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Abstract We study certain adversary sequences for online strip packing which were
first designed and investigated by Brown, Baker and Katseff (Acta Inform. 18:207–
225) and determine the optimal competitive ratio for packing such Brown-Baker-
Katseff sequences online. As a byproduct of our result, we get a new lower bound of
ρ ≥ 3/2 + √

33/6 ≈ 2.457 for the competitive ratio of online strip packing.
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1 Introduction

In the two-dimensional strip packing problem a number of rectangles have to be
packed without rotation or overlap into a strip such that the height of the strip used is
minimum. The width of the rectangles is bounded by 1 and the strip has width 1 and
infinite height. Baker et al. (1980) show that this problem is NP-hard.

We study the online version of this packing problem. In the online version the
rectangles are given to the online algorithm one by one from a list, and the next
rectangle is given as soon as the current rectangle is irrevocably placed into the strip.
To evaluate the performance of an online algorithm we employ competitive analysis.
For a list of rectangles L, the height of a strip used by online algorithm A and by the
optimal solution is denoted by A(L) and OPT(L), respectively. The optimal solution
is not restricted in any way by the ordering of the rectangles in the list. Competitive
analysis measures the absolute worst-case performance of online algorithm A by its
competitive ratio supL{A(L)/OPT(L)} (cf. Pruhs et al. 2004).
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Regarding the upper bound on the competitive ratio for online strip packing, recent
advances have been made by Ye et al. (2009) and Hurink and Paulus (2008). Inde-
pendently they show that a modification of the well-known shelf algorithm yields an
online algorithm with competitive ratio 7/2 + √

10 ≈ 6.6623. We refer to these two
papers for a more extensive overview of the literature.

In the early 80’s, Brown et al. (1982) derived a lower bound ρ ≥ 2 on the com-
petitive ratio of any online algorithm by constructing certain (adversary) sequences
in a fairly straightforward way (cf. Sect. 2). These sequences were further studied by
Johannes (2006) and Hurink and Paulus (2008), who derived improved lower bounds
of 2.25 and 2.43, resp. (Both results are computer aided and presented in terms of
online parallel machine scheduling, a closely related problem.) The paper of Hurink
and Paulus (2008) also presents an upper bound of ρ ≤ 2.5 for packing such “Brown-
Baker-Katseff sequences”. The purpose of our present paper is to close the gap be-
tween 2.43 and 2.5 by presenting a tight analysis, showing that Brown-Baker-Katseff
sequences can be packed online with competitive ratio ρ = 3/2+√

33/6 and that this
is best possible. As a byproduct, we obtain a new lower bound ρ ≈ 2.457 for online
strip packing.

The result of this paper has been presented at the CTW 2010 (cf. Kern 2010).
Meanwhile, in a joint work with R. Harren, we tried to analyze a modified version of
Brown-Baker-Katseff sequences, yielding a slightly better lower bound (but no exact
analysis as here), cf. Harren and Kern (2011).

2 The instance construction

In this section we describe the construction of Brown-Baker-Katseff sequences Ln

according to Brown et al. (1982). In addition, we present an online algorithm for
packing the sequences Ln online with ratio ρ̂ = 3/2 + √

33/6. For convenience, let
throughout this note ρ̂ = 3/2 + √

33/6.
We define Ln as the list of rectangles (p0, q1,p1, q2,p2, . . . , qn,pn), where pi

denotes a rectangle of height pi and negligible width (no more than 1/(n + 1)), and
qi denotes a rectangle of height qi and width 1. The rectangle heights are defined
such that, when the items are packed online, each item must be packed on top of the
preceding ones. More precisely, we let

p0 = 1,

pi = βi−1pi−1 + pi−1 + αipi + ε ∀i ≥ 1,

q1 = β0p0 + ε,

qi = max{αi−1pi−1, qi−1, βi−1pi−1} + ε ∀i ≥ 2,

where αipi and βipi are distances the online algorithm has placed between earlier
rectangles, and ε is a small positive value. The value αipi denotes the vertical dis-
tance between rectangles pi−1 and qi , and the value βipi denotes the vertical distance
between qi and pi . This is illustrated in Fig. 1. The values αi and βi completely char-
acterize the behavior of the online algorithm when processing Ln. For consistency
we define in addition α0 = 0.
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Fig. 1 Online and optimal
packing of L2

By definition of the rectangles’ heights and widths, an online algorithm can only
pack the rectangles one above the other in the same order as the rectangles appear in
the list Ln. An optimal offline packing is obtained by first packing the rectangles qi on
top of each other and then pack all pi next to each other on top of the q-rectangles.
The sole function of the positive term ε is to ensure this structure on any online
packing. From now on we assume that ε is small enough to be omitted from the
analysis.

