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Abstract
To develop and validate a mathematical model for predicting intracranial pressure (ICP) noninvasively using phase-contrast 
cine MRI (PC-MRI). We performed a retrospective analysis of PC-MRI from patients with communicating hydrocephalus 
(n = 138). The patients were recruited from Shenzhen Second People’s Hospital between November 2017 and April 2020, 
and randomly allocated into training (n = 97) and independent validation (n = 41) groups. All participants underwent lumbar 
puncture and PC-MRI in order to evaluate ICP and cerebrospinal fluid (CSF) parameters (i.e., aqueduct diameter and flow 
velocity), respectively. A novel ICP-predicting model was then developed based on the nonlinear relationships between the 
CSF parameters, using the Levenberg–Marquardt and general global optimisation methods. There was no significant differ-
ence in baseline demographic characteristics between the training and independent validation groups. The accuracy of the 
model for predicting ICP was 0.899 in the training cohort (n = 97) and 0.861 in the independent validation cohort (n = 41). 
We obtained an ICP-predicting model that showed excellent performance in the noninvasive diagnosis of clinically signifi-
cant communicating hydrocephalus.
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1  Introduction

Invasive monitoring via lumbar puncture is the current refer-
ence standard for measuring intracranial pressure (ICP) for 
the diagnosis and management of chronic disorders, includ-
ing hydrocephalus [1]. Several clinical practice guidelines 
state that invasive ICP monitoring can also be considered 
in other patient groups where there are concerns about 
elevated pressure and/or impaired cerebral perfusion [2–4]. 
However, invasive ICP monitoring is not suitable in all set-
tings, e.g., when immediate treatment for elevated ICP is 
required, particularly emergency departments, rural areas, 
and resource-poor settings [5]. Moreover, at most centres, 
only neurosurgeons are trained to use this invasive procedure 
[6], which requires the insertion of an ICP monitor that may 
result in several vital complications, including haemorrhage 
and infection [7, 8].

Noninvasive methods that have consequently been 
explored to estimate the ICP include the use of ultrasound 
signals to measure cerebral blood flow velocity indices [9], 
brain tissue resonance [10], skull vibrations [11], transcra-
nial time of flight [12], optic nerve sheath diameter assess-
ment [13], venous ophthalmodynamometry [14], otoacoustic 
emissions analysis [15], tympanic membrane displacement 
sensing [16], incremental intracranial compliance (and 
thereby ICP) estimations based on magnetic resonance 
imaging [17, 18], and visual evoked potential recordings 
[19]. However, all of these techniques have their limitations 
and have potentially low clinical utility. For example, tran-
scranial Doppler sonography could not be used for 10–15% 
of the patients due to the ultrasound not being able to pen-
etrate the skull [20]. Because of the perilymphatic duct being 
less passable with age, tympanic membrane displacement 
measurements have relatively low practicability [21]. More-
over, venous ophthalmodynamometry could be applied only 
in patients with elevated ICP without papilledema [21].

Phase-contrast cine MRI (PC-MRI) can be used to acquire 
information on fluid dynamics noninvasively with computer-
aided modelling. In our previous study [22], we have identi-
fied nonlinear relationships between ICP and two PC-MRI-
derived quantitative CSF parameters, i.e., aqueduct diameter 
and flow velocity. We have found that the ICP is increased 
with an average velocity above 1.628 cm/s (P < 0.001), and 
aqueduct diameter more than 3.6 mm (P ≤ 0.01). In this 
study, we aimed to further develop a novel mathematical 
model that can be used to evaluate these noninvasively 
acquired ICP-associated parameters based on their correla-
tions. We demonstrate the accuracy of our ICP-predicting 
model for potential clinical use in the diagnosis and manage-
ment of communicating hydrocephalus.

