B(X)we split the target profit value p into a part p′ contributed
by vertices (compatible with S) from previous components C1

B(X), . . . ,C j−1
B (X)

which is already summarized in K j−1
B (X) [see (6)] and the complementing part p− p′

contributed by vertices inC j
B(X). So we can split the independent set I corresponding

to the optimal value of M(B, S, K j
B(X), p) into parts I1, . . . , I j where Ii := (I ∩

Ci
B(X)) \ S.

The difficult part arises from considering the connection between C j
B(X) and the

separator B. To allow a recursive evaluation we have to separate alsoC j
B(X). To do so,

we go through all potential maximal cliques B ′ ∈ �whichmay serve as a “connector”
between B and the components of C j

B(X) arising from a separation by B ′ [see (7)].
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At the same time the inclusion of the vertex represented by S has to be kept feasible
also w.r.t. C j

B(X) and the existence of the required tree-decomposition has to be kept
alive.

This leads to a minimization over all potential maximal cliques B ′ ∈ � and all
subsets S′ fulfilling the following properties: (a) B ′ ⊆ B ∪ C j

B(X), (b) N (C j
B(X)) ⊆

B ′, (c) B ′ ∩C j
B(X) �= ∅, (d) |S′| ≤ 1, (e) B ∩ B ′ ∩ S = B ∩ B ′ ∩ S′, (f) G[S ∪ S′] is

independent.
(a)–(c) imply that B ′ serves as a “connector” between B and C j

B(X) whereas (e)
and (f) state the compatibility of S and S′. In fact, for |S| = 1 they only allow the
following two cases: Either S = S′ or (if both are non-empty) S is not in B ′, S′ is not
in B and the corresponding vertices are not adjacent.

With these preliminaries we now state the crucial recursion1.

M
(
B, S, K j

B(X), p
)

= w(S) + min
p′≤p

{
M

(
B, S, K j−1

B (X), p′) − w(S)+ (6)

+ min{B′,S′|(p−p′−p(S′\S))≥0}
{
w(S′ \ S)+ (7)

+ M
(
B′, S′, KkB′ (·)

B′ (C j
B(X)), p − p′ − p(S′ \ S)

)
− w(S′)

}}

(8)

where B′, S′ fulfill (a)–(f)

The initialization for the first component, i.e. K 1
B(X) = C1

B(X), is defined in the
following way:

M
(
B, S, K 1

B(X), p
)

= w(S) + min
{B′,S′|(p−p(S′\S))≥0}

{
w(S′ \ S)+ (9)

+ M
(
B ′, S′, KkB′ (·)

B′ (C1
B(X)), p − p(S′ \ S)

)
− w(S′)

}}

where B ′, S′ fulfill (a)–(f)

Lemma 4 Recursion (6)–(8) with initialization (9) correctly computes the values of
M(B, S, K j

B(X), p) for any given X ⊆ V , ∀p = 0, 1, . . . , P and ∀ j = 1, . . . , KB.

Proof “≤”
For the three parameters p′, B ′ and S′ that minimize the right hand side of (6)–(8),

I j is the independent set of G[C j
B(X) ∪ B ′] consuming a weight of

M
(
B ′, S′, KkB′ (·)

B′ (C j
B(X)), p − p′ − p(S′ \ S)

)

1 The number of components kB (X) in CB (X) for some X will be abbreviated by kB (·).

123



J Comb Optim (2017) 33:1300–1323 1309

and I ′ the independent set of G[B ∪ K j−1
B (X)] consuming a weight of

M
(
B, S, K j−1

B (X), p′)

(if they exist). If one of these weight values is ∞ we are done. We now have to
show that I := I j ∪ I ′ is independent and that there exists an I -sparse simple tree-

decomposition (T,X ) of G[B ∪ K j
B(X)] such that all bags of (T,X ) are potential

maximal cliques and B is the root vertex of T . All pairs of vertices from K j−1
B (X) and

C j
B(X) are independent since they are separated by vertices from B. If I j contains a

vertex from B then by property (e) it must be the vertex in S, hence I is independent.
We also know that there exists an I j -sparse simple tree-decomposition (Tj ,X j ) of

G[C j
B(X) ∪ B ′] such that all bags of (Tj ,X j ) are potential maximal cliques and B ′

is the root vertex of Tj . There also exists an I ′-sparse simple tree-decomposition

(T ′,X ′) of G[B ∪ K j−1
B (X)] such that all bags of (T ′,X ′) are potential maximal

cliques and B is the root vertex of T . We will now merge these two decompositions
into a simple tree-decomposition (T,X ) of G[B ∪ K j

B(X)], where X = X ′ ∪X j : the
new tree structure T results from adding the edge (B, B ′) to the disjoint union of Tj

and T ′. (T,X ) is a tree decomposition because of property (b). It is I -sparse because
of the respective sparseness of (T ′,X ′) and (Tj ,X j ) and property (e). Moreover, it is
simple because both tree-decompositions are simple and property (a) and (c). Hence

M
(
B, S, K j

B(X), p
)

≤ p(I ).