We start with the (simpler) upper bound:

Theorem 1 Each list Ln can be packed online with competitive ratio ρ̂ = 3
2 +

√
33
6 .

Proof Consider the online algorithm A that chooses β0 = ρ̂ − 1, α2 = 1/(ρ̂ − 1),
and all other gaps equal to 0. So p0 = 1, q1 = q2 = ρ̂ − 1,p1 = ρ̂, and p2 can
be computed from p2 = p1 + α2p2: We get p2 = ρ̂/(1 − 1

ρ̂−1 ) = (ρ̂−1)ρ̂

ρ̂−2 , or p2 =
(ρ̂ − 1)(3ρ̂ − 2) = 4ρ̂ − 2 by our choice of ρ̂.

We claim that the resulting algorithm is ρ̂-competitive when presented with Ln.

• After packing p0 = 1 we have A(L0) = ρ̂ and OPT(L0) = 1. Thus, the competitive
ratio is exactly ρ̂ at this point.

• After packing rectangle q1 the online and optimal packing increase by the same
amount. Thus the competitive ratio decreases.

• After p1 = ρ̂ we have A(L1) = β0p0 +p0 +q1 +p1 = ρ̂−1+1+ ρ̂−1+ ρ̂, while
OPT(L1) = q1 +p1 = 2ρ − 1. Hence A(L1)/OPT(L1) = (3ρ̂ − 1)/(2ρ̂ − 1) < ρ̂.

• After q2 we have A(L1q2) = A(L1) + q2 + α2p2 = 3ρ̂ − 1 + ρ̂ − 1 + 3ρ̂ − 2 =
7ρ̂ − 4, while OPT(L1q2) = p1 + q1 + q2 = 3ρ − 2. So A(L1q2)/OPT(L1q2) =
(7ρ̂ − 4)/(3ρ̂ − 2) = ρ̂. Again the competitive ratio is exactly ρ̂ at this point (by
definition of ρ̂).
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• After p2 we have A(L2) = A(L1q2) + p2 = 7ρ̂ − 4 + 4ρ̂ − 2 = 11ρ̂ − 6, while
OPT(L2) = q1 + q2 + p2 = 2ρ̂ − 2 + 4ρ̂ − 2 = 6ρ̂ − 4. Thus A(L2)/OPT(L2) =
(11ρ̂ − 6)/(6ρ̂ − 4) < ρ̂.

• For i ≥ 3 there are no more gaps introduced by online algorithm A. In particular,
p2 = p3 = p4 = · · · = (ρ̂ − 1)(3ρ̂ − 2) and qi = α2p2 = 3ρ̂ − 2 for all i ≥ 3.
When packing qi , the online and optimal packing increase by the same amount
and, thus, ρ-competitiveness is not violated. After packing pi+1, however, we have
OPT(Li+1) = OPT(Li) + qi+1 and A(Li+1) = A(Li) + qi+1 + pi+1 = A(Li) +
ρ̂qi+1. The height of the online packing grows exactly ρ̂ times as fast as the optimal
packing.

So, online algorithm A is ρ̂-competitive for the list of rectangles Ln. �

3 Lower bound on the competitive ratio

In this section we prove a lower bound of ρ̂ = 3/2 + √
33/6 on the competitive

ratio for online packing Brown-Baker-Katseff sequences—and hence for online strip
packing in general. The outline of the proof is as follows.

Assume that there exists a ρ-competitive online algorithm A with ρ < ρ̂. We
present this algorithm with the list Ln, with n arbitrarily large. To obtain a contradic-
tion we define a potential function �i on the state of the online packing after packing
rectangle pi . We argue that this potential function is both bounded from below and
that it decreases to −∞, giving us the required contradiction.

After packing the rectangle pi , we measure with γi how much online algorithm A

improves upon the ρ-competitiveness bound: We define γi through

A(Li) + γipi = ρOPT(Li).

