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Human Dendritic Cell Subsets for Vaccination
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Protective immunity results from the interplay of antigen (Ag)-
nonspecific innate immunity and Ag-specific adaptive immu-
nity. The cells and molecules of the innate system employ non-
clonal recognition pathways such as lectins and TLRs. B and
T lymphocytes of the adaptive immune system employ clonal
receptors recognizing Ag or peptides in a highly specific man-
ner. An essential link between innate and adaptive immunity is
provided by dendritic cells (DCs). As a component of the innate
immunc system, DC organize and transfer information from the
outside world to the cells of the adaptive immune system. DC
can induce such contrasting states as active immune responsive-
ness or immunological tolerance. Recent years have brought a
wealth of information regarding DC biology and pathophysiol-
ogy that shows the complexity of this cell system. Thus, pre-
sentation of antigen by immature (non-activated) DCs leads to
tolerance, whereas mature, antigen-loaded DCs are geared to-
wards the launching of antigen-specific immunity. Furthermore,
DCs are composed of multiple subsets with distinct functions
at the interface of the innate and adaptive immunity. Our in-
creased understanding of DC pathophysiologywill permit their
rational manipulation for therapy such as vaccination to improve
immunity.

KEY WORDS: Dendritic cell; pathogens; vaccination; T cell immunity;
subsets.

INTRODUCTION

The immune system evolved to protect us from microor-
ganisms. The antigen (Ag)-nonspecific innate immunity
and Ag-specific adaptive immunity act in concert to eradi-
cate pathogens, through cells, such as macrophages, gran-
ulocytes, dendritic cells (DCs), and lymphocytes, and
through effector proteins such as cytokines, antimicro-
bial peptides, complement, and antibodies (1–3). Lym-
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phocytes (T cells, B cells, NK, and NK T cells) and
their products are under the control of DCs (4–7). DCs
sit in peripheral tissues where they are posed to capture
antigens (Fig. 1). Antigen-loaded tissular DCs migrate
through the afferent lymphatics into the draining lymph
nodes. There, they present processed protein and lipid Ags
to T cells via both classical (MHC class I and class II) and
non-classical (CD1 family) antigen presenting molecules
(6). Immature (non-activated) DCs present self-antigens
to T cells (8–10), which in the absence of appropriate
costimulation leads to tolerance. Mature, antigen-loaded
DCs are geared toward the launching of antigen-specific
immunity (11) with T cell proliferation and differentia-
tion into helper and effector cells with unique function
and cytokine profiles. However, DCs can induce immune
tolerance partly through T cell deletion and partly through
activation of regulatory T cells. DCs are composed of mul-
tiple subsets with distinct functions at the interface of the
innate and adaptive immunity. How this complex balance
is maintained in health and broken in disease; and how it is
regulated through distinct DC subsets and their functional
plasticity is now starting to be understood. We will focus
on recent progresses in our knowledge of the physiology
of DCs. In particular, on the identification of distinct DC
subsets that induce distinct types of immune response (6,
12, 13) and how this new understanding of ways by which
DCs regulate immunity might impact the design of novel
vaccines.

BIOLOGY OF DENDRITIC CELLS

DCs Capture and Present Antigens

Immature DCs are remarkably efficient in Ag capture
whereas mature DCs are remarkably efficient in anti-
gen presentation. DCs utilize several pathways to capture
antigen including (1) macropinocytosis; (2) receptor-
mediated endocytosis via C-type lectins (for example
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Fig. 1. The life cycle of dendritic cells. Circulating precursor DC enter tissues as immature DC. They can encounter pathogens (e.g.,
viruses) directly, which induce secretion of cytokines (e.g., IFN-α); or indirectly through pathogen effect on stromal cells. Cytokines
secreted by DCs in turn activate effector cells of innate immunity such as eosinophils, macrophages, and NK cells. Microbe activation
triggers DCs migration toward secondary lymphoid organs and simultaneous maturation. Mature DCs that enter lymphoid organs
display pMHC complexes, which allow selection of rare circulating antigen-specific T lymphocytes. These activated T cells help
DCs for their terminal maturation, which allow lymphocyte expansion and differentiation. Activated T lymphocytes traverse inflamed
epithelia and reach the injured tissue, where they eliminate microbe and/or microbe-infected cells. B cells, activated by DCs and
T cells, migrate into various areas where they mature into plasma cells that produce antibodies that neutralize the initial
pathogen.

mannose receptor, DEC-205, DC-SIGN) (14–21) or Fcγ
receptors type I (CD64) and type II (CD32) (uptake of im-
mune complexes or opsonized particles) (22); (3) phago-
cytosis of apoptotic and necrotic cells (8, 9, 23), viruses,
bacteria including mycobacteria (24, 25), as well as in-
tracellular parasites such as Leishmania major, and (4)
internalization of heat shock proteins, hsp70 or gp96-
peptide complexes, through multiple receptors includ-
ing LOX-1 (26) and TLR2/4 (27). Captured antigens
are processed in distinct intracellular compartments and
loaded onto DCs antigen presenting molecules (reviewed
in (28)). Protein antigens are presented by classical MHC
class I and class II molecules while lipid antigens are
presented through non-classical CD1 antigen presenting
molecules (6).

