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Abstract Ventilation treatment of acute lung injury (ALI)

requires the application of positive airway pressure at the end

of expiration (PEEPapp) to avoid lung collapse. However, the

total pressure exerted on the alveolar walls (PEEPtot) is the

sum of PEEPapp and intrinsic PEEP (PEEPi), a hidden

component. To measure PEEPtot, ventilation must be dis-

continued with an end-expiratory hold maneuver (EEHM).

We hypothesized that artificial neural networks (ANN) could

estimate the PEEPtot from flow and pressure tracings during

ongoing mechanical ventilation. Ten pigs were mechani-

cally ventilated, and the time constant of their respiratory

system (sRS) was measured. We shortened their expiratory

time (TE) according to multiples of sRS, obtaining different

respiratory patterns (Rpat). Pressure (PAW) and flow (V0
AW)

at the airway opening during ongoingmechanical ventilation

were simultaneously recorded, with and without the addition

of external resistance. The last breath of each Rpat included

anEEHM,whichwas used to compute the reference PEEPtot.

The entire protocol was repeated after the induction of ALI

with i.v. injection of oleic acid, and 382 tracings were

obtained. The ANN had to extract the PEEPtot, from the

tracings without an EEHM. ANN agreement with reference

PEEPtot was assessed with the Bland–Altmanmethod. Bland

Altman analysis of estimation error by ANN showed

-0.40 ± 2.84 (expressed as bias ± precision) and±5.58 as

limits of agreement (data expressed as cmH2O). The ANNs

estimated the PEEPtot well at different levels of PEEPapp
under dynamic conditions, opening up new possibilities in

monitoring PEEPi in critically ill patients who require ven-

tilator treatment.

Keywords Artificial neural networks � Acute lung

injury � Intrinsic positive end expiratory pressure � Animal

model

1 Introduction

Mechanical ventilation (MV) is currently used in patients

with respiratory failure in the intensive care unit as well as

during anesthesia in patients undergoing different surgical

procedures. Caregivers, as part of respiratory therapy, may

decide tomaintain a certain amount of pressure in the lungs at

the end of expiration in order to prevent end-expiratory lung

collapse that may compromise oxygenation and gas

exchange as well as make the lungs more prone to
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ventilation-induced lung injuries. This pressure is usually

termed applied positive end-expiratory pressure (PEEPapp)

and can be directly implemented on the control interface of

the ventilator.

However, the total positive end-expiratory pressure

(PEEPtot) inside the lungs at the end of expiration is gen-

erated by the combination of ventilator settings and the

respiratory mechanics of the connected patient. The com-

ponent of PEEPtot produced by incomplete expiration

(Fig. 1) is termed intrinsic PEEP (PEEPi) [1]:

PEEPtot ¼ PEEPapp þ PEEPi ð1Þ

PEEPi develops as a result of two possible conditions: (a) a

discrepancy between the allowed expiratory time and the

time needed to empty the lungs according to the time

constant (compliance and resistance) of the respiratory

system and (b) the expiratory flow limitation, typical of

chronic obstructive pulmonary disease and other pul-

monary diseases where airways narrow and even close

during expiration, trapping air.

During artificial ventilation, PEEPtot has positive and

negative consequences for the respiratory and cardiovas-

cular systems. The PEEPtot affects oxygenation, gas

exchange (redistributing blood flow and ventilation) and

respiratory system mechanics (shifting the pressure/volume

curve of the lung). Furthermore, the PEEPtot has potential

effects on the integrity of the lung parenchyma (increasing

the potential for ventilator-induced lung injury) as well as

cardiovascular dynamics (increasing the intra-thoracic

pressure reduces venous return and cardiac output).

Thus, awareness of the PEEPtot is very important during

mechanical ventilation.Although the PEEPapp is known to the

physician, PEEPi is hidden andmostly unpredictable. Thus, it

requires monitoring. Different methods have been proposed

for estimating PEEPi during controlled mechanical ventila-

tion (CMV).A frequently usedmethod for estimatingPEEPtot
in paralyzed patients who are mechanically ventilated

involves creating static conditions and applying an end-ex-

piratory holdmaneuver (EEHM),with cessation of gas flow at

end-expiration from the airways. Once the PEEPtot and

PEEPapp are known, PEEPi can be calculated (Eq. 1) [2, 3].