“≥”
Let I be an independent set ofG[B∪K j

B(X)] of weight M
(
B, S, K j

B(X), p
)
such

that I ∩B = S and (T,X ) is an I -sparse simple tree-decomposition ofG[B∪K j
B(X)]

with root bag B, i.e.X (r(T )) = B. ForC j
B(X) there is exactly one child vertex Vj ∈ T

of r(T ) with X (Vj ) ∩ C j
B(X) �= ∅: if there exists another child V ′

j of r(T ) such that

X (V ′
j ) has a nonempty intersection with C j

B(X) we get that also B has to contain an

element of C j
B(X): since (T,X ) is a tree-decomposition all vertices of bags of the sub

tree-decomposition rooted in Vj are separated by B from all vertices of bags of the
sub tree-decomposition rooted in V ′

j .
Denote X (Vj ) as B ′ and I ∩ B ′ as S′. These two sets obviously satisfy conditions

(a) and (c)–(f). Assume that (b) is not satisfied and hence B contains an element v

from N (C j
B(X)) which is not in B ′. Let w ∈ C j

B(X) be a neighbor of v. Denote by
U1, . . . ,Uk all child vertices of Vj ∈ T . We know that v is not in X (Ui ) for any i or
in any of its childs since this would imply that it is also in B. Moreover, w is not in
B, but this already gives a contradiction since there has to be a bag in T containing u
and w.

Let (Tj ,X j ) be the sub tree-decomposition of (T,X ) rooted in B ′ and (T ′,X ′)
the tree-decomposition which results from (T,X ) by removing (Tj ,X j ). Let I j =
I ∩ (B ′ ∪ C j

B(X)) and Ī = I \ I j . Both (Tj ,X j ) and (T ′,X ′) are simple because
of the simplicity of (T,X ) and both are sparse because of the I -sparsity of (T,X ).
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Hence, (Tj ,X j ) is an I j -sparse simple tree-decomposition and (T ′,X ′) is an Ī -sparse
simple tree decomposition. It follows that I j and Ī can be chosen as independent sets
on the left hand side of the equation and thus the “≥” side of the equality follows. ��
Theorem 5 Given the complete list � of all potential maximal cliques of G, KCG
can be solved to optimality in time

O(|�|3 · n4 · P2).

Proof The structural results pointed out above can be utilized as follows: Lokshtanov
et al. (2014) showed that any minimal triangulation of G has a clique tree which is
a simple tree-decomposition of G. The bags of this tree-decomposition are potential
maximal cliques ofG by definition. On the other hand, any simple tree-decomposition,
whose bags are potential maximal cliques of G, is a clique tree of a minimal triangu-
lation of G.

Moreover, Lokshtanov et al. (2014) showed that for any independent set I in G,
and thus also for an optimal solution I ∗ of KCG, there exists a minimal triangulation
which is I -good. It follows that this triangulation has a clique tree which is a simple
tree-decomposition and whose bags are potential maximal cliques of G. Clearly, this
tree-decomposition is also I -sparse.

By evaluating function M we get among all potential maximal cliques B and all
subsets S of cardinality ≤ 1 the maximum profit p∗ such that:

M(B, S, KkB
B (V ), p∗ − p(S)) ≤ c

This function value is attained for an independent set I with total weight≤ c, such that
there exists an I -sparse simple tree-decomposition (T,X ) of G with bags X (v) ∈ �

for all v ∈ V (T ), as stated in Lemma 4. Clearly, this set I is a feasible solution for
KCG.

By definition of M and the above consideration, the independent set I ∗ also con-
tributes such a function value with weight ≤ c and profit p = p(I ∗) for some input
configuration. Thus, taking in M the maximum total profit over all such sets I will
necessarily reach the maximum total profit p∗ = p(I ∗).

To achieve the stated running time complexity we apply a preprocessing step and
calculate for all possible potential maximum cliques B ∈ � all the O(n) components
of C(B), which can be done in O(|�|(m + n)) time by breadth first search. In a next
step we check for all pairs of components whether one of them is a subset of the other
and store the result in a containment matrix of size O(|�|2n2). Since each check can
be done in linear time this takes all together O(|�|2n3) time. In the following we can
use this information to check in constant time if a component is a subcomponent of
another one.

Let us estimate the number of different argument tuples for M : There are |�|
different potential maximal cliques B each of them containing at most n subsets S
with one item. The partial union K j

B(X) is taken over kB(X) ≤ n different values
of j and each of them might be restricted by any of the |�|n different components
X . Multiplying these choices the number of different argument tuples for M can be
roughly bounded by
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O(|�| · n · n · |�|n · P).