2 � Materials and methods

2.1 � Patients and management

This study included 138 participants recruited from Shen-
zhen Second People’s Hospital between November 2017 
and April 2020, retrospectively. All the included patients 
were diagnosed with communicating hydrocephalus and 
underwent lumbar puncture and PC-MRI examinations on 
the same day. These participants were randomly divided 
into training (n = 97) and independent validation (n = 41) 
groups for our model development and verification. Age, 
sex, heart rate, blood pressure, and body weight and height 
(used to calculate body mass index, BMI) were recorded 
for all the participants. The data collection methods were 
the same as those described in our previous study [22]. 
This study was approved by the local hospital Human 
Research Ethics Committee and was in accordance with 
the relevant provisions of the Helsinki Declaration on the 
ethics of clinical research. Informed consent was obtained 
from all the patients.

Inclusion criteria: (I) patients with clinical suspected or 
diagnosed communication hydrocephalus. (II) MRI show-
ing ventricular enlargement, Evan’s index was greater than 
0.3, but with normal sulcus. Exclusion criteria: (I) patients 
with complete obstructive hydrocephalus. (II) patients 
unsuited or unwilling to do a lumbar puncture and MRI. 
(III) suboptimal image quality for assessment and clinical 
diagnosis.

2.2 � Magnetic resonance imaging sequences

All MRI images were obtained using a 3.0 T MRI scan-
ner (Prisma, Siemens, Erlangen, Germany) with 20-channel 
phase-array head coils. All patients underwent conventional 
MRI scanning, including axial T2WI and a retrospective 
cardiac-gated phase contrast flow quantification sequence. 
The acquisition parameters were as follows. For axial T2WI: 
TR/TE of 4000/117 ms; field of view 220 × 220 mm; slice 
thickness/slice intervals 6/1.8 mm; acquisition time 96 s; 
and flip angle 90°. For PC-MRI: TR/TE of 21/7 ms; field of 
view 160 × 160 mm; slice thickness/slice intervals 6/1.2 mm; 
velocity encoding 15 cm/s; acquisition time ~ 183 s; and flip 
angle 10°.

2.3 � Image analysis

Image processing of the MRI data was performed indepen-
dently by two radiologists who had 8 and 10 years of expe-
rience in brain MRI interpretation, respectively. The plane 
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of selection was chosen to pass through the mid-portion of 
the aqueduct perpendicular to the direction of CSF flow to 
measure the aqueduct diameter (Fig. 1). Regions of inter-
est in the aqueduct were defined using axial phase images, 
and the subsequent quantitative analysis of CSF flow was 
performed using the Flow Quantification analysis software 
(Siemens, Erlangen, Germany) that is available with the 
magnetic resonance scanner.

2.4 � Data Pre‑processing

First, for any series data (i.e., aqueduct diameter and aver-
age velocity or pressure) x = x1, x2, x3,… xn , the mean and 
variance were computed as follows:

 where n is the number of the patient, xi is the aqueduct 
diameter, average velocity or pressure of the i-th patient.

If the distance between a time point xi and its mean x 
satisfies a threshold value D = ||x − xi

|| < 3𝛿 , then xi was 
retained; otherwise, xi = x.

x=
1

n

n∑
i=1

xi,

�
2 =

1

n

n∑
i=1

(xi − x)2.

Second, the data were smoothed using a Gaussian filter-
ing with a window width of 18 (implemented using MAT-
LAB 2018a, The MathWorks, Inc., Natick, MA, USA).

2.5 � Nonlinear least squares

The relationship between the dependent variable y and 
the independent variables x1, x2,… , xp was calculated as 
follows.

y = f
(
x1, x2,… , xp;b1, b2,… , bm

)
 , where f  denoted 

a nonlinear function of the undetermined parameters 
b1, b2,… , bm . In this paper, y is pressure and x1, x2,… , xp 
are aqueduct diameter and average velocity.

The Levenberg–Marquardt method was then incorpo-
rated to determine the values of parameters in a nonlinear 
least squares model based on N sets of observations for 
variables x1, x2,… , xp and y.