PEEPtot assessed with an EEHM is the reference value

for patient monitoring. However, it requires the discon-

tinuation of the cyclic succession of inspiration and expi-

ration for a varying number of seconds, and in patients with

acute respiratory distress, these repetitive respiratory pau-

ses can be dangerous. Therefore, a continuous non-invasive

monitoring method for PEEPtot would be advantageous.

We hypothesized that artificial neural networks (ANNs),

fed by inspiratory airway pressure and flow, would enable

the measurement of PEEPtot and its components PEEPi and

PEEPapp during ongoing mechanical ventilation. The aim

was to test this hypothesis in an animal model, training

ANNs on examples of PEEPi generated by the progressive

shortening of the expiratory time (TE).

Therefore, the objectives of the present contribution

were as follows: to train one ANN to assess PEEPtot from

dynamic respiratory tracings and to test the ANN perfor-

mance, assessing any dependency of the estimation error

by PEEPapp.

Fig. 1 Respiratory tracings

depicting the methods for

detecting the persistence of

alveolar pressure at the end of

expiration. PEEP positive end

expiratory pressure, PEEPapp

applied PEEP, PEEPi,dyn

intrinsic PEEP measured in

dynamic conditions, i.e. without

stopping inspiratory flow,

PEEPi,stat intrinsic PEEP

measured in static conditions,

i.e. during a breath-hold

maneuver. Further explanation

in the text
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2 Materials and methods

2.1 Experimental design

This study was composed of two phases. During the first

phase, a porcine model of pulmonary dynamic hyperin-

flation with the progressive reduction of the allowed

expiratory time set on the ventilator was created. Pressure

(PAW) and flow (V0
AW) at the airway openings were

recorded in different scenarios: with and without additional

resistance, during healthy conditions and after acute lung

injury. From these tracings, expiratory time constant (sRS),
respiratory system resistance (RRS) and compliance (CRS),

total static PEEP (PEEPtot,stat) and total dynamic PEEP

(PEEPtot,dyn) were calculated. During the second phase, an

artificial neural network was trained and tested to estimate

PEEPtot,stat from the recorded signals.

2.2 Animal model

The present study was approved by the local institutional

review board for the care of animal subjects; the care and

the handling of the animals were in accordance with the

regulations of the Swedish Board for Laboratory Animals

and executed following the European Union Directive

2010/63/EU for animal experiments.