Presentation via MHC Class II and Class I. Captured anti-
gens are presented by MHC class II molecules (29) which
upon DC maturation are transported from lysosomal com-
partments to the cell membrane (30, 31). In fact, this
translocation of peptide-MHC (pMHC) class II complexes
from intracellular compartments to cell membrane repre-
sents a hallmark of DC maturation. pMHC complexes are
very stable on the cell membrane of mature DCs thereby
facilitating TCR recognition. Furthermore, as opposed to
macrophages that favor antigen degradation, DCs show
lower levels of lysosomal proteases thereby permitting
low rate of antigen degradation (32). This in turn permits
antigen retention in lymphoid organs in vivo for extended
periods that might favor antigen presentation (32). Thus,
the prolonged availability of antigen for generation of
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pMHC complexes and prolonged presentation of such
complexes on cell surface might both explain a unique
efficiency of DCs in triggering naive T cell differentiation.

MHC class II molecules are under the control of a tran-
scriptional coactivator, MHC class II transactivator (CI-
ITA) (33). The expression of CIITA is regulated by three
independent promoters the activity of which quantitatively
determines MHC class II expression (34). Distinct subsets
of antigen presenting cells utilize different promoters, i.e.,
plasmacytoid DCs (pDCs) and B cells rely on promoter
pIII whereas myeloid DCs and macrophages use pI (35).
These differences may have fundamental impact on the
antigen presentation on MHC class II by these cell types
and on ensuing immune responses.

MHC class I molecules represent another antigen
presentation pathway exploited by DCs (28). This in-
volves the classical presentation of endogenous pep-
tides, originating from cellular and viral proteins, as
well as the presentation of exogenous antigens via cross-
priming/presentation. In fact, cross-priming/presentation
might be the main pathway through which immunity to
tumors and microbes that do not infect DCs directly is
generated (8, 36, 37). This pathway is being now exploited
for loading antigens on DC vaccines as discussed later. It
remains to be defined how DCs are able to put exogenous
antigens for presentation on MHC class I. Cross-priming
might actually be based on the transfer of proteasome sub-
strates rather than peptides (38). Furthermore, the load-
ing compartment remains as yet an unresolved issue, i.e.,
whether it is the endoplasmic reticulum (ER) or a mixed
phagosome-ER compartment (39). It is not clear whether
loading MHC class I with exogenous 9–10 AA peptides as
used for vaccination in cancer (see later) actually happens
in vivo.

Presentation via CD1 Family of Non-Classical MHC
Molecules. CD1 proteins present lipid antigens to effec-
tor T cells (40, 41). In the human, but not in the mouse,
this family consists of four members CD1a–c (group 1
molecules) and CD1d (group 2 molecules), with a distinct
expression patterns (40, 41). Different CD1 molecules
display distinct intracellular trafficking patterns likely re-
sulting in antigen delivery into distinct compartments (40,
41). Differential expression of CD1 molecules and its im-
pact on T cell immunity can be illustrated by CD1a and
CD1d. CD1a expression in vivo is restricted to Langer-
hans cells (LCs) and thymocytes. LCs have been shown
to use CD1a and Langerin (a unique lectin expressed by
LCs) to present nonpeptide antigens of Mycobacterium
leprae to T cell clones derived from a leprosy patient
(42). CD1a-restricted T cells indicated that lipopeptide
antigen presentation by CD1a involves the anchoring of
antigens in the hydrophobic binding groove, resulting in

exposure of the peptide moiety for TCR contact (43).
CD1d is unique in that it is involved in the antigen pre-
sentation to natural killer (NK)T cells, a unique subset of
T cells expressing a limited TCR repertoire mostly com-
posed of Vα24Vβ11 (44). These innate-like T cells con-
tribute to immune response to infection and malignancy.
Recent studies identified lysosomal glycosphingolipid,
isoglobotrihexosylceramide (iGb3) (45), as endogenous
and bacterial glycosylceramides (46) as exogenous anti-
gens for presentation by CD1d to NKT cells. Interest-
ingly, CD1d ligation on monocytes triggers transloca-
tion of NFκB and IL-12 secretion (47) thus providing
a possible mechanism through which NKT cells modu-
late antigen presenting cells and immune responses (48).
The next challenge will be to understand which path-
ways of antigen presentation are being preferentially uti-
lized by distinct DC subsets, and the consequences of
such differential presentation on the outcomes of immune
responses.

DCs Migrate and Orchestrate Migration of Other Cells

During their life span, DC migrate from the bone mar-
row through blood to peripheral tissues and to lymphoid
tissues. Both DCs migration and their capacity to or-
chestrate the migration of immune effectors are funda-
mental for the launching and the coordination of immune
responses.

Migratory Pathways. DC migration to the periphery and
from the periphery to lymphoid tissue represents two sepa-
rate events that are regulated by distinct sets of molecules.
Immature/non-activated DCs patrolling via blood are at-
tracted to tissues for example through MIP3-α (via CCR6)
or MCP chemokines (via CCR2) as demonstrated for LCs
in vitro (49) and in vivo (50), respectively. Interestingly,
monocyte derived-DC respond to MIP1-α/β (via CCR1
and CCR5) but not to MIP3-α (51, 52), suggesting that
distinct DC subsets might utilize distinct migratory path-
ways. Upon pathogen entry respective ligands are secreted
by epithelial cells thus providing an impetus for enhanced
DC influx. Indeed, Holt et al. found that DCs are the first
to arrive at the site of pathogen entry, preceding even neu-
trophils (53–55). Furthermore, we have found that both
mDCs and pDCs are attracted in vivo to the respiratory
tract in children with acute viral infections triggered by
Influenza virus or RSV (56). Much less is known about
how DCs enter and traffic through the lymphatic ves-
sels. The chemokine receptor CC-chemokine receptor 7
(CCR7) appear to be fundamental in this process (57).
Thus, distinct maturation/activation signals, for example
prostaglandin PGE2 (58, 59), that induce the preferential
expression of CCR7 by DCs, might increase the capacity
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of the DCs to respond to appropriate ligands such as
CCL19 and CCL21 expressed in lymphatic vessels and
secondary lymphoid organs (60).

