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Abstract In several areas like global optimization using branch-and-bound methods
for mixture design, the unit n-simplex is refined by longest edge bisection (LEB).
This process provides a binary search tree. For n > 2, simplices appearing during the
refinement process can havemore than one longest edge (LE). The size of the resulting
binary tree depends on the specific sequence of bisected longest edges. The questions
are how to calculate the size of one of the smallest binary trees generated by LEB and
how to find the corresponding sequence of LEs to bisect, which can be represented
by a set of LE indices. Algorithms answering these questions are presented here. We
focus on sets of LE indices that are repeated at a level of the binary tree. A set of
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LEs was presented in Aparicio et al. (Informatica 26(1):17–32, 2015), for n = 3. An
additional question is whether this set is the best one under the so-called mk-valid
condition.

Keywords Regular simplex · Longest edge bisection · Branch-and-bound · Bisection
sequence · Combinatorial optimization

1 Introduction

Global Optimization deals with finding the minimum or maximum value of an objec-
tive function f on a closed set with a non-empty interior.We focus here on the standard
n-simplex defined in the (n + 1)-dimensional space

S =
⎧
⎨

⎩
x ∈ R

n+1 |
n+1∑

j=1

x j = 1; x j ≥ 0

⎫
⎬

⎭
. (1)

We study the binary tree (BT) implicitly generated by the refinement of the n-
simplex where the simplex division is defined by the Longest Edge Bisection rule
(LEB) (Adler 1983; Hendrix et al. 2012; Horst 1997). We investigate how the choice
of the next longest edge (LE) to be bisected affects the total number of generated
simplices in the BT. One of the questions is how to determine the sequence of LEs
to be bisected which generates the smallest number of simplices in the complete BT.
Several heuristics have been presented (Aparicio et al. 2014) and have been applied to
Global Optimization algorithms in Herrera et al. (2014). Determination of the set of
indices of bisected LEs (one per simplex) to generate one of the smallest BT requires
a complete enumeration of all possible LEB combinations.

Calculation of distances between vertices to determine the longest edges is a com-
putationally intensive operation in the partition process. This computation can be
avoided by precomputing a set of LE indices to be bisected. Each LE is stored as a pair
of vertex indices for a simplex in the BT. It is desirable to find sets with an appropriate
repetition of LE indices, because their computational management is more efficient
than distance calculation. We look for sets of LEs with a high repetition of longest
edge indices per level of any of the smallest BTs.

A set of LE indices generating the minimum number of classes of simplices (Apari-
cio et al. 2013), was presented in Aparicio et al. (2015). Another research question
in this study is whether that set also provides one of the smallest trees, given a value
of the stopping criterion on the size of the subsimplices. Additionally, we investigate
whether such set is the best under the mk-valid condition presented in Sect. 4.

The paper is organized as follows. Section 2 introduces the simplex refinement
by LEB. An algorithm to determine the smallest possible size of the binary tree is
studied in Sect. 3. Section 4 introduces the concept of mk-validity. Section 5 shows
an algorithm to generate a tree containing all possible smallest binary trees. Section 7
develops an algorithm to search mk-valid sequences in the output of the algorithm
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of Section 5. Section 8 shows the results of the developed algorithms applied to a
3-simplex. Finally, conclusions and future research are discussed in Sect. 9.

2 Simplex refinement using longest edge bisection

We consider a regular n-simplex called S1 scaled to have edge length 1, where the
Euclidean distance norm is used. S1 is considered the set to be refined, i.e.

