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Abstract A function f : V (G) → P({1, . . . , k}) is called a k-rainbow dominating
function of G (for short k RDF of G) if

⋃
u∈N (v) f (u) = {1, . . . , k}, for each vertex

v ∈ V (G) with f (v) = ∅. By w( f ) we mean
∑

v∈V (G) | f (v)| and we call it the
weight of f in G. The minimum weight of a k RDF of G is called the k-rainbow
domination number of G and it is denoted by γrk(G). We investigate the 2-rainbow
domination number of Cartesian products of cycles. We give the exact value of the
2-rainbow domination number of Cn�C3 and we give the estimation of this number
with respect to Cn�C5, (n ≥ 3). Additionally, for n = 3, 4, 5, 6, we show that
γr2(Cn�C5) = 2n.

Keywords Domination · Rainbow domination · Cartesian product of graphs

1 Introduction

For notation and graph theory terminology not given here, we follow Diestel (1997) and
also Haynes et al. (1998). Let G = (V (G), E(G)) be a finite, simple and undirected
graph with vertex set V (G) and edge set E(G). The open neighborhood of a vertex
v is N (v) = {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is N [v] =
{v}∪ N (v). For two subsets A, B of V (G), E(A, B) = {ab ∈ E(G) : a ∈ A, b ∈ B}.

The Cartesian product G�H of graphs G and H is the graph with vertex set
V (G) × V (H), where two vertices are adjacent if and only if they are equal in one
coordinate and adjacent in the other. We restrict our attention to the Cartesian product
of Cn and Cm, n, m ≥ 3. Let V (Cn) = {1, 2, . . . , n}, E(Cn) = {i(i + 1), 1n :
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i = 1, 2, . . . , n − 1} and V (Cm) = {1, 2, . . . , m}, E(Cm) = { j ( j + 1), 1m : j =
1, 2, . . . , m − 1}. Let (i, j) be a vertex of Cn�Cm—instead of (i, j) we write vi j . By
Ci = {vi1, vi2, . . . , vim} we mean the i th column of Cn�Cm .

A function f : V (G) → P({1, . . . , k}) is called a k-rainbow dominating function
of G (for short k RDF of G), if

⋃
u∈N (v) f (u) = {1, . . . , k} for each vertex v ∈ V (G)

with f (v) = ∅. By w( f ) we mean
∑

v∈V (G) | f (v)| and we call it the weight of a
function f in G. The minimum weight of a k RDF of G is called the k-rainbow
domination number of G and it is denoted by γrk(G). If f is a 2RDF function of G
and w( f ) = γr2(G), then f is called a γr2-function. Let X ⊂ V (G). By w( f (X)) we
mean

∑
v∈X | f (v)| . Thus w( f ) = w( f (V (G)). For more information about rainbow

domination we refer the reader to Brešar and Šumenjak (2007), Chunling et al. (2009),
Wu and Rad (2010), Xu (2009).

The concept of rainbow domination seems to be of independent interest and it
attracted several authors. In particular, Hartnell and Rall (2004) obtained a couple of
observations about rainbow domination, for instance, γrk(G) ≤ kγ (G), where γ (G)

is the domination number of G. Moreover, the concept of 2-rainbow domination of
a graph G coincides with the ordinary domination of the prism G�K2 (Brešar et al.
2008). Since for any graph H, γ (H) ≥ |V (H)| /(�(H) + 1) we have γr2(G) =
γ (G�K2) ≥ 2|V (G)|/ (�(G) + 2) . As a consequence, we have

nm

3
≤ γr2(Cn�Cm) ≤ 2γ (Cn�Cm). (1)

In this paper, we show that these bounds are attained for some classes of cycles.
For a 2RDF of Cn�Cm, instead of f (vi j ) = ∅, f (vi j ) = {1}, f (vi j ) = {2}, we

simply write f (vi j ) = 0, f (vi j ) = 1 or f (vi j ) = 2, respectively.
Further, instead of, for example,

f

⎛

⎝
v13 v23 . . . vn3
v12 v22 . . . vn2
v11 v21 . . . vn1

⎞

⎠ =
⎛

⎝
0 0 . . . 2
0 2 . . . 0
1 0 . . . 0

⎞

⎠ ,

we simply write

f (V (Cn�C3)) =
⎛

⎝
0 0 . . . 2
0 2 . . . 0
1 0 . . . 0

⎞

⎠ .