An important question is whether all DCs are equal
in their migration routes and mechanisms. In fact, hu-
man tonsils contain DCs with different phenotypic char-
acteristics at strategically different location within the
lymphoid tissue (61, 62). There, DCs within germinal
centers are phenotypically different from DCs located
within and around HEVs that have been demonstrated
to be actually pDCs (62, 63). This suggests that distinct
DC subsets might approach secondary lymphoid organs
through distinct routes. Indeed, upon bacterial triggering
mDC precursors migrate to peripheral tissues and subse-
quently to draining lymph nodes, while pDC precursors
directly enter the lymph nodes in a CXCL9 and E-selectin
dependent manner (64). Differential migration of cuta-
neous DC subsets, i.e., LCs and dermal DCs has been
demonstrated recently with the use of vital imaging in
knockin mice expressing enhanced green fluorescent pro-
tein (EGFP) under the control of the Langerin (CD207)
gene (65). Thus, after skin immunization, dermal DCs
arrived in lymph nodes first and colonized areas distinct
from slower migrating LCs (65). Theses results might in
fact contribute to our understanding of how the immune
response develops upon cutaneous immunization, a clas-
sical route of vaccination. The impact of DC migration on
T cell immunity is discussed later.

Molecules Regulating DC Migration. These belong to
three major categories that include chemokines (66), ad-
hesion molecules (67) and more recently products of lipid
metabolism (68, 69). The classical view as mentioned
above is that of chemokines MIP3-α (CCR6 ligand) and
MIP-3β (CCR7 ligand) representing the two major forces
regulating migration of myeloid DCs to periphery and to
lymphatics, respectively (70). An emerging view however
is that of a coordinated action of several chemokines and
adhesion molecules as perhaps best illustrated by plas-
macytoid DCs (pDCs). There, the entry of pDC to ei-
ther peripheral tissue or lymphoid organ is a net result of
(1) their expression of adhesion molecules such as the skin
homing molecule cutaneous lymphocyte antigen (CLA)
or lymph node homing molecule L-selectin and (2) the
cooperation between inducible CXCR3 ligands and con-
stitutive SDF-1/CXCL12 expression to which pDCs can
migrate (71). The response of DCs to chemokines might
be further regulated by products of lipid metabolism (69).
Thus, triggering DCs with leukotriene C(4) enhances their
chemotaxis to CCL19 (CCR7 ligand) (72). Accumula-
tion of lipids is in turn controlled by multidrug resistance
proteins (72). This mechanism might be particularly im-
portant for the regulation of DC entry and pass through

lymphatic vessels (69). Furthermore, it might be partic-
ularly relevant in the inflammatory response where lipid
mediators play a central role.

DCs Orchestrate the Migration of Immune Effectors. DCs
attract immune effectors through chemokines (73–79) and
regulate their maturation and function through cell–cell
contact, and/or soluble factors (4–7, 80). The analysis
of chemokine secretion by blood DC subsets exposed to
influenza virus permitted us to determine a sequential
chemokine secretion program common to the two sub-
sets, i.e., pDCs and mDCs. This program, illustrated in
Fig. 2, might actually explain how the DCs coordinate the
launching of immune response as they mature and mi-
grate toward lymphoid organs. Thus, the first chemokines
to be produced are those attracting innate effectors and
cytotoxic cells, which might permit to limit the spread
of infection. The next wave involves the production of
chemokines able to attract memory T cells. Finally, as
mature DCs land in the secondary lymphoid organs they
secrete chemokines that attract B cells, allowing for anti-
body production, and naı̈ve T cells, allowing their priming.
Attraction of T cells with regulatory/suppressor function
might finally permit the termination of immune response.
Accordingly, CXCL13 have been shown to attract B cells
as well as CXCR5+CD4 memory T cells able to enhance
IgG and IgA production (81). Furthermore, CXCL13 pro-
ducing cells are located uniquely in the follicles and ger-
minal centers (82). Thus, Influenza virus activated DCs
that migrate to B cell areas of peripheral lymphoid or-
gans (83) could launch humoral immunity via CXCL13
whereas those that migrate to T cell zone could launch T
cell immunity via CCL19 and CCL22 (84, 85).

DC Maturation

DC migration is intimately linked with their maturation
and, consequently, with their impact on T cell immunity.