The potential function �i is defined (after packing rectangle pi ) by

�i := γi + βi − (ρ − 2)αi

1 − αi

.

We admit that the potential function looks rather involved. Its exact form is simply
motivated by the technical analysis that follows. In particular, the potential function
is designed such that a certain “shift invariance” (cf. Lemma 2 below) holds, which
helps a lot in simplifying the analysis. (Yet, in Harren and Kern 2011 we analyze
“extended” Brown-Baker-Katseff sequences with a simpler potential �i = γi + βi

and considerable technical effort.)
The values of αi and βi are nonnegative by definition and γi is nonnegative by

the ρ-competitiveness of online algorithm A. Observe that shifting pi , say, upward,
increases βi and decreases γi by the same amount, so that shifting pi has actually
no effect on �i . In Lemma 2 we will see that the same holds w.r.t. shifting qi . Thus
the decisions of the online algorithm in “phase i” have no effect on �i , but rather
on subsequent potential values. (This phenomenon is observed also elsewhere, cf.,
e.g. Fuchs et al. 2005 or Harren and Kern 2011.) The crucial result is Lemma 6,
stating that ρ < ρ̂ forces a significant decrease of the potential in each step. Thus
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�i+1 → −∞ for i → ∞. On the other hand, in Lemma 5 we show among other
things that αi < 1/(ρ̂ − 1). As a consequence, �i > −1 for all i. This contradiction
finally implies ρ ≥ ρ̂, the main result of this note:

Theorem 2 The best possible ratio for packing Brown-Baker-Katseff sequences is
ρ̂ = 3/2 + √

33/6. This value also provides a lower bound for online strip packing.

The remainder of this note is concerned with the proofs of the afore mentioned
lemmata. We start by providing some basic properties (Lemmas 1 and 2 below) of
the potential function �i . In the following, ρ is assumed to be suitably close to ρ̂

whenever this is necessary.
First observe that the following equation defines pi+1 according to the construc-

tion rule for the list Ln. We will use it at several places during our analysis:

(βi + 1)pi = (1 − αi+1)pi+1. (1)

Lemma 1 If �i ≤ ρ − 1 then γi + βi + αi ≤ ρ − 1.

Proof

�i ≤ ρ − 1 ⇒ γi + βi − (ρ − 2)αi ≤ (ρ − 1)(1 − αi)

⇒ γi + βi + αi ≤ ρ − 1.
�

Lemma 2 The potential �i is invariant under shifting pi and/or qi .

Proof Shifting rectangle pi , say, upward by one unit does not affect OPT(Li) nor αi .
Furthermore, A(Li) increases by one unit and, hence, γipi decreases by one unit. At
the same time βipi increases by one unit, so that γi + βi remains constant and �i is
invariant under shifting pi .

To show that �i is invariant under shifting qi , assume w.l.o.g. that βi = 0, i.e.,
that pi has been shifted down to qi , and that we shift the concatenated rectangles
qipi simultaneously, say, upward. This causes an increase of pi by one unit, so A(Li)

increases in total by 2 units. On the other hand, OPT(Li) increases by just one unit, so
γipi will increase by ρ −2 units. Clearly, αipi increases by one unit and (1−αi)pi =
(1 + βi−1)pi−1 remains constant. Hence

�i = γipi − (ρ − 2)αipi

(1 − αi)pi

will indeed remain constant. �

Clearly, shifting pi and/or qi does have an effect on subsequent values like pi+1
and �i+1. Furthermore, even when we are only interested in packing Li , shifting
up pi or shifting down the concatenated qipi may result in an infeasible packing.
(Indeed, as we shift qipi down, pi decreases and after a while the packing may cease
to be ρ-competitive!) As long as we are only interested in the value of �i , however,
we may well shift pi and qi as we like, disregarding the competitiveness constraints.
We will make extensive use of this observation further on.
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Lemma 3

�i+1 = γi + (ρ − 1)βi − 1 + (ρ − 1)qi+1/pi

1 + βi

.