It is clear from the context that (in our example) f (v11) = 1, f (v12) = 0, f (v13) = 0
and so on.

2 2-Rainbow domination number of Cn�C3

Lemma 1 For n ≥ 3,

n ≤ γr2(Cn�C3) ≤
⎧
⎨

⎩

n, i f n ≡ 0 mod 6,

n + 1, i f n ≡ 1, 2, 3, 5 mod 6,

n + 2, i f n ≡ 4 mod 6.
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Proof The lower bound follows from (1) for m = 3. To show the upper bound we
define the functions f as follows:

For l ≥ 1,

f (V (C6l�C3)) =
⎛

⎝
0 0 1 0 0 2
0 2 0 0 1 0 −
1 0 0 2 0 0

⎞

⎠ ;

f (V (C6l+1�C3)) =
⎛

⎝
0 0 1 1 0 0 2 0 0 1 0 0 2
0 2 2 0 0 1 0 0 2 0 0 1 0 −
1 0 0 0 2 0 0 1 0 0 2 0 0

⎞

⎠ ;

f (V (C6l+2�C3)) =
⎛

⎝
0 2 0 0 1 0 0 2
1 0 0 2 0 0 1 0 −
1 0 1 0 0 2 0 0

⎞

⎠ .

For l ≥ 0,

f (V (C6l+3�C3)) =
⎛

⎝
0 0 2 0 0 1 0 0 2
0 {1, 2} 0 0 2 0 0 1 0 −
1 0 0 1 0 0 2 0 0

⎞

⎠ ;

f (V (C6l+4�C3)) =
⎛

⎝
0 2 0 2 0 0 1 0 0 2
0 2 1 0 0 2 0 0 1 0 −
1 0 0 2 1 0 0 2 0 0

⎞

⎠ ;

f (V (C6l+5�C3)) =
⎛

⎝
0 0 1 0 2 0 0 1 0 0 2
0 2 0 0 1 0 2 0 0 1 0 −
1 0 0 2 0 1 0 0 2 0 0

⎞

⎠ ;

where “−” means that we repeat the block

0 0 1 0 0 2
0 2 0 0 1 0
1 0 0 2 0 0

at most l − 1 times. It is not difficult to observe that f is a 2RDF of Cn�C3 and

w( f ) =
⎧
⎨

⎩

n, i f n ≡ 0 mod 6,

n + 1, i f n ≡ 1, 2, 3, 5 mod 6,

n + 2, i f n ≡ 4 mod 6,

proving the result. 	

To show that w( f ) in Lemma 1 equals the 2-rainbow domination number of Cn�C3

we use the concept introduced in Chunling et al. (2009).
Let f be any 2RDF of Cn�Cm and let

V0 = {v ∈ Cn�Cm : f (v) = ∅},
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V1 = {v ∈ Cn�Cm : f (v) = {1} or f (v) = {2}},
V2 = {v ∈ Cn�Cm : f (v) = {1, 2}},

Vi1i2 = {v ∈ V0 : |N (v) ∩ Vt | = it , t = 1, 2},
E1 = {uv ∈ E(Cn�Cm) : u, v ∈ V1},
E2 = {uv ∈ E(Cn�Cm) : u, v ∈ V2},

E12 = {uv ∈ E(Cn�Cm) : u ∈ V1, v ∈ V2}.

Obviously V = V (Cn�Cm) = V0 ∪ V1 ∪ V2, Vi ∩ Vj = ∅, i, j = 0, 1, 2, i �= j.
Let

W = {V01, V02, V03, V04, V11, V12, V13, V20, V21, V22, V30, V31, V40} .

Observe that the collection W is pairwise disjoint and V0 = ⋃
S∈W S.