Maturation Signals. DCs can receive maturation signals
through (1) cells including T cell derived CD40 ligand
(86); as well as signals from NK, NKT cells and γ /δ T
cells (reviewed in (48)); (2) cell products such as proin-
flammatory cytokines including IL-1β, TNF, IL-6, and
PGE2 (87), or an apparently more potent combination
of IL-1β and TNF with type I (IFN-α) and II (IFN-γ )
interferons (88); and (3) DC surface molecules involved
in pathogen recognition including Toll receptors (TLRs)
and C type lectins (reviewed in (89)). Most likely at any
given time point the DCs will be exposed to a combination
of these signals which will influence the net result of T
cell activation as discussed later. Interestingly, TLRs are
differentially expressed by distinct DC subsets. For exam-
ple, TLR9 (a receptor for demethylated DNA) is expressed
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Fig. 2. DCs orchestrate the migration of immune effectors. Blood DCs expressing at the steady state CXCR4 and CXCR3
can migrate through virally infected tissues, expressing CXCL12, CXCL9, CXCL10, and CXCL11. There, they can roll on
inflamed endothelial cells; adhere to them and penetrate the tissues. Upon encountering the virus in the tissues, they start to
release at the first step CXCL16, CXCL1, CXCL2, CXCL3, CXCL7, and CXCL8. These chemokines attract Th1 effector cells
expressing CXCR6 and neutrophils expressing CXCR2. Later, activated DCs secrete CCL2, CCL3, CCL4, CCL5, and CCL8,
which essentially attract CCR5 expressing memory T lymphocytes and monocytes. Upon maturation, DCs up-regulate CCR7
and down-regulate CXCR4, allowing their migration, toward CCL21, through lymphatics into secondary lymphoid organs. In
the lymphoid organs, mature DCs secrete CCL19 and CXCL13, which respectively attract CCR7 expressing naı̈ve T cells and
CXCR5 expressing naı̈ve B cells. They also secrete CCL22, attracting CCR4 expressing Th2 and CD4+CD25+ regulatory
cells.

only by pDCs whereas mDCs preferentially express TLR
2 and 4 (receptors for bacterial products such as peptido-
glycan and lipopolysaccharide, respectively) (90). Simi-
larly, and as discussed later, distinct DC subsets express
unique lectins (20), which can display immunostimula-
tory (ITAM) or inhibitory (ITIM) motifs. Such differ-
ential expression may confer distinct maturation signals
yielding distinct type of immune responses (91). Beside
a direct triggering of TLRs and C type lectins on DCs,
an important concept for understanding of pathogen/DC
interactions is the indirect effect. There, TLR-mediated
signaling of stromal cells will trigger expression of a spe-
cific of chemokines/cytokines and adhesion molecules,
which in turn will modulate DC maturation (92).

Maturation Phenotype. The DC maturation is a contin-
uous process that is associated with several coordinated
events such as (1) loss of endocytic/phagocytic recep-
tors; (2) upregulation of costimulatory molecules CD40,
CD80, CD86, and several members of TNF/TNF recep-
tor family including CD70 (ligand for CD27), 4-1BB-L,
and OX40-L, all of which can have costimulatory effects
on T cells (93).; (3) change in morphology, that include
a loss of adhesive structures, cytoskeleton desorganiza-
tion, and the acquisition of high cellular motility (94); (4)
shift in lysosomal compartments with down-regulation of
CD68 and up-regulation of DC-LAMP (95); (5) change
in class II MHC compartments as discussed above; and
(6) secretion of cytokines including IL-12 and IL-23,
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which are important for the type 1 polarization of T cell
immunity.

This basic process of DC maturation can be modu-
lated by pathogens via interaction with TLRs expressed
on DCs. For example, TLR ligands together with a T cell-
like signal delivered through CD40, may enhance DC
function (96). Indeed, TLR-mediated signals are involved
in the control of CD4+ T-cell activation (97) and, for
example, DCs loaded with a heart-specific self-peptide
induce CD4+ T-cell-mediated myocarditis in nontrans-
genic mice if activated through both CD40 and TLRs
(98). Pathogens may also contain several TLR agonists
that could engage several TLRs on the same DCs or
on two distinct DC subsets (3). Thus, for both human
and mouse DCs, TLR3 and TLR4 acted in synergy with
TLR7, TLR8, and TLR9 leading to increased production
of IL-12 and IL-23 (99). This was accompanied by an
increase in the ratio of Delta-4/Jagged-1 that are dictating
the type of T cell immunity elicited by DCs (100). As
expected this led to sustained T helper type 1-polarizing
capacity of exposed DCs (99). While we will discuss the
type 1/type 2 modulation in the next chapter, these results
suggest that TLR signaling might polarize DC maturation
toward Th1 or Th2 inducing cells by modulating Notch
ligands on DCs.

Functional DC maturation can also be modulated by
C type lectins. Thus, Dectin-1, a yeast binding C type
lectin synergizes with TLR2 to induce TNF alpha and
IL-12 (101). Yet, Dectin-1 can also promote synthesis
of IL-2 and IL-10 through recruitment of Syk kinase.
Accordingly, syk−/− DCs do not make IL-10 or IL-2
upon yeast stimulation but produce IL-12, indicating that
the Dectin-1/Syk and Dectin-1/TLR2 pathways can op-
erate independently (101). These results bring an impor-
tant demonstration that pathogens utilize several surface
molecules to modulate DC function.

Dendritic Cells Determine the Type of T Cell Response

DCs control lymphocyte priming and the type of in-
duced T cell immunity. This determination is intimately
linked with several aspects of DC biology including DC
migration, and maturation and finally distinct DC subsets
as discussed later.