S1 =
⎧
⎨

⎩
x ∈ Rn+1

n+1∑

j=1

x j =
√
2

2
; x j ≥ 0

⎫
⎬

⎭
. (2)

An n-simplex S is defined by the convex hull S = conv(V ) of its vertex set V =
{v1, . . . , vn+1}, v j ∈ R

n+1. Let ω(S) denote the size (width) of a simplex S given by
the length of its longest edge. Having a set of indices for the vertices of a simplex, we
can also derive the idea of identifying the set of edges of a simplex as pairs of vertex
indices Eh = { j, k} : j = 2, . . . , n + 1; k = 1, . . . , j − 1; j �= k. The edge index
is given by h = ( j−1)( j−2)

2 + k, h = 1, . . . , n(n + 1)/2. Figure 1 shows a 2-simplex
of size 1.

Longest edge bisection (LEB) is a popular way of iteratively refining a simplex
in the context of the finite element method, since it is very simple and can easily
be applied in higher dimensions (Hannukainen et al. 2014). It is based on splitting
a simplex using the hyperplane that connects the mid point of the longest edge of a
simplex with the opposite vertices, as illustrated in Fig. 2.

Algorithm 1 shows the Simplex Refinement (SR) process which bisects the initial
simplex iteratively. In principle, the refinement can continue infinitely. We study the
process with a stopping criterion, i.e., the branching process continues until the size
of the simplex is smaller than or equal to the desired accuracy ε. The set � contains
the leaves of the tree, i.e., the simplices that have not been refined yet. Figure 3
illustrates the result of the SR algorithm on a 2-simplex with termination criterion

x1x2

x3

v1 = (
√

2
2 , 0, 0)v2 = (0,

√
2

2 , 0)

v3 = (0, 0,
√
2

2 )

E1 = {2, 1}

E2 = {3, 1}E3 = {3, 2}

Fig. 1 A regular 2-simplex with edge length 1
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Fig. 2 Example of the first
Longest Edge Bisection (LEB)
on a regular 3-simplex

Algorithm 1 SR(S1, ε)
Require: S1: initial simplex, ε: accuracy.
1: � := {S1} � Set of leaf indices; simplices not yet split
2: ns := 1 �Number of simplices
3: while � �= ∅ do
4: Extract a simplex i from �

5: if w(Si ) > ε then �Final accuracy not reached
6: { j ,k}:=SelectLE(Si ) � Select a longest edge
7: {S2i , S2i+1} := Bisect(Si , j, k)
8: Store simplices 2i and 2i + 1 in �.
9: ns := ns + 2.
10: return ns

ω(S1)=1

ω(S2)=1 ω(S3)=1

ω(S4)=0.5 ω(S5)=
√

3
2 ω(S6)=

√
3

2 ω(S7)=0.5

ω(S10)=0.5 ω(S11)=0.5 ω(S12)=0.5 ω(S13)=0.5

S1

S2 S3

S4

S5 S6

S7

S10 S11 S12 S13

Level 1

Level 2

Level 3

Level 4

Fig. 3 Binary tree generated by the SR algorithm on a 2-simplex with ε = 0.5

ω(S) ≤ ε = 0.5. The number of levels in the BT is 4 and the number of generated
simplices from S1 is 10.

Bisecting a 2-simplex does not require any selection among the longest edges in
SelectLE(), as the longest edge is either unique or the choice does not alter the size of
the resulting BT. We follow a rule described in Mitchell (1989), where one can avoid
edge length calculations in a 2-simplex by always bisecting the edgewith vertices {1, 2}
and numbering the new vertex as the last one of the set of vertices in the generated
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new sub-simplices. The bisection in Algorithm 2 follows a similar numbering for the
new vertex in the general case (n > 2).

Algorithm 2 Bisect(S, j, k)
Require: S = conv(V ): a simplex; j, k: vertex indices, v j , vk ∈ V determining an edge

1: Take the vertices v j and vk to generate x := v j+vk
2

2: Vl := Vr := V �New vertex sets Vl and Vr inherit characteristic from the old
3: Remove v j from Vl and add x at the end � Vl = {v1, . . . , v j−1, v j+1, . . . , x}
4: Remove vk from Vr and add x at the end � Vr = {v1, . . . , vk−1, vk+1, . . . , x}
5: return Sl = conv(Vl ), Sr = conv(Vr )

Figure 2 shows the bisection of a regular 3-simplex. It does not matter which edge
is selected first, because all generated sub-simplices differ only in orientation. Notice
that after the first subdivision, the generated sub-simplices are irregular and have three
(out of six) edges with the longest length. Therefore, we need to make a decision on
which longest edge should be bisected.