Now, we establish |E(V0, V1)| . On the one hand,

|E(V0, V1)| = 4 |V1| − |E12| − 2 |E1|

and on the other hand,
|E(V0, V1)| = |V11|+|V12|+|V13|+2 |V20|+2 |V21|+2 |V22|+3 |V30|+3 |V31|+

4 |V40| .
Similarly, |E(V0, V2)| = 4 |V2|−|E12|−2 |E2| and |E(V0, V2)| = |V01|+|V11|+

|V21| + |V31| + 2 |V02| + 2 |V12| + 2 |V22| + 3 |V03| + 3 |V13| + 4 |V04| .
Therefore,
|E(V0, V1)| + 2 |E(V0, V2)| = 4 |V1| + 8 |V2| − 2 |E1| − 3 |E12| − 4 |E2|
and
|E(V0, V1)| + 2 |E(V0, V2)| = 2(|V | − |V1| − |V2|) + |V11| + 3 |V12| + 5 |V13| +
2 |V21| + 4 |V22| + |V30| + 3 |V31| + 2 |V40| + 2 |V02| + 4 |V03| + 6 |V04| .
Hence (because of |V | = mn)
6 |V1|+12 |V2|−3 |E12|−2 |E1|−4 |E2| = 2mn+2 |V2|+|V11|+3 |V12|+5 |V13|+
2 |V21| + 4 |V22| + |V30| + 3 |V31| + 2 |V40| + 2 |V02| + 4 |V03| + 6 |V04| .

Since w( f ) = |V1| + 2 |V2| , thus
6w( f ) = 2mn + 2 |V2| + |V11| + 3 |V12| + 5 |V13| + 2 |V21| + 4 |V22| + |V30| +

3 |V31| + 2 |V40| + 2 |V02| + 4 |V03| + 6 |V04| + 3 |E12| + 2 |E1| + 4 |E2| .
Let

β = 2 |V2| + |V11| + 3 |V12| + 5 |V13| + 2 |V21| + 4 |V22| + |V30|
+3 |V31| + 2 |V40| + 2 |V02| + 4 |V03| + 6 |V04|
+3 |E12| + 2 |E1| + 4 |E2| , (2)

so

6w( f ) = 2nm + β. (3)
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Lemma 2 Let f be a 2RDF of Cn�C3. If w( f (Ci )) = 0 for some i ∈ {1, 2, . . . , n},
then w( f ) ≥ n + 2.

Proof We may assume without loss of generality that w( f (C2)) = 0. Consider the
following cases:

(1) If | (C1 ∪ C3
)∩V2| ≥ 3, then |V2| ≥ 3, |E2| ≥ 1 and by (2), β ≥ 2 |V2|+4 |E2| ≥

10.

(2) If | (C1 ∪ C3
) ∩ V2| = 2, then |E12| ≥ 2 and β ≥ 2 |V2| + 3 |E12| ≥ 10.

(3) If | (C1 ∪ C3
) ∩ V2| = 1, then |E12| ≥ 2, |E1| ≥ 2 and β ≥ 2 |V2| + 2 |E1| +

3 |E12| ≥ 12.

(4) If | (C1 ∪ C3
) ∩ V1| = 6, then |E1| ≥ 6 and β ≥ 2 |E1| ≥ 12.

Further from (3), w( f ) =
⌈

n + β
6

⌉
≥ ⌈

n + 10
6

⌉ = n + 2, as desired. 	


Theorem 3

γr2(Cn�C3) =
⎧
⎨

⎩

n, i f n ≡ 0 mod 6,

n + 1, i f n ≡ 1, 2, 3, 5 mod 6,

n + 2, i f n ≡ 4 mod 6.

Proof From Lemma 1 we have that γr2(Cn�C3) = n for n ≡ 0 mod 6.

For the proof it suffices to show that one cannot construct a 2RDF f of Cn�C3
with w( f ) = n for n ≡ 1, 2, 3, 5 mod 6 and with w( f ) ≤ n + 1 for n ≡ 4 mod 6.

Suppose that n ≡ 1, 2, 3, 5 mod 6, and suppose f is 2RDF of Cn�C3 such that
w( f ) = n. Lemma 2 implies that w( f (Ci )) = 1 for i = 1, 2, . . . , n. Without loss of
generality assume that f (v11) = 1.