In particular, we performed three calculation steps 
described as follows: 

1.	 Calculate the residual sum of squares Q:
	   First, set the observed data matrix X as:

	   The initial values of m parameters were defined as 
b0
i
(i = 1, 2,… ,m) , and these values were then used to 

calculate the residual sum of squares ( Q ) of N sets of 
data that is

where ŷi = f
(
x1, xi2,… , xip;b

0

1
, b0

2
,… , b0

m

)
.

2.	 Calculate the coefficients aij and constant terms aiy of the 
system:

	   Second, let bi − b0
i
= Δi(i = 1, 2,… ,m) . According to 

the principle of least squares, Δi(i = 1, 2,… ,m) satis-
fied the following linear equations

where  aij =
∑N

k=1
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�
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�
Δ1 + a12Δ2 +⋯ + a1mΔm = a1y
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�
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�
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⋯⋯⋯
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�
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�
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Fig. 1   Midsagittal T2 MRI depicting cerebral aqueduct. Image shows 
the position of the oblique slices for the cerebral aqueduct (A)
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and d was the damping factor. When d = 0 , the calcula-
tion could be considered as the usual Gauss–Newton 
iteration.

3.	 Solve Eq. (3) and perform the iterations: Equations (3) 
were solved to obtain Δi(i = 1, 2,… ,m) and then 
bi = Δi + b0

i
 . When max

i

|||bi − b0
i

||| = min
i

||Δi
|| < eps , the 

iteration was ended, where eps is the condition of stop-
ping iteration. Otherwise, b0

i
(i = 1, 2,… ,m) was 

regarded as the initial value of the parameters, and steps 
1 to 3 were repeated until the required accuracy was 
reached.

2.6 � Accuracy

We used the following formulae to calculate the accuracy: 
Absolute Error = SUM (|Predicted Value—Actual Value|), 
Relative Error Rate = Absolute Error / Sum of Actual Val-
ues, and then Accuracy = (1—Relative Error Rate) × 100%.

2.7 � Statistical analysis

All analyses were performed using EmpowerStats (https​
://www.empow​ersta​ts.com) and the statistical package R 
(version 3.2.3). Descriptive statistics were expressed as 
the mean ± standard deviation (SD) and were used to sum-
marise the baseline characteristics. The t-test is used to 
observe whether there is a difference in the data between 
the training group and the validation group. Bland–Altman 
plot is used to check the consistency of the two methods. 
A two-sided P value < 0.05 was considered to be statisti-
cally significant.

3 � Results

In this study, a total of 203 consecutive participants were 
screened, and 138 eligible patients recruited. 5 participants 
were excluded due to poor MRI image quality, 52 partici-
pants were excluded during the lumbar puncture because 
they were diagnosed with obstructive hydrocephalus, and 
another 8 patients were excluded because they were unwill-
ing to undergo the lumbar puncture or because their ICP 

could otherwise not be measured. The remaining 138 par-
ticipant’s data were divided into two groups, i.e., a training 
group (97 participants) and an independent validation group 
(41 participants), for the further analysis (Fig. 2). The base-
line demographic characteristics of the study population are 
summarised in Table 1.

Next, we performed Gaussian filtering on the data to 
eliminate extreme values, and the processed average veloc-
ity, aqueduct diameter and ICP could be obtained. Results 
are shown in Figs. 3, 4 and 5, in which X-axis represents 
the number of people in the training group, the blue * in the 
figure represents the original data, and the red line represents 
the data after Gaussian filtering.  