The function M is now evaluated for each of these possible argument tuples. This is
done by first sorting all |�|n possible components in increasing order of size. Clearly,
a component of minimum size cannot contain any of the other components properly.
Hence, if a potential maximal clique B induces more than one, say i , components
∈ CB of minimum size we can easily compute M(B, S, Ki

B(C ′), p) for all possible
choices ofC ′. If we now go to components of second smallest size we can compute all
relevant tuples of M relying on the values calculated in the previous step. This process
continues until we reach the components of largest size.

Performing an evaluation of M for a certain tuple requires O(|�| · n · P) values of
previously calculated values of M . Hence we get a total running time of

O(|�| · n · n · |�|n · P · |�| · n · P) = O(|�|3 · n4 · P2)

��

Remark 1 The sorting of the components by their size is not really necessary. Alter-
natively, one could start the recursion M(B, S, KkB (V )

B (V ), c − w(S)) for all choices
of B and S and store values of M with certain argument tuples when they are actually
computed for the first time during a recursion. These stored values can then be used
in other recursive calls in order to avoid calculating the function with the same tuple
set more than once.

By Bouchitté and Todinca (2001) weakly chordal graphs have O(n2) minimal
separators which can be computed in O(n5) time by Berry et al. (1999). By Bouch-
itté and Todinca (2002) the potential maximal cliques of any graph can be listed in
O(n2m|�G |2), where �G is the set of all minimal separators of G. Hence we get the
following corollary:

Corollary 6 KCG can be solved in O(n22 ·m4 · P2) time on weakly chordal graphs.

It should be clear that this is only a very loose upper bound on the running time,
but its improvement is not in the scope of this paper. By Theorem 1 we can state the
main result of this section:

Corollary 7 There is an FPTAS for KCG on weakly chordal graphs.

Remark 2 The main result of Lokshtanov et al. (2014) was giving a polynomial time
algorithm for the weighted independent set problem in P5-free graphs. They showed
that for this graph class a subset of all potential maximum cliques of polynomial size
can be found in polynomial time that allows to find the maximum weight independent
set. Note that the set of potential maximum cliques found by them also guarantees to
find the optimal KCG solution when plugged into our algorithm.

We conclude that there exists an FPTAS for KCG on P5-free graphs.
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3 Modular decomposition and clique separators

In this section we consider graph decomposition techniques that were widely used
in the literature for solving the (weighted) independent set problem on special graph
classes.

A clique separator C of a connected graph G is a separator (recall Sect. 1.1) which
is a clique. By definition of a separator the graphG[V \C] has � connected components
A1, A2, . . . , A� with � ≥ 2.

A clique separator decomposition recursively separates G1 = G[A1 ∪ C], G2 =
G[A2∪C], . . . ,G� = G[A�∪C] by clique separators. Any subgraph not containing a
separating clique is called atom. FollowingTarjan (1985) the decomposition procedure
can be represented by a clique decomposition tree, where each inner node represents
a clique separator (as a set of vertices) and all leaves represent atoms (again as sets of
vertices). It is important to note that the decomposition algorithm presented by Tarjan
(1985) separates an atom in every step, i.e. in the resulting decomposition tree all inner
nodes lie on a path.

Clique separator decomposition was applied frequently in the literature to solve
NP-hard problems on special graph classes.Wewill mention only the classical results
by Tarjan (1985) and Whitesides (1984) for maximum clique and independent set on
special graph classes such as chordal graphs, clique separable graphs and EPT-graphs.

A module of a graph G is a set of vertices M such that every vertex outside M
is either connected to all vertices in M or to none of them. Informally speaking, all
vertices in M “look the same” for vertices in G \ M . Formally, for all v ∈ G \ M
either N (v) ∩ M = M or N (v) ∩ M = ∅. A module is non trivial if 1 < |M | < |V |.

The concept ofmodular decompositionwas introducedbyGallai (1967) and appears
in the literature under different names, e.g. substitution decomposition inMöhring and
Rademacher (1984). It was applied frequently for the solution of NP-hard problems
on special graph classes, e.g. by Lozin and Milanič (2008) for the solution of the
maximum weight independent set on fork-free graphs.

Following Brandstädt and Hoàng (2007) a graph with non trivial module M can
be decomposed in the following way: G1 = G[M] and G2 = G[(V \ M) ∪ {vM }]
where vM is a new vertex which has the same adjacencies in G[V \ M] as the module
M . This means that G1 is the subgraph of G induced by M and G2 is a subgraph
of G where the module M is removed and replaced by a single vertex vM . From a
computational point of view, it makes sense to use onlymaximalmodules. This avoids
the iterative extension of a subset of a module in several decomposition steps and
instead tackles the maximal module immediately in one step. If this process is applied
recursively one gets a modular decomposition of the graph which can be represented
by a decomposition tree M. Note that M is a full binary tree, i.e. a tree where every
node (with exception of the leaves) has exactly two child nodes. The leaves of M
correspond to subgraphs that cannot be further decomposed by non trivial modules.
These graphs are called prime.