Ten healthy pigs (Hampshire, Yorkshire and Swedish

mixed country breed;weight 30.0 ± 2.5 kg)were included in

the study. They were premedicated with azaperone 40 mg im

(Janssen, Wien, Austria) at the farm. Anesthesia was induced

with intramuscular administration of atropine (0.04 mg/kg),

tiletamine-zolazepam 5 mg/kg (Boehringer Ingelheim,

Copenhagen, Denmark) and medetomidine 5 lg/kg (Orion

Pharma AB, Sollentuna, Sweden). The trachea was intubated

via tracheostomy, using a cuffed endotracheal tube (n. 5.5,

Portex, Smiths Medical Inc, St Paul, USA). Then total intra-

venous anesthesia started, by the administration of ketamine

20 mg/kg/h (Vetpharma AB, Zurich, Switzerland), and fen-

tanyl 5 lg/kg/h (Pharmalink, Spånga, Sweden). After ade-

quate anesthesia was achieved (tested by lack of reaction to

painful stimulation between the front hooves), i.v. infusion of

pancuronium 0.24 mg/kg/h (Organon Teknika, Göteborg,

Sweden) was added. During each experiment, the fluid

replacement strategy, based on the constant infusion of

Rehydrex� (Fresenius Kabi, Uppsala, Sweden) with glucose

25 mg/ml at a starting rate of 5 ml/kg/h, aimed atmaintaining

stable systemic arterial pressure. Instrumentation consisted of

the insertion of an 18 gauge catheter into the left carotid artery

for continuous invasive arterial pressure measurement and

sampling of arterial blood gases. Another 18-gauge catheter

was introduced into the right external jugular vein, together

with a floating tip pulmonary artery (PA) catheter. The latter

catheter was inserted and positioned as guided by the pressure

tracings on the connected bedside monitor (CS/3TM, Datex

Ohmeda, Helsinki, Finland). This set-up allowed the mea-

surement of cardiac output, with injection of cold boluses of

physiological saline (approximately 10 ml per bolus at a

temperature of 3–5�C, in triplicate) randomly during the res-

piratory cycle and the continuous monitoring of blood tem-

perature by using the sensor located in the PA catheter.

Urinary output was measured with a surgically inserted

suprapubic bladder catheter. Arterial and mixed venous

samples were taken to measure pO2, pCO2 and pH with a

blood gas machine (ABL 300, Radiometer, Copenhagen,

Denmark) during various phases of the experiment.

2.3 Ventilation and creation of intrinsic PEEP

At the beginning of each experimental session, all pigs

were ventilated using volume controlled - constant flow

mechanical ventilation (VC-MV; Servo 300, Siemens

Elema, Solna, Sweden). The tidal volume (VT) was set

between 8 and 9 ml/kg to obtain normocapnia (PaCO2

35–45 mm Hg). PEEPapp was initially set to 5 cmH2O.

Inspiratory fraction of oxygen (FIO2) was maintained at

0.5. The inspiratory-to-expiratory ratio was set to 1:2

(s) and the respiratory rate 20 breaths/min. After a stabi-

lization period of 45 min after instrumentation, the animals

were randomized to receive an applied PEEP of 0, 5 or 10

cmH2O, and a baseline recording of airway pressure and

flow (PAW and V0
AW) was obtained. A tracing of the

inspired volume (VRS) versus time was obtained from

V0
AW by integration. Using the slope of the expiratory

volume/flow curve, the expiratory time constant of the

respiratory system, sRS, was determined. This was used to

calculate the ventilation patterns in the second part of the

experiment. During constant minute ventilation and respi-

ratory cycle time (TTOT), the expiratory time was pro-

gressively shortened in proportion to expiratory sRS. The
experimental protocol was composed of different recording

sessions of PAW and V0
AW, characterized by an expiratory

time equal to decreasing multiples of sRS, 3.0, 2.5, 2.0, 1.5,
1.0 times sRS. After the TE was set to a predefined multiple

of sRS, ventilation was maintained until a steady state was

reached (verified by observing a stable peak pressure) and

never\5 min. Then PAW and V0
AW were recorded for 10 or

more consecutive cycles; the last breath had an end-inspi-

ratory hold maneuver (EIHM) and an EEHM. This last

breath was used to estimate PEEPtot,dyn and PEEPtot,stat.

After the measurements at the different multiples of sRS,
the TE was returned to three times sRS, and resistance

(RADD) was added in series with the endotracheal tube. It

consisted of a pediatric n.3 tube (Mallinckrodt Medical,

Athlone, Ireland). The purpose of its application was to
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increase tube resistance and to increase the time constant of

the system connected to the ventilator. The same protocol

of progressive reduction of the TE in multiples of sRS was

applied in the presence of RADD. After the last recording,

RADD was removed, and the TE was again returned to three

times sRS.
Acute lung injury (ALI) was then induced by repeated

injections of small boluses of oleic acid (OA; Apoteksbo-

laget, Göteborg, Sweden) into the central venous catheter,

targeting a total dose of 0.1 ml/kg [4]. Administration of OA

was suspended if SaO2 fell to 80 %. After a period of 2–3 h,

when stable circulation had been achieved, similar recording

sessions with a progressive reduction of the TE in proportion

to sRS were obtained. Then, as before, the measurements

were repeated with the additional resistance (RADD).

From the 10 animals involved in the study, a total of 20

recording sessions per animal were acquired in duplicate,

for a total of 400 tracings. Of these, 18 of the 400 were

discarded due to technical reasons, and the final pool of

data included the remaining 382 tracings.