Proof By Lemma 2 we can shift rectangle pi+1 down, i.e. βi+1 = 0. Then

(1 − αi+1)pi+1�i+1 = (
γi+1 + βi+1 − (ρ − 2)αi+1

)
pi+1

=(Lem. 2)
(
γi+1 − (ρ − 2)αi+1

)
pi+1

= ρOPT(Li+1) − A(Li+1) − (ρ − 2)αi+1pi+1

= ρ
(
OPT(Li) + qi+1 + βipi + αi+1pi+1

)

− (
A(Li) + αi+1pi+1 + qi+1 + pi+1

)

− (ρ − 2)αi+1pi+1

= γipi + ρβipi − (1 − αi+1)pi+1 + (ρ − 1)qi+1

=(1)
(
γi + (ρ − 1)βi − 1

)
pi + (ρ − 1)qi+1.

By (1) we can divide the left hand side by (1 − αi+1)pi+1 and the right hand side by
(1 + βi)pi to obtain the result. �

Lemma 4 If qi+1 = max{αipi, qi}, then we may assume w.l.o.g. that βi = 0.

Proof Shifting rectangle pi down decreases the distance βipi and increases
αi+1pi+1. However, when we keep all other distances equal it does not affect pj

with j > i. Due to the increase in αi+1pi+1 some qj with j > i may increase, but
this is only in favor of the online algorithm since the optimal value increases by ex-
actly the same amount. So the alternative online algorithm that schedules pi earlier
and leaves all other distances unchanged is also feasible. �

Lemma 5 For i ≥ 0, �i ≤ ρ−1, and for i ≥ 1, αi ≤ 1/(ρ̂−1) and qi/pi ≤ 1(ρ̂−1).
In case qi = αi−1pi−1 or qi = qi−1, we even have qi/pi ≤ (1 − αi)/(ρ̂ − 1).

Proof By induction: The claim holds for i = 0 since α0 = 0 by definition, γ0 + β0 =
ρ −1 and thus �0 = ρ −1. We assume the lemma holds up to i, and prove it for i +1
by case distinction on the way the height of rectangle qi+1 is determined. (For i = 1,
case 2 applies.)

Case 1: qi+1 = αipi .
By Lemma 4 we may assume βi = 0. By (1), this further implies pi = (1 −
αi+1)pi+1. Hence

qi+1

pi+1
= αipi

pi + αi+1pi+1
= αi(1 − αi+1)pi+1

(1 − αi+1)pi+1 + αi+1pi+1
= (1−αi+1)αi ≤ 1 − αi+1

ρ̂ − 1

by induction.
The online algorithm A is by assumption ρ-competitive after packing rectangle
qi+1, which means that the distance between rectangles qi+1 and pi is not too large,
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i.e., αi+1pi+1 ≤ γipi + (ρ − 1)qi+1 = γipi + (ρ − 1)αipi . Together with Lemma 1
this gives

αi+1 = αi+1pi+1

pi+1
= αi+1pi+1

pi + αi+1pi+1
≤ γi + (ρ − 1)αi

1 + γi + (ρ − 1)αi

≤ (ρ − 1)2

1 + (ρ − 1)2
<

1

ρ̂ − 1

for ρ ≤ ρ̂. (This upper bound for αi+1, obtained by setting γi = 0 and αi = ρ − 1
(cf. Lemma 1) is rather weak, but sufficient for our purposes.)
Finally, by Lemma 3, the induction assumption and Lemma 1 we get

�i+1 = γi − 1 + (ρ − 1)qi+1/pi = γi − 1 + (ρ − 1)αi < γi ≤ ρ − 1.

Case 2: qi+1 = βipi .
By Lemma 1 we have βi ≤ ρ − 1 and thus,

qi+1

pi+1
= βipi

(1 + βi)pi + αi+1pi+1
≤ βi

1 + βi

≤ ρ − 1

ρ
(2)

which is less than 1/(ρ̂ − 1) for ρ ≤ ρ̂.
The online algorithm A is by assumption ρ-competitive after packing rectangle
qi+1, which means that the distance between rectangles qi+1 and pi is not too
large, i.e. αi+1pi+1 ≤ γipi + (ρ − 1)qi+1 = γipi + (ρ − 1)βipi . This, together
with βi + γi ≤ ρ − 1 (by Lemma 1) gives

αi+1 = αi+1pi+1

pi+1
= αi+1pi+1

(1 + βi)pi + αi+1pi+1
≤ γi + (ρ − 1)βi

(1 + βi) + γi + (ρ − 1)βi

= γi + (ρ − 1)βi

1 + γi + ρβi

≤ (ρ − 1)

1 + (ρ − 1)
<

1

ρ̂ − 1

for ρ ≤ ρ̂. (In the upper bound computation for αi above we assumed that γi is
as large as possible and βi is as small as possible. This is justified by the fact that
ρ−1
ρ

< 1
ρ̂−1 .)