In the literature a slightly different decomposition process is frequently applied
[cf. McConnell and Spinrad (1999)], where G is first partitioned into connected and
co-connected components. Each of the resulting subgraphs can be partitioned into
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modules. However, to preserve the analogy to the clique decomposition we stick to
the version described above with one module contracted in each step.

In this section we follow the approach of Brandstädt and Giakoumakis (2015)
and apply both modular and clique decompositions. This means that we start with
a modular decomposition which yields a collection of prime graphs. Then we apply
clique decomposition to each of these prime graphs until we reach the atoms of these
graphs. Note that the resulting atoms are not necessarily prime. The main contribution
of this section is the following result.

Theorem 8 If KCG can be solved in pseudopolynomial time on the atoms of the
prime graphs resulting from a modular decomposition of G, then KCG can also be
solved in pseudopolynomial time on G.

Based on this theorem we can exploit results from the literature of the following
type:

(i) Given a graph G with some property P , the modular decomposition yields
prime graphs inheriting property P .

(ii) Given a prime graph with property P , its atoms have property Q.

Now Theorem 8 states that if KCG can be solved in pseudopolynomial time on
graphs with property Q, then KCG can be solved in pseudopolynomial time also on
graphs with property P . The relevance of this statement lies in the fact that in many
cases atoms of prime graphs allow much more restrictive properties than the original
graph and thus pseudopolynomial results requiring a more restrictive property Q can
be extended to a wider family of graphs observing only a weaker property P . At the
end of this section we will give a number of examples for graph properties P which
allow a pseudopolynomial solution of KCG through an application of Theorem 8.
We will assume that any given pseudopolynomial algorithm returns not only a single
optimal solution value but a full array of weight values for every target profit smaller
than the given upper bound2.

In the following we will present a dynamic programming approach for KCG.
During the decomposition approach subproblems will be solved and their optimal
solutions contracted into single vertices. Therefore, we introduce the best solution
obtained from including a single vertex v. This includes item v and possibly the
solutions of subproblems previously merged into v. For every profit value p, 0 ≤ p ≤
P , let dp(v) be the minimum weight required for a feasible solution given by item v

with total profit p. As an initialization we use dpv (v) = wv and dp(v) = ∞ (or a
large constant) for p �= pv .

With this definitionwe onlyworkwith function values of d and never refer explicitly
to profits and weights of individual items. In the beginning, d(v) contains only the
feasible solutiondpv (v) = wv corresponding to the singleton solution {v}. In the course
of the computation more extensive solutions will be determined and their profits and
weights inserted into d(v). The corresponding subgraphs of G will then be deleted
and their information remains attached to v via d(v).

2 If this is not the case, the algorithm could be performed iteratively thus increasing the pseudopolynomial
running time by a factor of P .
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For a subset of vertices (items) V ′ ⊆ V we will also consider the optimal solution
of KCG on G[V ′] derived either by recursion or by a direct algorithm available for
graphs with a certain property. The corresponding solution values will be represented
by a dynamic programming array,where z p(V ′) gives theminimumweight of a feasible
solutionwith profit p for KCG restricted toG[V ′]. It is necessary to define z0(V ′) = 0
as an empty solution.

3.1 Modular decomposition

Recall that every inner node of the decomposition treeM represents a subgraphG[V ′]
and has two child nodes. One of them corresponds to a module M of G[V ′], while
the other represents a copy of G[V ′] with M contracted to a single vertex vM . Now
we first consider the node of module M and solve KCG on G[M] recursively. This
returns an array z p(M) which we assign to the vertex vM in the second child node as
dp(vM ). Note that by definition of a module it does not matter which items from M
are included in a solution represented by z p(M). Any solution in G[V ′ \ M] which is
not in conflict with the new vertex vM can also be combined with any solution for M .

Then we proceed recursively and let this second child node take over the role of
the inner node, i.e. V ′ := V ′ \ M ∪ {vM }. At the end of this recursive process we are
left with a prime graph for which we can solve KCG by assumption.

Note that this prime graph is the unique leaf of the modular decomposition tree
which is reached from the root by a path that never moves to a child node representing
a module. Thus, the solution for this final leaf contains the information of all modules
separated before and constitutes the solution of KCG on the original graph G.

3.2 Clique decomposition

Given a graph G, we follow the approach described by Tarjan (1985) for the maximal
weight independent set problem and find a clique separator C which separates G
into components A and B such that G[A ∪ C] is an atom. In fact the decomposition
procedure described by [Tarjan (1985), Sec. 2] separates an atom in each step and runs
in O(nm) time. Analogous to the modular decomposition, we first consider the atom
G[A ∪ C]. Later, G[B ∪ C] will be considered recursively.