2.4 Recording of the respiratory variables

During mechanical ventilation, V0
AW was recorded with a

Fleisch pneumotachograph (Laminar Flow Element type PT,

Special Instruments GmbH, Nördlingen, Germany) posi-

tioned between the endotracheal tube and the ventilator and

connected to a differential pressure transducer (Diff-Cap

Pressure Transducer, Special Instruments GmbH, Nördlin-

gen, Germany). Calibration of the flow measurement device

was performed by using a source of constant flow and a

precision flow meter (Calibration Analyzer TS4121/P,

Timeter Instrument Corporation, St. Louis, MO, USA)

connected in series with the transducer to be calibrated.

PAW, esophageal and gastric pressures were measured

with pressure transducers (Digima Clic Pressure Trans-

ducers, Special Instruments GmbH, Nördlingen, Germany).

Signals from the transducers were forwarded to an analog/

digital converter card (DAQ-card AI-16XE50, National

Instruments Corp., Austin, TX, USA) and stored on a PC at

a sampling frequency of 200 Hz, using BioBench software

(ver. 1.0, National Instruments Corp.).

From the breath preceding the one used to feed the

ANN, CRS and RRS were calculated by applying the

interrupter technique, as described by Bates et al. [5].

2.5 Data analysis and the neural network

The tracings, after having been filtered in the range between

49.6 and 50.4 Hz, were downsampled at 100 Hz, in order to

reduce redundancy among neighboring points. The onset of

the inspiratory flow (tINIFLOW)was identifiedwith a computer

script: This was used to cut out from the tracing of V0
AW and

PAW the segments of curves extending from 0.1 s before

tINIFLOW to 0.1 s after tINIFLOW (see Fig. 2). The segments

(consisting of 20 V0
AW points and 20 PAW points) formed an

input pattern of 40 points that fed the neural network.

The ANN was implemented via software on a computer

(Neural Networks Toolbox ver. 3.0 for MatLab ver. 5, The

MathWorks Inc., Natick, MA, USA). The learning algo-

rithm was resilient backpropagation. The ANNs consisted

of three layers, whose activating functions were log-sig-

moids for the input and the intermediate layer and linear for

the output layer. The number of neurons in the input layer

was 40 (determined by the dimensions of the input pattern).

The output layer consisted of 1 neuron, yielding PEEPtot,stat
calculated by the ANN. To determine the best architecture,

that is, the number of intermediate neurons that provided

the best performance for the required task, we used eight-

fold cross-validation with early stopping. More details

about this method can be found in the study by Haykin [6]

and in our previous papers [7, 8]. The ANN architecture

that showed the best performance had 18 intermediate

neurons. The training data set included 305 input patterns

out of 382 recordings; the remaining 77 were used as the

data test set, to examine the performance of the ANN.

The ANN had to extract PEEPtot,stat from the input pat-

tern described above. The ANN training consisted of giving

at the same time for each input pattern the corresponding

PEEPtot,stat, estimated by the EEHM. After training, the test

Fig. 2 Data used to feed the artificial neural network (ANN). The

input pattern was formed by 20 synchronous samples of PAW and V’

around the onset of the inspiratory flow. PAW pressure at the airway

opening, V’ flow at airway opening, s seconds, tINIFLOW time of the

onset of the inspiratory flow, PEEPtot total positive end expiratory

pressure
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phase consisted of feeding the ANN with input patterns not

seen before and comparing the results it yielded to the

PEEPtot,stat calculated separately.

We computed the linear regression between the results

yielded by the ANN and the measure of PEEPtot,stat (by using

the expiratory hold maneuver method) to assess the ANN’s

performance on this task. We also analyzed the measure-

ment error according to Bland and Altman [9, 10]. Plotting

the ANN measurement error versus the applied PEEP and

drawing a linear regression, we aimed at checking whether

there was dependency between the two variables. We also

analyzed the relation between PEEPtot,dyn and PEEPtot,stat in

order to disclose any possible interdependence between the

two variables that might influence the ANN’s performance.