DCs Migration. The physical location of DCs at the
time of antigen capture and at the time of antigen pre-
sentation is important for ensuing T cell immunity. For
example, upon subcutaneous immunization with fluores-
cent antigen two waves of DC-mediated antigen presen-
tation occur (102). The first one is mediated by DCs that
acquired the antigen directly in the draining lymph nodes
(102). DCs migrating from the actual antigen injection

site and presenting the captured antigen arrived several
hours later in the second wave (102). The first wave of
DCs triggered T cell activation and proliferation while the
second wave was necessary for development of delayed-
type hypersensitivity (102). Furthermore, after skin im-
munization, dermal DCs and LCs (65) colonized distinct
locations within the paracortical, T cell-rich zone (65).
Thus, dermal DCs colonized the outer paracortex, at the
junction with B cell follicles, whereas LCs migrated into
the inner paracortex (65).

Tissue origin of DCs determine the homing of elicited T
cells (103, 104). Thus, whereas DCs from Peyer’s patches,
peripheral lymph nodes, and spleen induced equivalent
activation markers and effector activity in CD8+T cells,
only Peyer’s patch DCs induced CD8+T cells with the
ability to home to the small intestine (103, 104). Simi-
larly, when ex vivo generated DCs were injected into mice
bearing melanoma, both intravenous and subcutaneous
injection induced specific memory T cells in spleen and
permitted control of lung metastasis. However, only sub-
cutaneous immunization permitted subsequent protection
against subcutaneously growing tumors (104). Thus, DCs
that have migrated to different tissues can prime T cells
with different homing capacities. Finally, inflammation
will enhance DC migration as demonstrated in mice by
conditioning the site of ex vivo generated DC injection
with TNF. This in turn significantly increased DC migra-
tion to the draining lymph nodes and the magnitude of the
CD4+ T-cell response (105).

DCs migration within lymphatics and to specific areas
within lymphoid organs represents another important pa-
rameter for T cell immunity. We have already discussed
the strategic location of distinct DCs with specific areas
of secondary lymphoid organs as analyzed on tissue sec-
tions. Furthermore, it appears that DCs recirculate within
lymphoid organs possibly to deliver help to each other
as shown recently for pDCs delivering help for mDCs to
prime Herpes Simplex virus specific CTLs (106). This
important aspect of DC biology can be now appreciated
in vivo thanks to development of intravital imaging tech-
nologies (107). This will allow to dissect in vivo the DC
and lymphocytes interaction in steady state (108) and upon
launching of protective immunity. For example, it appears
that both tolerance and immunity are proceeded by stable
and lasting several hours interaction of DCs with T cells
(108).

DC Maturation and the Outcome of Interaction with T cells.
The current paradigm is that immature DC are tolerogenic
wheras mature DCs are immunostimulatory (109). This
has been formally demonstrated in vivo by the groups of
Nussenzweig and Steinman who have elegantly shown
that fusion proteins targeted to immature DCs lead to the
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induction of antigen-specific tolerance (110). By contrast,
concomitant activation of the DCs with CD40-specific
antibody results in a potent immune response as DCs
are induced to express a large number of costimulatory
molecules (111). However, mature LPS-activated DCs ef-
ficiently expand CD25+CD4+ regulatory T cells (112).
This raises a question whether each type of DC matura-
tion will lead to an immunostimulatory DCs as discussed
later.

Immature steady-state DCs have been considered im-
portant in peripheral tolerance possibly through present-
ing tissue antigens without appropriate costimulation.
Recent studies call to revisit this paradigm because LCs
reaching lymph nodes under steady-state or inflammatory
conditions were found to express similar levels of MHC
class II, CD40, and CD86 (65). Thus, the determination of
tolerance or priming might be related to the threshold of
activation (113) and/or action of a unique set of inhibitory
molecules, such as signaling through CD80/CD86 and
CTLA-4 or PDL1/2 and PD-1 or Immunoglobulin-like
transcript 3 (ILT3) and ILT4 (114–116) as discussed later.

DC Maturation and the Type of Induced T Cell Immunity.
TLR ligands are among the DC activation/maturation sig-
nals that have a profound effect on the type of elicited
immunity. We have already discussed above the syner-
gistic effect of multi-TLR signaling on Th1 response.
Another response scenario in which distinct TLR lig-
ands induce distinct polarization of DCs can be illustrated
by TLR2 and TLR4 ligands. Thus, minor structural dif-
ferences in TLR ligands such as LPS may lead to the
engagement of different TLRs, as illustrated by E. coli
LPS, which induces a Th1 response via IL-12 secretion,
whereas Porphyromonas gingivalis LPS, which triggers
TLR2, induces a Th2 response (117). Furthermore, E. coli
LPS (TLR4 ligand), activates DCs to produce abundant
IL-12(p70), but little IL-10, thereby promoting type 1 re-
sponses. In contrast, Pam-3-cys (TLR2 ligand) elicits less
IL-12(p70), but abundant IL-10, thereby promoting type
2 responses. This regulation appears to be mediated via
extracellular signal-regulated kinase and c-fos signalling
in DCs exposed to TLR2 ligand (118). Thus, TLR sig-
nalling might polarize DCs toward Th1 or Th2 inducing
cells by modulating signalling pathways in DCs (101).

DC Maturation and Regulatory/Suppressor T Cells. Two
broad subsets of CD4+ T cells with regulatory function
have been characterized (119–121), both of which can be
activated/expanded by DCs at distinct maturation stages.