Each vertex q ∈ C might be selected in a solution. If this is the case, it can be
complemented by the best possible solution in G[A], which is not in conflict with q,
i.e. the best solution inG[A\N (q)]. The profit and weight information of the resulting
solutions containingq is then inserted intodp(q). To include also the case that no vertex
of C is selected, we add an auxiliary empty vertex e into C with N (e) = C , d0(e) = 0
and dp(e) = ∞ for p > 0. Formally, we have for every q ∈ C :

dp(q) := min
p1,p2

{
dp1(q) + z p2(A \ N (q)) | p1 + p2 = p

}
for p = 0, . . . , P (10)

This equation determines the best, i.e. lowest weight solution for every possible profit
value p by combining q contributing profit p1 with a compatible subset of A with
profit p2.
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By assumption, KCG can be solved for any atom of G in pseudopolynomial time.
To evaluate (10) we also have to solve KCG on G[A \ N (q)], i.e. on the subgraph of
an atom arising from eliminating a single vertex and its neighborhood. It is easy to see
that the pseudopolynomial algorithm applies also to these subgraphs: In most cases
property Q will also be valid for all subgraphs of an atom and we are done. But even
if this is not the case one can easily enforce the inclusion of q by temporarily setting
the weight of q to 0 and its profit to P . Then we run the algorithm on the full atom, but
replace each target profit p by p + P . Trivially, q will be included in the solution and
it is complemented by the best solution of KCG on the desired subgraph with profit
p.

After completion of (10) all potential contributions of items in A to an overall
solution are represented by array dp(q) for all q ∈ C . Since C is a clique, these can
contribute to the overall solution at most once.

Then we proceed recursively and search for a clique separating an atom from
G[B∪C]. This atom is treated as above with dynamic programming entries computed
for each vertex in the separating clique.

Continuing this process, we finally obtain a graphwhich is separated into two atoms
both of which can be resolved and their contribution contracted in the final separator.
It remains to pick the vertex from this separator that delivers the best solution value.

It would be interesting to combinemodular and clique decomposition in an arbitrary
order and thus generalize the above setting to prime atoms instead of atoms of prime
graphs. Indeed, this would make the dynamic programming evaluation much more
complicated and we followed several steps in this direction in the spirit of [Brandstädt
and Hoàng (2007), Theorem 8]. Unfortunately, it was stated in the recent paper by
Brandstädt and Giakoumakis (2015) that the approach implied by [Brandstädt and
Hoàng (2007), Corollary 9] does not seem to work and only the iterative process of
considering atoms of a prime graph can be pursued.

3.3 Applications

It is clear from the construction that the clique decomposition yields O(n) atoms for
a graph with n vertices since each decomposition step for some clique C separates at
least one vertex. To solve (10) in each such step a pseudopolynomial algorithm for
atoms has to be executed |C | + 1 times (i.e. O(n)) and a scan through all profit values
has to be performed |C | times taking O(nP) time. Furthermore, the decomposition
tree M of the modular decomposition has O(n) leaves each of which requiring the
execution of a pseudopolynomial algorithm for prime graphs. Without caring about
the details of the running time, it follows that any pseudopolynomial algorithm for
the atoms of prime graphs gives rise to a pseudopolynomial algorithm for the original
graph as stated in Theorem 8.

We will now describe a few graph classes for which Theorem 8 implies a
pseudopolynomial time algorithm for KCG based on properties P and Q. Clearly,
there are many more graph classes around where our framework would apply but we
restrict ourselves to some more recent examples.
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A co-chair is a graph with five vertices a, . . . , e and six edges (a, b), (a, c), (b, c),
(b, d), (c, d), (d, e). [Brandstädt andGiakoumakis (2012), Sec.3] give some examples
for relevant classes of (hole, co-chair)-free graphs. Note that some members of this
family are perfect graphs while others are not. It was shown in Brandstädt and Giak-
oumakis (2015) that atoms of prime (hole, co-chair)-free graphs are nearly weakly
chordal (Q). Since the modular decomposition of (hole, co-chair)-free graphs trivially
yields (hole, co-chair)-free prime graphs (P), we get from Corollary 7:

Corollary 9 There is an FPTAS for KCG on (hole, co-chair)-free graphs.

Given a co-chair, a paraglider arises from adding the additional edge (a, e). [Brand-
städt et al. (2012), Sec.1] discuss the relevance of (hole, paraglider)-free graphs which
are perfect graphs and contain chordal graphs as a subclass. They present a decom-
position result [Brandstädt et al. (2012), Theorem 1] which states that the atoms of
(hole, paraglider)-free graphs belong to one of the following three graph families (in
fact this property is necessary and sufficient for (hole, paraglider)-free graphs). Each
of them allows a simple pseudopolynomial algorithm for KCG

(i) Complete multipartite graphs allow a partitioning of the vertex set into k subsets
such that two vertices are adjacent if and only if they belong to different subsets.
Clearly, any solution of KCG can contain only vertices from exactly one subset.
It suffices to solve a standard knapsack problem for each subset and select the
best of the k resulting solutions.

(ii) Join of a chordal bipartite graph and a clique, where the former is a bipartite,
hole-free graph. Since chordal bipartite graphs are exactly those bipartite graphs,
which are weakly chordal, the solution of KCG follows fromSect. 2 by choosing
between the optimal solution on the chordal bipartite graph and the best vertex
of the clique.