Using the Levenberg–Marquardt and general global opti-
misation methods, we modelled the relationships between 
ICP and both average velocity and aqueduct diameter as 
follows:

Z = P1 + P2 ∗ e

⎛
⎜⎜⎜⎝
−e

x − P3∕P4

⎞
⎟⎟⎟⎠
−

�
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�
+1

+ P5 ∗ e

⎛
⎜⎜⎜⎝
−e
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⎞
⎟⎟⎟⎠
−

�
y − P6∕P7

�
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+ P8 ∗ e

⎛
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−e
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⎟⎟⎟⎠
−
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−
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�
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Fig. 2   Flowchart of hydrocephalus participant enrolment

https://www.empowerstats.com
https://www.empowerstats.com
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Table 1   Baseline characteristics 
of the studied participants

P value indicates whether there is a difference between the training group and the independent validation 
group
BPM beats per minute, SBP systolic blood pressure, DBP diastolic blood pressure, BMI body mass index

Training group (n = 97) Testing group (n = 41) P value

Age (year) 57.814 ± 14.518 54.857 ± 20.565 0.736
Heart rate (BPM) 81.827 ± 14.833 81.789 ± 14.135 0.657
SBP (mmHg) 131.778 ± 20.824 128.464 ± 20.729 0.716
DBP (mmHg) 80.526 ± 10.239 79.857 ± 10.027 0.729
BMI 23.798 ± 2.147 24.687 ± 2.543 0.527

Fig. 3   The original and smoothed data for aqueduct diameter

Fig. 4   The original and smoothed data for average velocity

Fig. 5   The original and smoothed data for intracranial pressure

Fig. 6   The relationship between invasively measured (lumbar punc-
ture) intracranial pressure and model-predicted pressure
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where Z is ICP and X and Y are the average velocity 
(cm/s) and aqueduct diameter (mm), respectively. The 
parameters (P) were obtained as P1 = 128.32, P2 = 23.21, 
P3 = 0.49, P4 = − 0.15, P5 = 46.88, P6 = 2.96, P7 = 0.32, and 
P8 = − 71.70.

The fitted results for the measured pressure and the model-
predicted pressure are shown in Fig. 6. We obtained a root-
mean-square error (RMSE) of 5.42, a sum-of-squared error 
(SSE) of 2853.09, and a correlation coefficient (R) of 0.899. 
These results have demonstrated that the relevance of the 
model fit was very high.

We then tested the model in 41 independent validation 
participants by inputting the average velocity and aqueduct 
diameter of each patient into the model to predict their ICP. 
An analysis of accuracy showed that compared to ICP val-
ues obtained using lumbar puncture, the ICP predicted by our 
model resulted in an accuracy of 86.1% in the independent 
validation cohort. And draw the Bland–Altman plot to show 
the consistency test of the model-predicted and lumbar punc-
ture to obtain the intracranial pressure (Fig. 7). The mean of 
the difference is − 5.06 mmH2O, 95% limits of agreement 
(− 51.93 mmH2O, 41.81 mmH2O), 2.43% (1/41) of the points 
are outside the 95% LoA.

4 � Discussion

In this study, we developed and validated a mathematical 
model for the noninvasive prediction of ICP using non-
linear relationships between ICP and two CSF parameters 

derived from PC-MRI. The development of this model 
was based on the Levenberg–Marquardt and general global 
optimisation methods, which are the most widely used and 
tested methods for modelling curve-type relationships. We 
further validated the performance of this model in the non-
invasive diagnosis of communicating hydrocephalus based 
on ICP. We have found that the ICP values predicted by 
our model have shown excellent performance for estimat-
ing ICP in both the training and independent validation 
cohorts, in which it achieved an accuracy of 0.899 and 
0.861. And the Bland–Altman chart shows that 97.5% of 
the results of the two measurement methods are within 
the 95% LoA, and the normal value of clinical intracranial 
pressure fluctuates in the range of 80–180 mmH2O, respec-
tively, and showed significant agreement with measures 
obtained using an invasive ICP test (lumbar puncture). 
Hence, the model developed in this study is accurate and 
could help clinicians to predict ICP noninvasively.