3 Results

The time constant of the respiratory system in healthy con-

ditions was 0.80 ± 0.13 s and was decreased to

0.74 ± 0.12 s after OA was administered. The mean RRS

ranged from 16.80 ± 11.37 [cmH2O/(L/s)] (baseline) to

18.32 ± 18.27 [cmH2O/(L/s)] (with a TE of 1 sRS).
Decreasing the expiratory time in proportion to sRS did not

noticeably change RRS. The mean respiratory system com-

pliance showed a tendency to decrease when the expiratory

time was decreased. After ALI was induced with OA

administration, at corresponding respiratory patterns, CRS

was reduced, as expected. The main hemodynamic, respi-

ratory and gas exchange variables are reported in Table 1.

Total PEEP, measured in dynamic conditions, tended to

increase when the expiratory time was decreased. When

total PEEP was measured in static conditions (Fig. 3), a

similar tendency toward higher values for short expiratory

times was found. The Bland–Altman analysis of the ANN

estimation error (Fig. 4) showed -0.40 ± 2.84 (expressed

as bias ± precision); thus, ±5.58 was the limit of agree-

ment (data expressed as cmH2O). The linear regression of

estimation error by ANN versus PEEPapp (Fig. 5) had an

equation of y = 0.11 x -0.87 and the coefficient R = 0.1.

The relation between PEEPtot,dyn and PEEPtot,stat is

presented in Fig. 6: The coordinates of the 382 samples

(corresponding to the training and testing data pools) are

the values of PEEPtot,dyn (y-axis) versus PEEPtot,stat (x-axis)

measured on the same tracing. It was expressed with the

linear regression y = 0.25 x ?1.11 and a R2 = 0.24.

4 Discussion

We trained and tested one ANN to estimate PEEPtot,stat
from pressure and flow tracings at airway openings during

ongoing mechanical ventilation in an experimental porcine

model. To create a pool of data to train the ANN, we used

an animal model of dynamic pulmonary hyperinflation

obtained by decreasing the expiratory time during

mechanical ventilation. In our model, the ANN perfor-

mance was excellent with a close correlation and low bias

between the ANN and the standard method for obtaining

PEEPtot,stat.

In a completely passive subject (i.e., muscle-paralyzed

subject without spontaneous respiratory activity), expira-

tion occurs passively because of the recoil of the elastic

Table 1 Hemodynamic, respiratory and gas exchange variables

Variable Baseline After OA

HR (beats/min) 96 ± 15 108 ± 14*

MAP (mmHg) 92 ± 18 87 ± 14

CVP (mmHg) 9 ± 4 10 ± 4

MPAP (mmHg) 22 ± 7 38 ± 4*

PCWP (mmHg) 10 ± 2 13 ± 2*

CO (l/min) 3.2 ± 0.4 3.9 ± 0.5*

PaO2 (kPa) 32 ± 5.1 15 ± 6.7*

PaCO2 (kPa) 5.4 ± 0.9 7.1 ± 1.1*

RRS [cmH2O/(L/s)] 16.8 ± 11.3 18.3 ± 18.2*

CRS (ml/cmH2O) 28.8 ± 8.5 15.4 ± 6.9*

Data are presented as mean ± standard deviation

Reported measures of RRS and CRS after OA were sampled when the

allowed expiratory time was equal to the time-constant of the respi-

ratory system

OA oleic acid, HR heart rate, MAP mean (systemic) arterial pressure,

CVP central venous pressure, MPAP mean pulmonary arterial pres-

sure, PCWP pulmonary capillary wedge pressure, CO cardiac output,

RRS resistance of the respiratory system, CRS compliance of the res-

piratory system

* Statistically significant difference between baseline and 1 h after

the induction of lung injury by administration of oleic acid

Fig. 3 Different examples of PEEPtot,stat were created by shortening

the expiratory time. They were assessed with the expiratory hold

maneuver, which represents the gold standard for PEEP measurement.

They were generated starting from different applied PEEP levels.