Naturally occurring CD4+CD25+T cells are produced
in the thymus and mediate their suppressive effects in
a cell contact-dependent, antigen-independent manner,
without the requirement of IL-10 or TGF-β(122–125).
These cells are naturally “anergic” and require stimulation

via their TCR for optimal suppressive function. Mature
DCs allow their expansion which is partially dependent on
the production of IL-2 by the T cell and B7 co-stimulation
by the DCs (112).

The induced T regulatory (TR) cells: TR derive from
CD4+25− T cells and mediate their effects through the
production of suppressive cytokines such as IL-10 and
TGF-β(126–128). Two types have been described: TR1
cells that produce large amounts of IL-10 and low to
moderate levels of TGF-β (126) and Th3 cells that pro-
duce preferentially TGF-β (129) and provide help for
IgA production (130). Immature DCs induce the differ-
entiation of naı̈ve T cells into TR cells (126, 131, 132).
Injection of immature DCs pulsed with influenza-derived
peptide has been shown in two healthy adults to lead
to antigen-specific silencing of effector T-cell function
(133). Murine pulmonary DCs induce the development of
TR in an ICOS-ICOS-L-dependent fashion which leads to
the production of IL-10 by DCs (134). Furthermore, a pop-
ulation of “semi-mature” CD45RBhigh CD11clow murine
DCs located within the spleen and lymph nodes has been
described. These cells secrete IL-10 after activation with
LPS or CpG oligonucleotides but do not upregulate MHC
class II or co-stimulatory molecules under the same condi-
tions. Most importantly, they are highly potent at inducing
tolerance that is mediated through the differentiation of
TR cells in vivo (132, 134). The complexity of the lineage
and/or the subpopulations of DCs that may be responsible
for tolerance induction is further illustrated by the descrip-
tion of unconventional DCs (135) that display phenotypic
and functional properties of both natural killer (NK) and
dendritic cells (DC). These cells appear able to induce
protection against virally induced type-1 diabetes in a
mouse model.

DC Subsets and the Type of Induced T Cell Immunity. Fi-
nally, distinct DC subsets differentially modulate T cell
immunity. A detailed discussion of DC subsets follows in
the next chapter. Here we will briefly summarize the role
of DC subsets in T cell polarization.

In mice, splenic CD8α+ DCs prime naı̈ve CD4+ T
cells to make Th1 cytokines in a process involving IL-
12, whereas splenic CD8α− DCs prime naı̈ve CD4+ T
cells to make Th2 cytokines (136, 137). Furthermore,
different signals can induce different T-cell polarization
by the same DCs, as shown by the induction of IL-12
production and Th1-cell polarization when DCs are ac-
tivated with E. coli LPS, but no IL-12 production and
Th2-cell polarization when DCs are exposed to LPS from
P. gingivalis (117). In humans, CD40-ligand (CD40-L)-
activated monocyte-derived DCs prime Th1 responses
through an IL-12-dependent mechanism, whereas pDCs
activated with IL-3 and CD40-L have been shown to

Journal of Clinical Immunology, Vol. 25, No. 6, 2005



558 DUBSKY ET AL.

secrete negligible amounts of IL-12 and prime Th2 re-
sponses (138). Furthermore, IL-3 and CD40-L activated
pDCs induce CD8+T cells with regulatory/suppressor
function (139, 140). Thus, both the type of DC subset
and the activation signals to which DCs are exposed are
important for T cell polarization.

Dendritic Cells are Composed of Subsets

In early 90s, culture systems were discovered that pro-
duced large amounts of mouse (141) and human DCs
thereby accelerating their characterization (142–144).
Classically, two main DC differentiation pathways are rec-
ognized (6, 7). A myeloid pathway generates Langerhans
cells (LCs), which are found in stratified epithelia such as
the skin, and interstitial (int)DCs, which are found in all
other tissues (145). Another pathway generates plasma-
cytoid DCs (pDCs) (146), which secrete large amounts of
IFN-α/β after viral infection (63, 147, 148).

DC Progenitors and Precursors. DC progenitors reside
within CD34+ hematopoietic progenitor cells (HPCs)
(142). Both lymphoid and common myeloid progenitors
yield, at the clonal level, mDCs as well as cells with pDCs
phenotype and capacity to secrete large amounts of IFN-α
(149). Interestingly, the progenitors of pDCs and mDCs
can be found within FLT3+ HPCs (150, 151). This is
consistent with the well established role of FLT3 ligand
(FLT3-L) in DCs differentiation/mobilization in vivo in
both humans and mice (152–156). Accordingly, FLT3-L
is essential in the generation of pDCs and myeloid DCs
(mDCs) (157–159), and FLT3-L deficient mice show a
considerable decrease in numbers of DCs in both pe-
ripheral and lymphoid tissues (152). Thus, FLT3-L ap-
pears as a major factor governing DC homeostasis in the
steady state. Given the role of GM-CSF in DC generation
(142, 160, 161), activation and survival (162), it is tempt-
ing to postulate that GM-CSF is actually a major factor
governing DC homeostasis on infection. In this context,
GM-CSF preferentially expands the myeloid DC subset
in vivo (137). Furthermore, GM-CSF gene-targeted mice
(GM−/−) show delayed clearance of group B streptococ-
cus from the lungs as compared to wild-type mice (163).