The number of simplices in the finite BT generated by Algorithm 1 depends on
how fast the simplex size decreases when we go deeper into the tree. We are interested
in the combinatorial optimization problem of choosing vertices j, k in SelectLE() to
obtain one of the smallest size binary trees.

3 An algorithm to determine the size of a smallest tree

This section describes an algorithm for determining the size of the smallest binary
tree generated using Longest Edge Bisection as the rule for subdividing simplices. We
apply a full enumeration of simplices to check every division option, i.e. one for each
longest edge, and count the number of sub-simplices in each sub-tree generated from
that option. Algorithm 3 performs this task recursively. The algorithm only considers
the size of the smallest sub-trees. It has the initial simplex and the required precision
as input parameters and returns the number of simplices of the smallest trees.

Algorithm 3MinTree(S, ε)
Require: S: simplex, ε: accuracy.
1: if w(S) ≤ ε then
2: return 1
3: for each longest edge Eh = { j, k} of S do
4: {Sl , Sr }:=Bisect(S, j, k)
5: rl := MinTree(Sl ,ε) � size of a minimum left sub-tree
6: rr := MinTree(Sr ,ε) � size of a minimum right sub-tree
7: Rh := rl + rr
8: return 1+minh{Rh}

Algorithm 3 determines the size of the smallest sub-tree from a sub-simplex when it
is bisected by one of its longest edges Eh , with vertices { j, k} (see line 4). It recursively
calls itself to get the smallest sub-tree size for the two generated sub-simplices (see

123



394 J Comb Optim (2017) 33:389–402

lines 5, 6). When the recursive algorithm is back at the initial simplex, the size of
the smallest trees is known and the algorithm ends. The algorithm does not provide
information about which longest edges have been bisected to generate one of the
smallest trees.

Figure 3 illustrates running Algorithm 3 on a 2-simplex for ε = 0.5. The BT
has 10 sub-simplices. Although the 2-simplex is not a very interesting case because
irregular simplices have just one longest edge, the illustration facilitates discussing
several details not included in Algorithm 3 for the sake of simplicity:

Remark 1 In Algorithm 3, if Sl and Sr are symmetric, only one of them is processed
and the algorithm returns twice the size of the evaluated sub-tree. In the example of
Fig. 3, siblings S2 and S3 and also S10, S11 and S12, S13 are symmetric.

Remark 2 Algorithm 3 only has to process one of the longest edges for a regular
simplex, because any edge division will return the same sub-tree size. Simplices S1,
S4 and S7 are regular in Fig. 3.

Remark 3 For an irregular simplex with several longest edges, it is of interest to
determine those edges producing similar pairs of siblings. Therefore, Algorithm 3
only has to process one of the pairs. This will be studied in a future work.

4 The mk-valid condition

Forn > 2,manydifferent SmallestBinaryTrees (SBTs) canbe generated by iteratively
applying LEB. Given a SBT, a vector or sequence of longest edges, SQ-LE, can be
determined beforehand in order to be used in Algorithm 1. The element SQ-LEi

specifies one of the longest edges of Si . The number of elements of the SQ-LE vector
is the same as the number of (non-leaf) nodes of the corresponding SBT. This number
increases as the dimension n increases and the value of ε decreases. So, it can be very
large.

Given the numbering of simplices in Algorithm 1, the level where the simplex Si
is located in a BT is determined by � = �1 + log2 i	. We focus on the idea that the
longest edge index to be bisected is the same in various simplices at the same level of
the tree. We derive several conditions that the set of longest edge indices must fulfil.