Bars represent standard deviation. TEXP expiratory time expressed as

multiple of expiratory time constants (s), PEEPtot,stat total PEEP

measured in static conditions, that is, during a breath-hold maneuver
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structures of the lung, previously stretched by the inspired

volume of air. The proportion of the volume exhaled at the

end of the expiration obeys the rules of compartmental

kinetics:

Vt ¼ V0 � e�
t

sRS ð2Þ

where Vt is the volume contained in the lung at time t from

the onset of expiration, V0 is the volume at the beginning

of expiration and sRS is the time constant of the respiratory

system. Although based on a simple mono-compartmental

system, this model accounts for the rise in PEEPi when the

expiration time is decreased, indicating an increase in the

trapped volume. At the beginning of the experiment after

instrumentation and after OA damage, we measured expi-

ratory sRS. We chose to measure it during expiration

because apparent sRS can be different during inspiration

and expiration, due to variations in RRS and CRS at dif-

ferent lung volumes.

We aimed at generating PEEPi by decreasing the expi-

ratory time in order to generate examples to train the ANN.

We measured sRS from the slope of the expiratory volume/

flow curve as described by McIlroy et al. [11]. This kind of

analysis, based on a mono-compartmental model, cannot

detect the mechanical behavior generated by additional

compartments (in lung inhomogeneity) or by mechanical

nonlinearities as in the presence of marked ‘‘flow limita-

tion’’ typical of patients with chronic obstructive lung

disease [12]. However, for our purposes, we considered the

following method adequate: if the respiratory system sub-

tended ‘‘longer’’ time constants (because of neglected

obstructive or viscoelastic components), generation of

PEEPi by shortening the expiratory time could have been

enhanced. Moreover, the mono-compartmental model was

not transferred to the ANN, which had to learn how to

estimate PEEPtot through examples.

We decided to study ANNs during lung injury due to the

need to estimate their performances in non-healthy condi-

tions. Several models of lung injury have been described in

the literature, and each model has its own peculiarities in

terms of hemodynamics and respiratory mechanics [4]. We

arbitrarily chose to use a model based on the intravenous

administration of oleic acid that mimics the early phase of

adult respiratory distress syndrome (ARDS) by developing

important alterations of lung permeability and by releasing

inflammatory mediators. In principle, the study of a single,

Fig. 4 PEEPtot estimation error with ANN, plotted versus the mean

of ANN-based and reference measurements, according to the Bland–

Altman test. SD standard deviation, EEHM end expiratory hold

maneuver, ±1.96 9 SD = limits of agreement, corresponding to

±5.58 cmH2O

Fig. 5 PEEPtot estimation error by the ANN plotted versus applied

PEEP. LR linear regression line and its equation

Fig. 6 Relation between PEEPtot,dyn (measured by the phase shift

between the flow and pressure onsets) versus PEEPtot,stat (measured by

the end-expiratory hold maneuver). The equation on the graph refers to

the linear regression between the two variables. Of the 382 samples that

are depicted in the figure, a minority of cases are positioned near the

identity line. They represent conditions close to lung homogeneity, and

have minimal PEEPi (measured as PEEPtot,dyn) similar to the mean

PEEPi (measured as PEEPtot,stat) values
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specific kind of lung injury can represent a limit to the

general applicability of the ANN method. Thus, in the near

future, it may be advisable to test the ANN performance on

other models of lung disease.

Intrinsic PEEP can be measured in static or dynamic

conditions. Static measurements require an EEHM. The

different mechanical compartments of the lung can retain a

variable amount of gas at the end of the expiration, in

relation to the expiratory time constant [13]. EEHM allows

the equilibration of pressures between these compartments

and the airway conduction system up to the pressure

transducer. This value represents the weighted mean of the

pressures inside the lung compartments at end expiration

(regional PEEPi) and may include the contribution of the

elasticity of the tubing system.

Dynamic measurement of PEEPi in completely passive

mechanically ventilated subjects does not involve an end-

expiratory pause. In the presence of PEEPi, the rise in

airway pressure precedes the rise of flow. At the end of the

preceding expiration, the lungs have retained a volume of

gas that generates PEEPi. To force the gas flow to enter the

lung during the following inspiration, a gradient of pressure

must be created between the airways and the peripheral

compartments. Therefore, the flow starts only when the

pressure applied to the airways exceeds PEEPi [3].