Until recently monocytes and pDCs have been con-
sidered as major circulating DC precursor populations.
However, recent studies demonstrated that γ /δ T cells
can acquire DC phenotype and function (164). Further-
more, proinflammatory cytokines can endow human NK
cells with ability to acquire antigen and to stimulate T
cells (165). These observations suggest remarkable plas-
ticity/redundancy in the system of antigen presenting cells
(Fig. 3). Thus, the picture emerges in which monocytes
yield all myeloid DCs while pDCs, γ /δ T cells and NK

cells yield another set of cells with DC properties. The
question to resolve is whether all DCs are equal and how
are we going to define bone fide DCs (for example LCs)
from cells that can acquire DC function under the environ-
mental pressure (for example γ /δ T cells-derived DCs).
A possible parameter for such distinction could be the
extent of their professionalism measured by their capacity
to prime naı̈ve T cells. Furthermore, it will be important
to determine which types of DCs do actually represent
tissular DCs (myeloid).

The Rainbow of Myeloid DCs. This concept of plastic-
ity/flexibility of the DC system is even further exemplified
by monocytes and their response to environmental
signals. Thus, monocytes can differentiate into either
macrophages, which act as scavengers, or DCs that induce
specific immune responses (166, 167). Different cytokines
skew the in vitro differentiation of monocytes into DCs
with different phenotypes and function (Fig. 4). Thus,
when activated (for example by GM-CSF) monocytes en-
counter IL-4 they will yield IL4-DCs (143, 144, 168).
By contrast, after encounter with IFN-α/β, TSLP, TNF,
or IL-15, activated monocytes will differentiate into IFN-
DCs (169–172), TSLP-DCs (173, 174), TNF-DCs (175)
or IL15-DCs (176), respectively. Thus, rather than clas-
sical distinction of LCs and intDCs, we should consider
myeloid DCs as a gradient (or rainbow) (Fig. 4). This spec-
trum of DCs represents immunostimulatory DCs. How-
ever, there exists a whole repertoire of DCs that exhibit im-
munoregulatory/tolerogenic functions, for example DCs
generated by culturing monocytes with IL-10 in the pres-
ence of inflammatory cytokines such as GM-CSF or IFN-
α (116, 177–179). These are important in the context of
DCs role in maintaining peripheral tolerance. Thus, we
view myeloid DCs as central cells for priming T cell im-
munity (Fig. 4). mDCs are polarized by other cells and
their products including IFN-α from pDCs, IFN-γ from
γ /δ T cells and NK cells, IL-4 and TNF from mast cells,
IL-15 and TSLP from stromal cells, IL-10 from lympho-
cytes. These distinct DCs will induce distinct types of T
cell immunity. The challenge for years to come will be to
link these distinct DC phenotypes in vitro with a specific
type of immune response and immune pathology in vivo
as exemplified by TNF and IFN-α (180, 181) or by TSLP
in allergic inflammation (173).

Distinct DC Subsets are Endowed with Distinct Functional
Properties. Each of these DC subsets has common as well
as unique biological functions, determined by a unique
combination of cell-surface molecules and cytokines.
Thus, in vitro experiments showed that LCs and interstitial
DCs generated in cultures of CD34+ hematopoietic pro-
genitors differ in their capacity to activate lymphocytes:
interstitial DCs induce the differentiation of naı̈ve B cells
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Fig. 3. Subsets of human dendritic cells. DC progenitors originate from bone marrow CD34+FLT3+ hematopoi-
etic progenitor cells (HPCs). A myeloid pathway generates both Langerhans cells (LCs), found in stratified epithe-
lia such as the skin, and interstitial (int)DCs, found in all other tissues. Another pathway generates plasmacytoid
DCs (pDCs), which secrete large amounts of IFN-α/β after viral infection. Until recently monocytes and pDCs
have been considered as major circulating DC precursor populations. Activated monocytes (for example via GM-
CSF) yield DCs with different phenotype and function when exposed to different cytokines (IL4, IL15, IFNα/β,
TSLP. . ..). CD2 expression in the human, and CD4 expression in the mouse, distinguishes pDCs subsets. Recent studies
demonstrated that γ /δ T cells as well as NK cells can acquire DC phenotype and function under the environmental
pressure. It remains to be determined how all these DCs relate to each other and which of them can prime naı̈ve
T cells, a seminal DC function.

into immunoglobulin-secreting plasma cells (145, 182),
whereas LCs seem to be particularly efficient activators
of cytotoxic CD8+ T cells. They also differ in the cy-
tokines that they secrete: only interstitial DCs produce
IL-10; and their enzymatic activity (145, 182), which
might be fundamental for the selection of peptides that
will be presented to T cells. Indeed, different enzymes
are likely to degrade a given antigen into different pep-
tide repertoires, as recently shown for HIV nef protein
(183). This will lead to different sets of pMHC complexes
being presented and to distinct antigen-specific T-cell
repertoires.

DC subsets express unique lectins (20), which at least
partially account for the biological differences. Thus, LCs

express Langerin, critical to the formation of Birbeck
granules (184, 185). The role of these structures is not
yet understood. The intDCs express DC-SIGN, involved
in the interactions with T cells, DC migration, but also
utilized by pathogens, for example HIV, to hijack the
immune system (186–188). pDCs express yet another
lectin BDCA2 (189, 190). TLRs are also differentially ex-
pressed. Such differential expression may permit specific
in vivo targeting of DC subsets for induction of a desired
type of immune responses, as recently demonstrated in
mice by targeting DEC-205 (110, 111).