(iii) Join of a matched co-bipartite graph and a clique, where the former consists of
two disjoint cliques of size k and the edges between the cliques form a matching
with k edges. Obviously, KCG can be solved on such a graph by taking each
vertex of one clique as a candidate and combine it with the best vertex (taking
the weight constraint into account) of the other clique excluding the matching
partner of the candidate.

Adiamond is a K4 with onemissing edge.The structure of (hole, diamond)-free graphs,
which generalize chordal bipartite graphs, was described in Berry et al. (2015). They
showed that an atom of a (hole, diamond)-free graph is either a clique, or a chordal
bipartite graph, or a matched co-bipartite graph. These properties are very similar to
the characterization of atoms of (hole, paraglider)-free graphs given above and KCG
can be solved in the same way. Summarizing, we have:

Corollary 10 There is an FPTAS for KCG on (hole, diamond)-free graphs and on
(hole, paraglider)-free graphs.

More special graph classes definedby certain forbidden subgraphswere described in
Brandstädt et al. (2010) [with the correctionmentioned inBrandstädt andGiakoumakis
(2015)]. For some of them it could be shown that atoms of prime graphs resulting from
modular decomposition of the given graph are e.g. nearly chordal and thus an FPTAS
for KCG exists.
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4 KCG on H-minor free conflict graphs

In this section we consider KCG restricted to a H -minor free conflict graph. A a
graph H is a minor of G if H can be obtained by successively applying the following
three operations onG: deleting isolated vertices, deleting edges and contracting edges.
Moreover a graph class is called H-minor free if the graph H is not a minor of any
of the graphs of this class. The most well-known H -minor free graph class are planar
graphs.

By the strongNP-hardness of the independent set problem on cubic planar graphs
we immediately get that there cannot exist an FPTAS for KCG on H -minor free
graphs. Complementing this negative result we will now show that there exists a
PTAS for KCG on planar graphs. We will indeed more generally show that a result of
Demaine et al. (2005) extends to a class of problems that includes KCG on H -minor
free graphs as a special case.

If a graph property π valid for a graph G also holds for all of its subgraphs,
then π is called hereditary. Demaine et al. (2005) defined the maximum cardinality
(profit) induced subgraph problem for a graph property π (MI SP(π)) as a maximum
cardinality (resp. profit) subset of vertices S of a graph G such that the hereditary
property π holds for the subgraph induced by S. They defined EMI SP(π) to be the
problem of finding the maximum cardinality (profit) set of edges S′ which induces a
subgraph that fullfills the hereditary property π .

Theorem 11 [Demaine et al. (2005), Theorem 3.7]For any hereditary graph property
π that can be solved in polynomial time on graphs of bounded treewidth, for any graph
H, and for any ε > 0, there is a polynomial-time (1 + ε)-approximation algorithm
for M I SP(π) and EM I SP(π) on H-minor-free graphs.

An important decomposition result for H -minor free graphs is also shown
in Demaine et al. (2005).

Theorem 12 [Demaine et al. (2005), Theorem 3.1] For a fixed graph H, there is a
constant cH such that, for any integer k ≥ 2 and for every H -minor-free graph G, the
vertices of G can be partitioned into k sets such that any k−1 of the sets induce a graph
of treewidth at most cHk. Furthermore, such a partition can be found in polynomial
time.

In the followingwe consider a generalization of KCG. Let c be a knapsack capacity.
We say that a graph G with vertex (resp. edge) weights w(v) (resp. w(e)) fullfils c
if

∑
v∈V w(v) ≤ c (resp.

∑
e∈E w(e) ≤ c). Let p(v) and (resp. p(e)) be the profit

of vertex v (resp. edge e). With this we define the maximum profit induced subgraph
problem for a graphpropertyπ and a capacity c (MPI SP(π, c)) as finding amaximum
profit subset S of vertices of a graph G such that the subgraph induced by S fullfils π

and c. Similarly, we define EP I SP(π, c) as the problem of looking for the maximum
profit edge set S′ of G that induces a subgraph fulfilling π and c.

By applying Theorem 12 we get the following result which is an extension of
Theorem 11.
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Theorem 13 Let π be a hereditary graph property and c a knapsack constraint.
Let H be a fixed graph. If the problem MP I SP(π, c) (resp. E P I SP(π, c)) can be
approximated by an (1 + ε) polynomial time approximation algorithm on graphs of
bounded treewidth (for all fixed ε > 0) we get:

– For any fixed δ > 0, there is a polynomial time (1 + δ)-approximation algorithm
for MP I SP(π, c) and E P I SP(π, c) on H-minor-free graphs.