In previous studies [17, 18], noninvasive MRI based mod-
els were designed to predict ICP based on the ratio of intrac-
ranial volume changes to ICP gradients. In those models, 
arterial blood flow velocity, venous blood flow velocity, and 
CSF velocity were measured to obtain cranial volume. The 
value of the ICP gradient was then obtained using a complex 
formula, and the elastic index was then calculated to obtain 
ICP. While this method was based on rigorous physiologi-
cal mechanisms, it may take considerable time in specific 
operations. There is also a distinct difference between the 
flow velocity and the venous blood flow velocity. If the 
selected speed encoding value was too high or too low, it 

Fig. 7   Bland–Altman plot of 
model-predicted intracranial 
pressure and measured (lumbar 
puncture) pressure
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may cause a convolution effect in the phase image, which 
is substantially different from the real situation. In order to 
avoid this situation to occur, different speed encoding scans 
could be chosen within a specific range, and images closer to 
the real situation are selected for post-processing. However, 
this procedure takes a long time, making this approach not 
feasible or efficient for the diagnosis and treatment of emer-
gency patients, such as those with increased ICP. Compared 
to these previously proposed methods, our developed model 
only needs to determine the speed coding of the cerebrospi-
nal fluid, which only takes a few minutes.

A previous study [23] also suggested that ICP can be 
estimated based on the width of the orbital subarachnoid 
space. This method is similar to our use of aqueduct diam-
eter; however, our model also incorporates a dynamic CSF 
parameter, i.e., the average velocity. One major difference 
between our model and the previously proposed models of 
ICP is that previous models used linear correlation func-
tions, whereas we have utilised a nonlinear function. We 
advocate this approach because the findings of our previous 
study have shown that the relationships between ICP and 
both aqueduct diameter and CSF are nonlinear [20].

The findings from this study have significant clinical 
value. The current treatment for communicating hydro-
cephalus is a ventriculoperitoneal shunt [24], which is 
widely used because it has an adjustable pressure valve 
that allows the shunt speed to be adjusted in vitro, and 
this reduces the occurrence of postoperative complica-
tions. However, there is little consensus regarding how to 
set the pressure to achieve the best results. Moreover, this 
approach, which adjusts the valve speed based on improve-
ment in the patient’s clinical symptoms and the clinician’s 
experience, is highly subjective. Furthermore, the inva-
siveness of the lumbar puncture procedure may also result 
in postoperative harm [25]. Therefore, our model, which 
provides a noninvasive strategy for predicting ICP, can be 
valuable for clinicians because it allows them to adjust 
the shunt threshold and avoid potential secondary injuries 
caused by lumbar puncture.

There are limitations to this current retrospective study. 
First, there were few patients with extremely high ICP values 
in our study; therefore, when we performed Gaussian filter-
ing, we excluded these extremely high values to ensure the 
stability of the simulated data. Therefore, our model may 
not be sensitive in the prediction of extremely high ICP. 
Second, because we selected only patients with communi-
cating hydrocephalus and excluded those with obstructive 
hydrocephalus, the proposed model was validated only for 
communicating hydrocephalus. This limitation could be 
resolved in future studies that include patients with differ-
ent types of hydrocephalus. Third, PC-MRI and the lumbar 
puncture examination were not performed at the same time, 
and this may have affected our results to some extent, but 

we do not expect that this factor had a significant impact 
on our findings. Therefore, experiments in which PC-MRI 
and lumbar puncture are performed at the same time may 
represent a useful future research direction to support the 
noninvasive modelling of ICP.

In conclusion, we developed a mathematical model that 
predicts ICP in noninvasive PC-MRI derived CSF param-
eters, such as aqueduct diameter and average velocity. We 
further validated its accuracy by showing that the results 
obtained using this model were significantly correlated with 
those obtained by invasive ICP (lumbar puncture) in com-
municating hydrocephalus patients. While we do not suggest 
that PC-MRI should replace invasive ICP monitoring, the 
proposed model could be potentially helpful for evaluating 
patients who are poor candidates for invasive procedures.
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