For the potential, Lemma 3 gives

�i+1 = γi + 2(ρ − 1)βi − 1

1 + βi

≤ 2(ρ − 1)2 − 1

ρ
, (3)

which is strictly less than ρ − 1 for ρ sufficiently close to ρ̂. (Again, for the last
inequality in (3), note that increasing βi as much as possible instead of γi is justified:
If we let f (β, γ ) = γ+2(ρ−1)β−1

1+β
, then

∂f

∂γ
= 1

1 + β
<

∂f

∂β
= 2(ρ − 1) − γ + 1

(1 + β)2
⇔ β + γ < 2ρ − 1.

The latter, however, is true as we assume β + γ ≤ ρ − 1.)
Case 3: qi+1 = qi .

Induction yields

qi+1

pi+1
= qi

pi+1
≤ (1 − αi+1)

qi

pi

≤ 1 − αi+1

ρ̂ − 1
.
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By Lemma 4 we can assume βi = 0, and thus

�i+1 = γi − 1 + (ρ − 1)
qi+1

pi

= γi − 1 + (ρ − 1)
qi

pi

≤ γi − 1 + (ρ − 1)
1

ρ̂ − 1
≤ γi ≤ ρ − 1.

To argue that αi+1 ≤ 1/(ρ̂ − 1) we shift the concatenated rectangles qi,pi down
as far as possible, i.e., until either γi = 0 or αi = 0 (thereby increasing αi+1). By
shifting qi,pi down, the length of pi decreases, therefore γi can become 0. At the
same time pi+1 increases, causing the optimal and online solution to increase by the
same amount. So the online algorithm is still ρ-competitive after this shift.
If γi = 0, then αi+1pi+1 ≤ (ρ − 1)qi+1 = (ρ − 1)qi ≤ pi . Thus αi+1 ≤ 1/2 ≤
1/(ρ̂ − 1).
If αi = 0, the rectangles pi−1, qi,pi are concatenated. To show αi+1 ≤ 1/(ρ̂ − 1)

for this case, we distinguish three subcases.

Case 3a: qi+1 = qi = αi−1pi−1.
By Lemma 4 we can assume βi−1 = 0 (and hence pi = pi−1). Thus we conclude
that γipi = γi−1pi−1 + (ρ − 1)qi − pi ≤ γi−1pi−1. Thus (using Lemma 1 again),

αi+1pi+1 ≤ (ρ − 1)qi+1 + γipi

≤ (ρ − 1)αi−1pi−1 + γi−1pi−1

≤ (ρ − 1)αi−1pi−1 + (ρ − 1 − αi−1)pi−1

≤ (ρ − 1)pi−1 + (ρ − 2)αi−1pi−1,

and therefore

αi+1 = αi+1pi+1

pi + αi+1pi+1
≤ ρ − 1 + (ρ − 2)αi−1

ρ + (ρ − 2)αi−1

≤ ρ − 1 + (ρ − 2)/(ρ̂ − 1)

ρ + (ρ − 2)/(ρ̂ − 1)
<

1

ρ̂ − 1

for ρ ≤ ρ̂.
Case 3b: qi+1 = qi = βi−1pi−1.

αi+1pi+1 ≤ (ρ − 1)qi+1 + γipi = (ρ − 1)qi + γipi

≤by (2)

(
(ρ − 1)2

ρ
+ γi

)
pi.

Since αi = 0 and βi = 0 we have �i = γi ≤ (2(ρ − 1)2 − 1)/ρ (cf. (3)). Thus,

αi+1 = αi+1pi+1

pi + αi+1pi+1
≤

(ρ−1)2

ρ
+ γi

1 + (ρ−1)2

ρ
+ γi

≤ (ρ − 1)2/ρ + 2((ρ − 1)2 − 1)/ρ

1 + (ρ − 1)2/ρ + 2((ρ − 1)2 − 1)/ρ
.
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The latter is increasing in ρ, so we conclude (after multiplying the enumerator and
denominator with ρ) that

αi+1 ≤ (ρ̂ − 1)2 + 2((ρ̂ − 1)2 − 1)