Definition 1 Two simplices have a longest edge index h in common when the edge
Eh = { j, k} = {k, j} is a longest edge in both simplices. The longest edges in both
simplices sharing an index may be the same or different.

Definition 2 Let m ∈ N
+. Simplex i at level � is in subset Mj , j = 0, . . . , m − 1,

if j = i mod m.

Definition 3 Subset Mj at level � (see Definition 2) is called valid if there exists an
edge index h such that Eh is a longest edge for all simplices in Mj .

Notice that Mj can be valid due to several LE indices.

Definition 4 Level � in a BT is called m-valid if all subsets Mj , j = 0, . . . ,m − 1
at level � are valid (see Definition 3).
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Notice that an edge index h validating subset Mj can be different from edge index g
validating subset Mk, j �= k.

Remark 4 An m-valid level may have less than m simplices.

Definition 5 A binary tree with L + 1 levels is m-valid when all its first L levels are
m-valid (see Definition 4).

Notice that the set of LE indices validating a level of the BT can be different to the set
of LE indices validating another level of the BT.

Definition 6 Given a m-valid SBT with L + 1 levels, let L × m matrix A be defined
by elements a�, j that denote an index h of a LE validating subset Mj at level �.

Notice that not all elements of matrix A may have a number due to the absence of the
corresponding nodes in the binary tree.

Property 1 A BT generated by LEB, with L + 1 levels and maximum 2L−1 elements
at level L , is always m-valid for m = 2L−1.

Property 2 Given k ∈ N, a 2k-valid binary tree is also 2k+1-valid.

Property 2 and the number of nodes (2�−1) at level � of a BT suggest to use m = 2k .
An SQ-LE vector has less memory requirements than a matrix A(L×m) with m =

2L−1. Therefore, we are interested in values of k < L − 1.

Definition 7 A binary tree is mk-valid if it is m-valid (see Definition 5) with m = 2k ,
k ∈ N, k < L − 1.

For instance in Table 1, levels 1 to 3 are 1-valid and level 4 is 2-valid.

Definition 8 A binary tree which is not mk-valid is called mk-invalid.

Property 3 Any binary tree generated from an mk-invalid binary tree by increasing
its number of levels, is mk-invalid.

Table 1 3-simplex instance. Indices of longest edges bisected for each simplex in each level of the BT
with the minimum number of classes of simplices (see Algorithm 1) (Aparicio et al. 2015)

Level SelectLE(Si)
1 {1, 2}
2 {2, 3}
3 {1, 2}
4 {1, 3} for i even

{1, 2} for i odd

5 {1, 2}
6 {1, 2}
7 {1, 2} for i even

{1, 3} for i odd

8 As level 5
9 As level 6

10 As level 7
...

A-3SNC = A�×2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3 3
1 1
2 1
1 1
1 1
1 2
1 1
1 1
1 2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A�×4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3 3
1 1 1 1
2 1 2 1
1 1 1 1
1 1 1 1
1 2 1 2
1 1 1 1
1 1 1 1
1 2 1 2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A-3SNC is the matrix associated to this Table. Al×2 can be extended to Al×4
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The existence of an mk-valid SBT depends on the combinations of longest edge
indices making a level of the SBT mk-valid, which also depends on the selected
combinations at previous levels.

In the worst case, the number of combinations of longest edge indices causing a
level to be mk-valid level is given by the sum of possible combinations making the
level 1-valid, 2-valid, . . . , and 2k-valid:

k∑

i=0

(
ne
2k

)

(3)

with ne = n(n+1)
2 the number of edges of an n-simplex.

To find all mk-valid SBTs, we need an algorithm generating all possible SBTs and
an algorithm to discard those trees that aremk-invalid. The following sections describe
these algorithms.