First note that f (v21) = 0. Indeed, if f (v21) ∈ V1, then w( f (C3)) ≥ 2 (otherwise
v22 and v23 would not be dominated).

So either v22 ∈ V1 or v23 ∈ V1. Suppose that v22 ∈ V1, then f (v22) =
2 (otherwise w( f (C3)) ≥ 2). Observe that it must be that f (v33) = 1, since v23
must be dominated. Continuing in this way, we obtain that

This shows that f is not a 2RDF of Cn�C3 for n ≡ 1, 2, 3, 4, 5 mod 6, because
of v13 ∈ V0 but 2 /∈ ⋃

x∈N (v13)
f (x).

The similar fact holds for f (v23) = 2. Namely, we have the following situation:

Therefore, γr2(Cn�C3) > n for n ≡ 1, 2, 3, 4, 5 mod 6. By Lemma 1 we have that
γr2(Cn�C3) = n + 1 for n ≡ 1, 2, 3, 5 mod 6.
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Finally, suppose that γr2(Cn�C3) = n + 1 for n ≡ 4 mod 6. By Lemma 2, we may
assume that w( f (Ci )) = 1 for i = 1, 2, . . . , n − 1. Suppose that f (v11) = 1. By
above we have

or

and it is easy to check that one cannot dominate all vertices of C1 ∪ C6l+3 ∪ C6l+4 to
obtain a 2RDF with w( f ) = n+1. So, by Lemma 1 we have that γr2(Cn�C3) = n+2
for n ≡ 4 mod 6. 	


Roughly speaking, γr2(Cn�C3) is very close to the general lower bound in (1).
Note that for C6l�C3 the lower bound in (1) is attained.

3 2-Rainbow domination number of Cn�C5

Now, we give an upper bound of the 2-rainbow domination number of Cn�C5. More-
over, we show that this bound is attained for small n. We do believe that it is also
attained for any n ≥ 3. First we give the useful result.

Lemma 4 For any n ≥ 8 there exist nonnegative integers a, b such that n = 5a +3b.

In general, the above fact is known as Frobenius problem.

Theorem 5 For n ≥ 3, γr2(Cn�C5) ≤ 2n.

Proof For n ≤ 7, let us define the functions f as follows

f3 = f (V (C3�C5)) =

⎛

⎜
⎜
⎜
⎜
⎝

2 0 0
0 0 1
0 2 0
1 0 2
0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

, f (V (C4�C5)) =

⎛

⎜
⎜
⎜
⎜
⎝

2 2 0 0
0 0 1 1
0 2 0 0
1 0 0 2
0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

,

f5 = f (V (C5�C5)) =

⎛

⎜
⎜
⎜
⎜
⎝

2 1 0 0 0
0 0 0 2 1
0 2 1 0 0
1 0 0 0 2
0 0 2 1 0

⎞

⎟
⎟
⎟
⎟
⎠

.
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Observe that

f3| f3
d f=

⎛

⎜
⎜
⎜
⎜
⎝

2 0 0
0 0 1
0 2 0
1 0 2
0 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 0 0
0 0 1
0 2 0
1 0 2
0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

is a 2RDF of C6�C5. Further,

f (V (C7�C5)) =

⎛

⎜
⎜
⎜
⎜
⎝

2 1 0 0 2 0 0
0 0 0 1 0 0 1
0 2 2 0 2 2 0
1 0 0 1 0 0 2
0 0 2 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

.

By above, it is an easy exercise to check that w( f ) = 2n, for n ≤ 7.

Additionally, note that the functions f5| f5, f5| f3 and f3| f5 are also 2RDFs of
C10�C5, C8�C5, C8�C5, respectively.

Let n ≥ 8, then by Lemma 4 we have n = 5a + 3b, a, b ≥ 0. Let f : V (Cn) →
P({1, 2}) be defined as follows:

f (V (Cn�C5)) =
a times

︷ ︸︸ ︷
f5 |· · · | f5|

b times
︷ ︸︸ ︷
f3 |· · · | f3.

it is easy to verify that f is a 2RDF of Cn�C5(n ≥ 8) and w( f ) = 2n. Therefore,
γr2(Cn�C5) ≤ 2n(n ≥ 3), as desired. 	