ρ̂ + (ρ̂ − 1)2 + 2((ρ̂ − 1)2 − 1)
= 1

ρ̂ − 1

by definition of ρ̂. (Recall that 3ρ̂2 − 9ρ̂ + 4 = 0.)
Case 3c: qi+1 = qi = qi−1. By Lemma 4 we may assume βi−1 = 0, so that actu-

ally qi−1,pi−1, qi,pi are concatenated and pi = pi−1. Since γipi = γi−1pi−1 +
(ρ − 1)qi − pi < γi−1pi−1, i.e., the improvement of A upon ρ-competitiveness
decreases, the value of αi+1 is smaller than αi could at most be, thus, in particular,
less than 1/(ρ̂ − 1). �

Lemma 6 �i+1 ≤ �i − ρ̂−ρ

ρ̂−1 .

Proof By case distinctions:

Case 1: qi+1 = αipi .
By Lemma 4 we can assume βi = 0. Furthermore, Lemma 2 allows us to shift pi+1
resp. the concatenated qi+1pi+1 down until αi+1 = βi+1 = 0 without affecting �i+1
(although this might result in a negative value of γi+1 in case �i+1 is negative).
Summarizing, let us assume that qi,pi, qi+1,pi+1 are concatenated.
We seek to analyze how �i and �i+1 vary as the concatenated qi,pi, qi+1,pi+1
are shifted upward. By Lemma 2, �i remains unchanged. As to �i+1, observe that
shifting qi,pi, qi+1,pi+1 upward by one unit will increase αipi and hence qi+1 as
well as pi and pi+1 by one unit each. Hence A(Li+1) increases by 4. On the other
hand, OPT(Li+1) increases by 2, so that γi+1pi+1 increases by (2ρ − 4). Hence
shifting qi,pi, qi+1,pi+1 upward will increase �i+1 as long as �i+1 < 2ρ − 4. So
we are led to distinguish the following two cases:

�i+1 > 2ρ − 4: In this case, �i+1 will increase as we shift qi,pi, qi+1,pi+1 down-
ward. Doing so, we decrease qi+1. So we eventually end up in a situation where
either qi+1 = qi (which will be treated in Case 3 below) or γi becomes zero (re-
vealing that �i = −(ρ − 2)α/(1 − α) must be negative). But γi = 0 implies

γi+1pi+1 = γipi + (ρ − 1)qi+1 − pi+1

= (ρ − 1)αipi − pi+1 ≤ (ρ − 1)αipi+1 − pi+1.

So �i+1 = γi+1 = (ρ − 1)αi − 1 < 0, contradicting our assumption that �i+1 >

2ρ − 4.
�i+1 ≤ 2ρ − 4: In this case �i+1 increases as we shift qi,pi, qi+1,pi+1 upward
until either qi gets tight in the sense that A(Li −pi) = ρ OPT(Li −pi) or �i+1 =
2ρ −4 is reached. The latter is impossible: Since γi+1pi+1 = γipi + (ρ −1)qi+1 −
pi+1, we conclude (using Lemma 1) that

�i+1 = γi+1 ≤ γi + (ρ − 1)αi − 1 ≤ ρ − 1 − αi + (ρ − 1)αi − 1

≤ (ρ − 2) + ρ − 2

ρ̂ − 1
< 2ρ − 4,

contradicting our assumption that �i+1 = 2ρ − 4.
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Finally, assume that qi gets tight. In this case, γipi = ρ(pi − pi−1) − pi ≥
ραipi − pi . So γi ≥ ραi − 1. Similarily, γi+1pi+1 = γipi + (ρ − 1)qi+1 − pi+1.
Dividing by pi+1 = pi , we obtain γi+1 = γi + (ρ − 1)αi − 1. Hence

	� = �i+1 − �i = γi+1 − �i = γi + (ρ − 1)αi − 1 − γi − (ρ − 2)αi

1 − αi

is maximized when γi is as small as possible, i.e. γi = ραi − 1. Thus

	� ≤ 2ραi − αi − 2 − 2αi − 1

1 − αi

= (2ρ − 1)αi − 1

1 − αi

.

This shows that 	� is indeed strictly negative since

αi(1 − αi) ≤ 1

2
· 1

2
= 1

4
<

1

2ρ − 1

for ρ ≤ ρ̂.
Case 2: qi+1 = βipi .