5 ASBT algorithm (all smallest binary trees)

The ASBT algorithm stores all SBTs in a single general tree (GT). In this way, only
longest edges providing SBTs will remain in the GT. Each node N of the GT contains
the following information:

– S = conv(V ): The current simplex.
– The set of longest edges of S, with the following information for each longest edge

Eh = { j, k}:
– Rh : the total size of the two generated sub-trees.
– Nlh : left node.
– Nrh : right node.

A pseudocode of Algorithm ASBT is given in Algorithm 4. It is an extension of
the recursive algorithm presented in Sect. 3, where only those LE options generating
a SBT are stored in the GT. The input parameters are the initial regular simplex S1
and the desired precision ε. Figure 4 shows the first levels of the GT for a 3-simplex.

The results of Algorithm 4 are the SBT size generated by LEB and the root node
of the GT, i.e., N containing S1. Following the simplex enumeration of Algorithm 1,
where a LEB of simplex Si generates sub-simplices S2i and S2i+1, there exist many
instances of Si in the GT. Each instance depends on the longest edges bisected at
higher levels in the GT tree. In Algorithm 4, line 12, those longest edges, and sub-
trees generated from them, that do not result in a SBT are removed from the GT.

6 NSBT-GT algorithm (number of SBTs in GT)

Algorithm 5 counts the number of SBTs in the GT. It does not count all possible SBTs
because symmetries are avoided (see Fig. 4). It is a recursive algorithm counting the
binary trees from leafs to root node. The number of SBTs in each node of the GT
depends on the number of binary trees in each of the descendants, Nlh and Nlh of the

123



J Comb Optim (2017) 33:389–402 397

Algorithm 4 ASBT(S, ε)
Require: S: simplex, ε: accuracy
1: if w(S) ≤ ε then
2: return 1
3: Create new node N with S
4: for each longest edge Eh = { j, k} of S do
5: {Sl , Sr }:=Bisect(S, j, k)
6: {rl , Nlh} := ASBT(Sl ,ε)
7: {rr , Nrh} := ASBT(Sr ,ε)
8: Rh := rl + rr
9: Add (Eh , Nlh , Nrh , Rh) to N
10: MinSize:=minh{Rh}
11: for each longest edge Eh do
12: if Rh > MinSize then
13: Remove sub-trees rooted at Nlh and Nrh
14: Remove (Eh , Nlh , Nrh , Rh) from N
15: return 1+MinSize, N �Recursive back to lines 6 or 7

Fig. 4 General Tree for a 3-simplex. Only one edge of S1 is evaluated because it is regular. S2 is generated
but not evaluated because S2 is symmetric with respect to S3. The same happens with one of the instances
of S6 and S7

current simplex split over longest edge Eh and the combination of them. For example,
if we have a node with two children, one generating two binary trees (it has at least two
LE) and the other generating three binary trees (it has at least three LE), the number
of binary trees generated from the current node is six by combination of them. The
NSBT-GT algorithm starts with the root node of the GT, as result of Algorithm 4.

Table 3 in Sect. 8 shows the number of SBTs in the GT for different values of ε.
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Algorithm 5 NSBT-GT (N )
Require: N : a node of GT tree
1: if N is a leaf then
2: return 1
3: R := 0 � number of binary trees from node N
4: for each longest edge Eh of S in the node N do
5: rl := NSBT-GT(Nlh ) � number of binary trees in left sub-tree
6: rr := NSBT-GT(Nrh ) � number of binary trees in right sub-tree
7: R := R + rl ∗ rr
8: return R

7 MK -SBT algorithm (mk-valid smallest binary trees)

Algorithm 6 finds themk-valid SBTs in the GT. The algorithm generates partial matri-
ces during the search, according to Definition 6. Each partial matrix A�×m determines
a different smallest binary sub-tree (SBST), indicating how to divide its simplices up
to level �. A(�+1)×m matrices are generated from a A�×m (see Eq. (3) for the worst
case number of combinations) by visiting nodes at level �+1 in the GT, following the
bisection of the longest edges previously determined by partial matrix A�×m . A partial
matrix A�×m which is not able to generate amk-valid SBST at level �+1 is discarded
from the search. The search continues until there is no matrix generating a mk-valid
SBST at the next level, or there is no next level to visit.