If the lung has compartments that have different time

constants, PEEPi measured with this method represents the

minimum regional PEEPi, that is, the minimum pressure

the ventilator has to generate in order to make air enter the

lung [2, 13]. If the lung is perfectly homogenous, PEEPi
measured with the static and dynamic methods is the same.

However, this homogeneity cannot be observed even in

physiological conditions. These two measurements reflect

the relation between the minimum and average PEEPi so

closely that the ratio between dynamic and static PEEPi has

been used as a measure of lung homogeneity [14] and

defined as the inequality index. According to Maltais and

coworkers, the fewer the obstructive components of the

lungs (a sign of inhomogeneous pathology), the closer the

PEEPi,dyn and PEEPi,stat values.

When external PEEP is applied, measurement in either

static or dynamic conditions yields PEEPtot, that is, the sum

of the effects of PEEPi and PEEPapp. To separate these

effects, Eq. 1 can be applied.

The ANN used in this paper was trained and tested

according to accepted standards and based on our previous

studies [6–8, 15]. As confirmed by the computer science

literature, ANNs are universal function approximators [16,

17]. We decided to test their application to the estimation

of PEEPtot during mechanical ventilation. Other studies

have addressed the problem of monitoring PEEPi online.

Eberhard et al. [18] applied a technique based on the least

squares fitting method on a breath-by-breath basis, tested in

patients who presented with acute respiratory distress

syndrome. Nucci et al. [19] studied in a group of eight

patients the performance of the recursive least squares

method to obtain PEEPi online and stable and repeat-

able results. More recently, Mayaud et al. [20] developed

an expert system for calculating a series of respiratory

parameters that included PEEPi. However, they analyzed

23 tracings from patients who were breathing sponta-

neously, and not all presented a detectable PEEPi.

Although the researchers found good agreement between

their algorithm and the manual computation of PEEPi, only

one case had a PEEPi higher than 5 cmH2O. Thus, the

performance of their method must be validated in a wider

range of conditions.

The ANN described in the present paper shares with

other multilayer perceptrons the limitation derived from the

choice of the pool of training examples. Although having

the capacity of generalizing its knowledge, if the ANN has

to face completely different patterns during use, similar to

the patterns derived from other ventilation modalities or

different pathologies, the ANN must be retrained on trac-

ings that contain the new examples. The same limitations

apply to the mechanical implications of muscle relaxation

used in the present protocol. If the ANN has to face trac-

ings derived from a spontaneously breathing subject, it

must be retrained. Artificial neural networks process data

using a complex matrix of connections between the artifi-

cial neurons. This implies that ANNs act similarly to a

black box in which identification of the algorithm behind

their performance is very difficult. From the clinical point

of view, this will not show whether the calculation of

PEEPtot, stat is based on an estimate of the inhomogeneity in

PEEPi or the elastic components of the respiratory system.

In the first step, the experimental model was used to

produce a pool of examples of PEEPtot, necessary for

training the ANN. The shape of PEEPtot,stat plotted versus

TE (Fig. 3) showed an exponential pattern, as expected by

the respiratory dynamics. The increase in PEEP and in the

subsequently trapped volume increased exponentially at

linear decreases in the TE.

A Bland–Altman test showed low bias and scatter of the

ANN estimate of PEEPtot,stat. Moreover, evaluation of the

dependency of the estimation error by the ANN and

applied PEEP demonstrated the absence of such a corre-

lation. Thus, we concluded that the ANN could estimate

PEEPtot,stat reliably, without any influence from the level of

PEEPapp. To obtain PEEPi from PEEPtot, it is sufficient to

subtract PEEPapp (which can be easily read on the venti-

lator display). Another issue we wanted to disclose was the

possibility that the ANN would have approximated

PEEPtot,stat (by using dynamic tracings) because of a

potential strict correlation between PEEPtot,dyn and

PEEPtot,stat. Our data showed that it was not the case,
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because, in our pool of data, only the 24 % of the