By Lemma 3 we have

	� = �i+1 − �i = γi + 2(ρ − 1)βi − 1

1 + βi

− γi + βi − (ρ − 2)αi

1 − αi

.

The derivative with respect to γi of the above is 1/(1 + βi) − 1/(1 − αi) ≤ 0, so
	� is decreasing in γi . Thus we may choose γi = 0. Additionally, we have αi ≤ βi ,
otherwise we are not in this case. With γi = 0 and under the constraints αi ≤ βi ≤
ρ − 1, αi + βi ≤ ρ − 1 we have

�i+1 − �i = 2(ρ − 1)βi − 1

1 + βi

− βi − (ρ − 2)αi

1 − αi

< −0.04.

Indeed, the function

	 = 	(α,β) = 2(ρ − 1)β − 1

1 + β
− β − (ρ − 2)α

1 − α

has partial derivative 	α = 0 for β = ρ − 2. Plugging this value into 	, we find
that the resulting 	 is independent of α and equals ρ − 2 − 1

ρ−1 < −0.1. On the
boundary α = 0 the function 	 = 	(β) is less than −0.04 for β ∈ [0, ρ − 1] and
on the boundary α = β the function 	 = 	(β) is bounded from above by −0.2 for
β ∈ [0,

ρ−1
2 ]. (Note that α = β implies β ≤ ρ−1

2 .) We omit the details.
Case 3: qi+1 = qi .

By definition of qi+1, we have αipi ≤ qi+1 = qi . Thus, Lemma 5 implies αi ≤
qi/pi ≤ 1−αi

ρ̂−1 or, equivalently, αi ≤ 1/ρ̂. Thus we conclude that

�i = γi − (ρ − 2)αi

1 − αi

≥ −(ρ − 2)αi

1 − αi

≥ −(ρ − 2)/ρ̂

1 − 1/ρ̂
> ρ̂ − 3 (4)

for ρ ≤ ρ̂.
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Now, as in Case 1, let us assume that βi = βi+1 = 0 and shift the concatenated
qi+1pi+1 down until αi+1 becomes zero as well. This leaves �i+1 (and, of course,
also �i ) invariant, but may result in a negative value of γi+1 in case �i+1 (= γi+1

after the shift) is negative. (As we are only interested in 	�, we do not care about
negative values of γi+1 here.) Thus assume that qi,pi, qi+1,pi+1 are concatenated.
We claim that shifting the concatenated qi,pi, qi+1,pi+1 down increases �i+1

(while leaving �i unchanged). Indeed moving down decreases both pi and pi+1

by one unit, so that in total A(Li+1) decreases by 3 units, while OPT(Li+1) de-
creases by only one unit. Thus γi+1pi+1 increases with 3 − ρ units while pi+1

decreases with one unit. This shows that moving qi,pi, qi+1,pi+1 down increases
�i+1 = γi+1 whenever �i+1 > ρ − 3.
To show that � decreases, we may assume that �i+1 > ρ − 3—else a significant
decrease of at least ρ̂−ρ follows already immediately from (4). But then, as we have
seen above, we may also assume w.l.o.g. that qi,pi, qi+1,pi+1 is shifted down as
far as possible, i.e., until αi = 0. (Note that this may even result in a negative value
of γi , but we do not care, as we are only interested in �-values.) When αi = 0,
however, then

	� = �i+1 − �i = γi+1 − γi

is significantly negative since γi+1pi+1 = γipi + (ρ −1)qi+1 −pi+1, so that γi+1 ≤
γi + ρ−1

ρ̂−1 − 1.

Summarizing, in each case there is a significant decrease in the potential function,
provided that ρ < ρ̂. �

4 Conclusions

We have solved the (30 year old) problem of analysing Brown-Baker-Katseff se-
quences and provided an optimal online algorithm for these sequences. Up to now all
previous lower bounds for online strip packing were based on Brown-Baker-Katseff
sequences. A natural question to ask is whether (or to what extent) these sequences
are worst case sequences for online strip packing. In Harren and Kern (2011) we
have tried to analyze more generally sequences of “thin” items pi and “blocking”
items qj , which are not necessarily alternating. We suceeded in proving lower and
upper bounds close to 2.6 for such sequences. Determining the exact value appears to
be involved, but in any case, our results show that to close the gap between the cur-
rently best lower bound of 2.6 and the currently best upper bound of 6.6, completely
new ideas are needed.
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