Algorithm 6MK -SBT (GT, k)
Require: GT : output of Algorithm 4, k: for the mk -valid test (m = 2k ).
1: A1×m :=1 �First partial matrix. All SBTs bisect E1 at S1
2: �:= {A1×m} � Set of partial matrices
3: � := {∅} � Set of final matrices
4: npm := 1 �Number of evaluated partial matrices
5: while � �= ∅ do
6: Extract a A�×m from �

7: if � �+1 level in GT from A�×m then
8: Store A�×m in �

9: else
10: �:=GenNewAs(GT ,k,A�×m ) �Generate new set of mk-valid partial matrices
11: Store � in �

12: npm := npm + |�|
13: return �

Algorithm 6 follows the general structure of a B&B algorithm, iterating over partial
matrices stored in �. The first partial matrix A�×m stores the index of the first longest
edge, but it can be any of the edges of the initial regular simplex. In line 10, new mk-
valid partial matrices at �+1 level are produced from the selected A�×m partial matrix
(see Definition 7). For instance, for a 3-simplex and k = 0, Algorithm 6 generates in
line 10 partial matrices

(1
1

)
,
(1
2

)
, and

(1
4

)
from the initial partial matrix A1×1=(1) (see

Fig. 4). Those partial matrices that are not rejected and can not progress on GT are
stored in � (see line 8).
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8 Results for a 3-simplex

Algorithms have been coded in C/C++ and they have been executed in a BullX-UAL
node, under Ubuntu 12.04.3 LTS. A node consists of two processors Intel® Xeon®

E5-2650 with 8 cores at 2,00 GHz and 64GB of RAM.
Table 1 shows the indices {i, j} of the longest edges bisected at every level of the

binary tree for a 3-simplex. This set of indices generates binary treeswith theminimum
number of eight classes of simplices (Aparicio et al. 2015). Two simplices belong to
the same class if one can be obtained by scaling, translation and rotation/flip of the
other, see Aparicio et al. (2015). The set in Table 1 can be used in Algorithm 1, line 6,
to generate such trees. For different ε values the algorithm obtains different trees.

Amatrix generating the smallest number of simplex classes for a 3-simplex, denoted
by A-3SNC, can be derived from Table 1. The set of LEs in A-3SNC is 2-valid. Levels
1-3,5 and 6 are 1-valid and levels 4 and 7 are 2-valid. A-3SNC can be applied to
generate a BT with more than 7 levels because levels 8-10 use the same longest edge
indices as at levels 5-7, and those repeat for all further levels.

Column MinTree in Table 2 shows the guaranteed smallest size of binary trees
for a regular 3-simplex (see Eq. (2)) obtained by Algorithm 3 and several values of ε.
Column A-3SNC_in_SR() shows the size of the binary tree generated by the SR
Algorithm (Algorithm 1) when the longest edge indices in Table 1 are used for the

Table 2 Size of a smallest
binary tree (MinTree()) and the
size of the binary tree generated
by SR() with the A-3SNC matrix
for a 3-simplex varying the
accuracy ε

ε MinTree() A-3SNC_in_SR()

0.8 31 31

1/2 47 47

0.35 335 351

1/22 351 351

0.2 1,727 1,727

1/23 2,751 2,751

0.1 13,695 13,695

1/24 21,887 21,887

0.05 108,799 109,311

1/25 174,847 174,847

0.02 1,354,495 1,398,271

1/26 1,398,271 1,398,271

0.01 10,835,455 11,185,151

1/27 11,185,151 11,185,151

0.005 86,682,623 89,479,167

1/28 89,479,167 89,479,167

0.002 715,829,247 715,829,247

1/29 715,829,247 715,829,247

0.001 1,431,658,495 1,431,658,495

1/210 1,431,658,495 1,431,658,495
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Table 3 Results of
Algorithms 4, 5 and 6 for a
3-simplex and k = 2