Proof We first concentrate on MPI SP(π, c):
By Theorem 12 we get disjoint subsets V1, . . . , Vk such that any k − 1 of them

induce a graph of bounded treewidth. For each i ∈ {1, . . . , k} we solve the (1 + ε)-
approximation algorithm on the graph induced by

⋃
j �=i V j and take the best over

all these solutions with profit value za and corresponding solution set of vertices Sa .
Note that the exact value of k and ε will be determined later. Let z∗ denote the optimal
solution value of MPI SP(π, c) with corresponding solution set S∗. By S∗(Vi ) we
denote {v|v ∈ S∗ ∩ v ∈ Vi }. Choosing

� := arg min
i∈{1,...,k}

⎧
⎨

⎩
∑

v∈S∗(Vi )
p(v)

⎫
⎬

⎭ (11)

we get by an averaging argument:

∑

v∈S∗(Vl )
p(v) ≤ 1

k
z∗

Let zl denote the optimal solution value of MPI SP(π, c) on the subgraph induced
by

⋃
j �=l V j :

(1 + ε) · za ≥ zl ≥ z∗ −
∑

v∈S∗(Vl )
p(v) ≥ z∗ − 1

k
z∗ =

(
k − 1

k

)
z∗

Note that the set of vertices leading to a profit of z∗ − ∑
v∈S∗(Vl ) p(v) is feasible by

π being hereditary. For an (1 + δ)-approximation algorithm for MPI SP(π, c) on
H -minor free graphs we need (1 + δ) · za ≥ z∗. But we already have:

(
k

k − 1

)
· (1 + ε) · za =

(
1 + 1

k − 1
+ k

k − 1
· ε

)
· za ≥ z∗

So let δ be given. If we choose

δ >

(
1

k − 1
+ k

k − 1
· ε

)
,

which is equivalent to
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ε ≤
(

δ · k − 1

k
− 1

k

)

and k > 1
δ

+ 1 (in order to guarantee ε > 0), we get the desired result.
To obtain a PTAS for EP I SP(π, c) we have to solve the (1 + ε) approximation

algorithm on bounded treewidth graphs k times on the disjoint union of the subgraphs
induced by Vi and its complement V i . Note that by Theorem 12 the subgraphs induced
by Vi and V i both have bounded treewidth and therefore also their disjoint union. S∗
denotes the set of edges leading to an optimal solution value z∗. Now

� = arg min
i∈{1,...,k}

⎧
⎨

⎩
∑

(v∈Vi ,v̄∈V i )∧((v,v̄)∈S∗)

p((v, v̄))

⎫
⎬

⎭

denotes the index giving the minimal profit of the edges included in S∗ between Vl
and V l . Now, one can proceed in analogy to MPI SP(π, c) and get the desired result
for the edge-valued case. ��

Pferschy and Schauer (2009) showed an FPTAS for KCG on graphs of bounded
treewidth which immediately implies the following result.

Corollary 14 There exist a PTAS for KCG on H-minor free graphs.

As a prominent example, it follows from the famous Robertson-Seymour Graph
Minors Theorem [cf. Diestel (2012), Sec. 12] that graphs which can be embedded
without crossing on a surface of constant genus are H -minor free. Naturally, this
includes planar graphs.

Corollary 15 There exist a PTAS for KCG on planar graphs and - more general -
on graphs of bounded genus.

5 The knapsack problem with forcing graph K FG

From a graph theoretic point of view, K FG is equivalent to finding a vertex cover in
a graph such that its total weight is not necessarily minimal, but does not exceed the
given threshold c. Among all such vertex covers we want to maximize the total profit.

In this section we will show that all FPTAS results we derived for KCG also hold
for K FG. To do so we transform K FG into a minimization knapsack problem with
conflict graphs (MKCG) such that the optimal solutions of both problems coincide.
Our pseudopolynomial time algorithms for KCG can be easily transferred toMKCG.
ThenTheorem1 implies FPTASs forMKCG and thus also for K FG since both belong
to the class of subset selection problems.

Note that the transformation of K FG to MKCG is indeed required (at least for
weakly chordal graphs) since the algorithm for KCG on graphs whose potential
maximal cliques canbe listed in polynomial time (seeSect. 2) cannot be easily extended
to K FG, however it can be extented to solve MKCG.

Finally, we will state other approximability results for K FG in Sect. 5.3.
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5.1 Transforming K FG into a minimization knapsack problem with conflict
graphs

The minimization knapsack problem (MK P) is a variant of the standard knapsack
problem where the sum of profits should be minimized but the total weight should be
at least as large as the given bound c [cf. Kellerer et al. (2004), Sec. 13.3].

It is well known that if S ⊆ V is the minimum weight vertex cover of a vertex
weighted graph G = (V, E), then the complement V \ S is a maximum weight
independent set. In a similar way we will show that the optimal value of K FG with
forcing graph G is equal to the optimal value of the minimization knapsack problem
with conflict graphs (MKCG) with conflict graph G:

(MKCG) min
n∑

j=1

p j x j (12)

s.t.
n∑

j=1

w j x j ≥
n∑

j=1

w j − c (13)

xi + x j ≤ 1 ∀ (i, j) ∈ E (14)

x j ∈ {0, 1} j = 1, . . . , n. (15)

Theorem 16 The optimal solution values of K FG and MKCG coincide.