Our aim is to show that for n = 3, 4, 5, 6, γr2(Cn�C5) = 2n. For this purpose, we
prove the following Lemma.

Lemma 6 Let f be a 2RDF of Cn�C5 and Cr , Cs, Ct be three consecutive columns
of Cn�C5.

(i) If w( f (Cs)) = 0, then w( f
(Cr ∪ Ct

)
) ≥ 10.

(ii) If w( f (Cs)) = 1, then w( f
(Cr ∪ Ct

)
) ≥ 6.

Proof The proof follows immediately from the definition of a 2RDF. 	

Theorem 7 For n = 3, 4, 5, 6, γr2(Cn�C5) = 2n.

Proof By Theorem 3 γr2(C5�C3) = γr2(C3�C5) = 6, as required. Further, by
Theorem 5, it suffices to show that γr2(Cn�C5) ≥ 2n for n = 4, 5, 6. Let f be a γr2-
function of Cn�C5 for n = 4, 5, 6. If w( f (Ci )) ≥ 2 for any i ∈ {1, 2, . . . , n}, then
γr2(Cn�C5) ≥ 2n. Otherwise, there exists k ∈ {1, 2, . . . , n} such that w( f (Ck)) ≤ 1.

Without loss of generality suppose that k = 2.

First assume that w( f (C2)) = 0. By Lemma 6 (i) for s = 2, w
(

f
(C1 ∪ C3

)) ≥
10. Thus for n = 4, 5 we have γr2 (Cn�C5) ≥ 2n. Further, suppose that
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γr2 (C5�C6) = w
(

f
(C1 ∪ C2 ∪ C3

)) + w
(

f
(C4 ∪ C5 ∪ C6

)) ≤ 11. This implies
that w

(
f
(C4 ∪ C5 ∪ C6

)) = 1 but then f is not a 2RDF.

It remains to consider the case where w( f (C2)) = 1 and w( f (Ci )) �= 0 for
other i. From Lemma 6 (ii) for s = 2, we have w

(
f
(C1 ∪ C3

)) ≥ 6. Further
w

(
f
(C1 ∪ C2 ∪ C3

)) ≥ 7. Therefore, γr2(C5�C4) ≥ 2n = 8.

Let n = 5. Suppose that w( f ) = w( f
(C1 ∪ C2 ∪ C3

)
) + w( f

(C4 ∪ C5
)
) ≤ 9, so

w( f (C4)) = 1 = w( f (C5)). Applying Lemma 6 (ii) to C4 and C5 we get w( f (C3)) ≥
5 and w( f (C1)) ≥ 5. Thus we obtain γr2(C5�C5) ≥ 5 + 1 + 5 + 1 + 1 = 13.

However, this contradicts our assumption.
Let n = 6. Suppose that γr2(C5�C6) = w( f (C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6)) =

w( f (C1∪C2∪C3))+w( f (C4∪C5∪C6)) ≤ 11. Thus we have w( f (C4∪C5∪C6)) = 3
or 4. The condition w( f (C4 ∪ C5 ∪ C6)) = 3 implies that w( f (C4)) = w( f (C5)) =
w( f (C6)) = 1 but it is impossible by Lemma 6 (ii). For w( f (C4 ∪ C5 ∪ C6)) = 4
the possibilities for w( f (C4)), w( f (C5)), w( f (C6)), are (i) 1, 1, 2, (ii) 2, 1, 1, (iii)
1, 2, 1. Cases (i) and (ii) can be eliminated because of Lemma 6 (ii). In case (iii),
applying Lemma 6 (ii) to C4 and C5 we get w( f (C3)) ≥ 4 and w( f (C1)) ≥ 4. Thus
we obtain γr2(C5�C6) ≥ 4 + 1 + 4 + 1 + 2 + 1 = 13. However, this contradicts our
assumption. 	


Since γ (C5�C5) = 5, we have that γr2(C5�C5) = 10 = 2γ (C5�C5), see
Klavžar and Seifter (1995). Thus for this graph the upper bound in (1) is attained.
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