ε |GT| SBTs npm n f m A-3SNC

0.8 9 1 5 1 �
1/2 11 1 5 1 �
0.35 111 16 17 0

1/22 41 1 8 1 �
0.2 137 9 10 1 �
1/23 173 9 11 1 �
0.1 617 59,049 13 1 �
1/24 785 59,049 14 1 �
0.05 180,708 1.6 × 10186 10 0

1/25 3,665 1.4 × 1018 17 1 �
0.02 34,913 4.1 × 10203 17 0

1/26 17,273 8.6 × 1063 20 1 �

same instances of the problem. Comparing both columns in Table 2, the SRAlgorithm
generates smallest binary trees for ε = 1/2 j , using A-3SNC. The use of A-3SNC also
returns the best result for other values of ε, but there exist values of ε that do not provide
a SBT. Table 2 shows some of them in boldface. The reason of such suboptimal results
is that longest edges with a size different than 1/2 j appear in the refinement process.
In Fig. 3, S5 and S6 are examples for the 2-simplex case.

Table 3 shows the size |GT| of the general tree, the number of smallest binary trees
in GT counted by Algorithm 5 (SBTs), the number of partial matrices (npm) and the
number of final matrices (n f m) evaluated by Algorithm 6, for the same instances of
the problem shown in Table 2. The input value k is set to 2 (see Definition 7). The
size of the GT tree is much smaller than the size of one of the corresponding SBTs
because only one of the symmetric simplices is processed (see Remark 1, Fig. 4).
Nevertheless, results for values smaller than ε < 1/26 could not be calculated due to
the high computational requirements of the algorithms.

Algorithm 6 returns only one possible 4-validmatrix for the checkmarked instances
in Table 3 equal to A-3SNC. Those instances without a check mark do not present a
4-valid matrix. A-3SNCmatrix is actually 2-valid but it is also 2k-valid for a 3-simplex
and k ≥ 1 (see Property 2).

The smallest possible matrix is 1-valid with the same longest edge index for every
level. As A-3SNC is the only 2-valid set, such a matrix does not exist with the reorder-
ing of vertices in Algorithm 2. Therefore, A-3SNC is the mk-valid matrix with the
smallest k value.

TheuseofA-3SNCneeds the samemethodof reindexingof vertices at each simplex,
according to Algorithm 2. The computational cost of this reindexing is much lower
than the calculation of distances between vertices. The computation cost difference
increases with n.

The analogous problem to the one tackled here is to find the smallest number of
reindexes of vertices at simplices such that the same longest edge index is bisected for
any simplex in a SBT. This approach seems to be as difficult as the one tackled here. In
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the worst case, it is necessary to provide a reindexing for each simplex. Nevertheless,
it could be an interesting approach to address in a future work.

The investigation and application of the algorithms for the 4-simplex requires the
use of parallel computing due to the memory and computational requirements to
generate a 4-valid matrix for a small accuracy ε to allow every initial edge be bisected
several times.

9 Conclusions and future research

This work studies how to obtain matrices showing the indices of the longest edges to
bisect a regular n-simplex generating a smallest binary tree in its iterative refinement.
We focus on matrices with high occurrence of the longest edge indices to divide per
level of the binary tree. We conclude that the sequence presented in Aparicio et al.
(2015) is the unique 2-valid and 4-valid (see Definition 7 and Property 2) for some
termination criteria. The combinatorial complexity of the problem allows us to show
results only for n = 3 and ε ≥ 1/26. Higher n and smaller ε values will require the
improvement of the sequential algorithms and to develop parallel versions of them.
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