Proof Let P = ∑
j p j andW = ∑

j w j . Let z be the optimal solution value of K FG
with solution set S. By definition of K FG, S is a vertex cover in G with profit z and
a weight w ≤ c. This implies that V \ S is a feasible independent set in G with profit
P − z and weight W − w. Clearly V \ S is feasible for MKCG and also optimal:
Otherwise there exists a feasible solution set S′ for MKCG with profit value z′ and
z′ < (P − z). But then V \ S′ is a vertex cover in G which is also feasible for K FG
with solution value P − z′ > P − (P − z) contradicting the optimality of z for K FG.
The other direction follows analogously. ��

Hence, any exact algorithm solving MKCG is also an exact algorithm for K FG.
Moreover, since the result of Theorem 1 works for both maximization and minimiza-
tion problems, any pseudopolynomial algorithm for MKCG immediately implies an
FPTAS also for K FG.

5.2 Graphs of bounded treewidth and chordal graphs

MK P with demand bound c can be solved in general by dynamic programming by
reaching [cf. Kellerer et al. (2004)] where for each possible profit value the solution
set with maximum weight is calculated. The optimal solution can then be found as
the set with minimal profit value and weight exceeding c. The running time of this
dynamic programming approach is O(nP). For chordal graphs and graphs of bounded
treewidth this algorithm serves as a basis for more complicated dynamic programming
schemes solving MKCG: the algorithms presented in Pferschy and Schauer (2009)
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Table 2 Time and space complexities for K FG on special forcing graphs

K FG/MKCG Time Space

Bounded treewidth O(nP2) O(n + P log(n))

Chordal O((n + m)P2) O(min {m, n log(n)}P + m)

solve KCG by applying dynamic programming on the clique tree of a chordal conflict
graph and on the tree-decomposition of a conflict graph of bounded treewidth. All the
main ideas used in these algorithms carry over directly to MKCG and by Theorem 16
also to K FG. Also the time and space complexities remain the same (Table 2). Note
that for graphs of treewidth k a constant factor of 2k+1 is hidden in the O-notation.

Therefore, we conclude:

Theorem 17 There exists an FPTAS for K FG (resp. MKCG) on forcing (resp. con-
flict) graphs of bounded treewidth and on chordal forcing graphs. �

Anecessary condition for the application of Theorem 1 is the existence of a feasible
solution for every instance of a subset selection problem (cf. Sect. 1.1). This might
be seen as a catch for deriving an FPTAS since for K FG (and also MKCG) it is in
general NP-complete to decide the existence of a feasible solution.

However, on graphs of bounded treewidth and chordal graphs we can compute a
minimum vertex cover in polynomial time [see e.g. Brandstädt et al. (1999)] and thus
decide the feasibility of an instance in a preprocessing step. The same preprocessing
step can be done for all graph classes whose potential maximal cliques can be listed in
polynomial time by applying the algorithm presented in Fomin and Villanger (2010)
with the extension by Lokshtanov et al. (2014) (recall Remark 2 in Sect. 2).

For K FG with weakly chordal forcing graphs we can proceed in a similar way and
adapt the pseudopolynomial algorithm given in Sect. 2 for KCG to MKCG, which
immediately leads to an FPTAS for K FG. However, the technical details are quite
involved. In the same way, also all FPTASs for KCG stated in Sect. 3.3 carry over
into FTPASs for K FG on the same graph classes.

5.3 K FG on planar and perfect graphs

Since the vertex cover problem is known to be NP-hard also on planar graphs (even
with degree at most 3), it remainsNP-complete to decide whether a given instance of
K FG has a feasible solution and thus no polynomial time approximation algorithm
can be given for K FG on planar graphs (under P �=NP). This should be seen in
contrast to KCG, where a PTAS was given for planar graphs in Corollary 14.

An important superclass of weakly chordal graphs are perfect graphs. By using
the result of Milanič and Monnot (2008) concerning the exact weighted independent
set problem (EW I S) we will show the following negative result for K FG with per-
fect graphs as forcing graphs. A completely analogous result for KCG was given
in Pferschy and Schauer (2009).
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Theorem 18 K FG is strongly NP-hard with perfect graphs as forcing graphs.

Proof It was shown in Milanič and Monnot (2008) that EW I S is strongly NP-
complete on perfect graphs (in fact even for bipartite graphs of degree at most 3).
Let I be an instance of EW I S in a graph G with vertex weights w j , which asks if
an independent set with total weight exactly w exists. But this is equivalent to the
question whether there exists a vertex cover in G with weight W − w. Now consider
an instance of K FG on G with item profits and weights equal to w j and c = W − w.
Then by solving this instance of K FG one can immediately answer the given instance
of EW I S. ��
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