PEEPtot,dyn values could be inferred by the corresponding

PEEPtot,stat (see Fig. 6). This is in line with the concept that

PEEPtot,dyn approximates PEEPtot,stat more closely in situa-

tions of pulmonary homogeneity [21], and we observed this

in our experiments in a healthy lung before we adminis-

tered the oleic acid. Comparison of the PEEPtot estimate by

the ANN with the manually computed PEEPtot,stat and

PEEPtot,dyn (see Fig. 7) supported the finding that the ANN

yielded results that were directly related to PEEPtot,stat.

The ANN that had been taught with PEEPtot,stat showed

good agreement with the manually calculated PEEPtot,stat,

although the flow and pressure recordings in the selected

regions are commonly used to calculate PEEPtot,dyn. This

suggests that more information is available in the PAW and

V’ curves than in the phase shift between them that is used

for the manual calculation of PEEPtot,dyn.

To measure PEEPtot,stat for research purposes, applica-

tion of EEHM remains the gold standard of reference, and

for precision. However, when the purpose is the continuous

monitoring of a variable, the measurement property of

measure that should be aimed is robustness. In this respect,

although this paper was not designed to assess the

robustness of ANNs in continuous monitoring of

PEEPtot,stat, this property of multilayer perceptrons is well

demonstrated in the literature of this field [22].

Whether the reported limit of agreement (where 95 % of

the measurement errors are positioned) is acceptable for a

monitoring method should be discussed. In the present

experiment, we measured the direct estimation of total

PEEPtot,stat on single tracings, ‘‘not seen before’’ by the ANN

and without any averaging of the computation over the pre-

sentation of different tracings on the same condition. We can

expect that an ANN that faces recursively different breaths of

the same tracing during ongoing ventilation would minimize

the random error, because the estimation error is averaged

over the elaboration of different tracings. Nevertheless, these

theoretical speculations require a purposely designed study, in

which the limits of precision of routine use are assessed

including repetitive presentation of the same trace and adding

a comparison with other accepted standards of monitoring

PEEPi, such as the multilinear fitting and the use of phase

shift between pressure and flow.

Intrinsic PEEP has been a frequently debated topic of

critical care for many years [23]. The importance of PEEPi
derives from the physiological consequences of its pres-

ence, spanning from alteration of hemodynamics (mainly

the reduction of cardiac output due to a decrease in cardiac

filling caused by the positive intrathoracic pressure) [24] to

the potential risk of barotrauma (due to the possible high

alveolar pressures) [2].

Moreover, as first reported by Jonson et al. [25], if

PEEPi is not considered, a significant error can affect the

measurement of static CRS. This finding led researchers to

introduce this correction factor when estimating respiratory

mechanics [26–28]. In previous studies, we demonstrated

the capability of an ANN to extract information from res-

piratory signals [7, 8, 29]. Another mechanical conse-

quence of PEEPi is the generation of higher levels of lung

strain [30, 31], which, as result of pulmonary inhomo-

geneity, may induce a ventilator-induced lung injury [32].

The possibility of estimated PEEPtot,stat during ongoing

mechanical ventilation is an important achievement. PEEPi
measured by applying an end-expiratory pause requires a

breath hold that must be prolonged by more than 1 s, and

often more than 3 s in order to display a stable PEEPi value

[33]. Moreover, in conditions of pulmonary inhomogene-

ity, occlusion of up to 5 s may be required [34].

The potential for hemodynamic and gas exchange

impairment that these conditions present may not allow fre-

quent and prolonged alterations of the breathing pattern. The

estimation of PEEPtot by ANNs does not require the cessation

of the breath series. This opens up a perspective in the field of

respiratory mechanics monitoring, because of the possibility

of estimating PEEPi in safer conditions. Further studies are

necessary to ascertain that the performance shown by the

ANN in the assessment of PEEPi in this experimental setting

can be reproduced in different models of lung pathology and

during different ventilatory strategies.
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