Importantly, we begin to understand the molecular
pathways underlying differential responses of pDCs and
mDCs to pathogens and/or pathogen derived factors. This
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Fig. 4. Myeloid DCs as the information relay from the innate to the adaptive immune system. We propose a model in which the remarkable
variety of observed T cell phenotypes could be explained by the plasticity of myeloid DCs. There, myeloid DC precursors yield different
DCs upon encounter with different cells of the innate immune system and their products. Such imprinted DCs convey this information to
immune effectors for example T cells. Each DC will trigger a unique type of T cell thereby permitting a broad functional repertoire. For
example, IL-15 DCs are remarkably more efficient in priming and maturation of rare antigen-specific CTLs as compared to IL-4 DCs.
TSLP-DCs induce CD4+T cells to differentiate into pro-inflammatory Type 2 cells secreting large amounts of IL-13 and TNF. Much
remains to be done to establish the parameters of this model.

can be best illustrated by studies on mechanisms regulat-
ing type I interferon secretion. Thus, pDCs are recognized
as a main source of type I interferon produced in response
to viral (147) or CpG (191, 192) triggering. Recent studies
demonstrated that IRF-7 is critical for IFNα/β secretion
in response to both stimuli. However, IRF-7 activation in
response to virus is MyD88 independent while response
to CpG is dependent on both IRF-7 and MyD88 (193).
It turns out that actually pDCs but not mDCs can di-
rect CpG to endosomal compartments thereby allowing
MyD88/IRF-7 activation and IFNα/β secretion (194).

Subsets of pDCs: Given the complexity of mDCs it is
almost expected that pDCs will consist of subsets and/or
demonstrate phenotypical and functional plasticity depen-
dent on their microenvironment. The plasticity of pDCs is
best illustrated by their distinct functions at two distinct
stages of differentiation i.e., (i) ability of precursor pDC

to secrete large amounts of IFN-α/β after viral infection
(63, 147, 148); (ii) ability of mature pDC to activate and
modulate T cell responses (195); and (iii) plasticity as
demonstrated by induction of IFN-γ and IL-10 secreting
T cells upon viral triggering and type 2 T cells upon ac-
tivation with IL-3 and CD40 ligand (195). Recently the
existence of pDCs subsets has been demonstrated. Thus, in
the mouse expression of lymphoid-related genes (RAG1
and Ig rearrangement products (195)) or proteins (CD4
(196)) distinguishes between two subsets of pDCs. Al-
though the functional consequence of RAG1 and Ig rear-
rangement products expression remains to be determined,
CD4neg pDCs appear mainly responsible for migration to
lymphoid tissue and IFN-α secretion upon exposure to
CpG (196). Our results in humans demonstrate that CD2
expression distinguishes pDCs with common properties,
such as IFN-α secretion, and unique functions, such as
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the cytotoxic activity of CD2+ pDCs against K562 cells
(our own observations).

How DCs Interact with Other Cells of the Immune System

DCs regulate other lymphocytes as well including naı̈ve
(182) and memory (197) B cells, natural killer (NK) cells
(198) and NKT cells (199).

Interaction with B cells. As discussed above myeloid
DCs can prime naı̈ve B cells. Several molecules have
been shown to be involved in this process including IL-
12, IL-6 (6) and, more recently BAFF/Blys (200–204),
a molecule up-regulated by IFN-α. IFN-αβ and IL-6 are
also important in the differentiation of activated B cells
into efficient Ig-secreting plasma cells upon exposure to
virus-triggered pDCs (197). Strikingly, the plasma cells
generated under these conditions express very high levels
of CD38, similar to that of plasma cells isolated from
lymphoid tissues. In contrast, plasma cells generated by
culturing activated B cells with the T cell-derived cy-
tokines, IL-2 and IL-10, though efficient Ig secretors,
do not express high levels of CD38 (205). This suggests
that IFN-αβ may represent an important cytokine in the
generation of tissular plasma cells. Indeed, studies in the
mouse have also found that IFN-αβ is an excellent ad-
juvant for humoral immunity (206). However, there may
also be an indirect contribution of IFN-α to plasma cell
differentiation through activation of myeloid DCs (207—
210). Finally, differential activation of CD4+T cells with
B cell helper function by distinct DC subsets might play
an important role in the induction of protective humoral
immunity.

Cross-Talk with Innate Lymphocytes. DCs have a re-
ciprocal interaction with natural killer (NK), NKT, and
γ /δ T cells. Indeed, these innate immune effectors in-
duce DC maturation through a combination of soluble
and cell mediated signals (reviewed in (48)). In turn,
mature DCs also stimulate NK (198, 211, 212), NKT
(213), and γ /δ T cells (214, 215). These reciprocal in-
teractions occur largely in the secondary lymphoid or-
gans and are important for the amplification of type 1 T
cell immunity. Thus, they extend the classical ménage a
trois (5). It remains to be determined how DCs condi-
tioning by the innate effector cells affects humoral im-
munity. Here again distinct DC subsets appear to differ-
entially interact with innate lymphocytes. Thus, intDCs
derived either from monocytes or from CD34+HPCs di-
rectly stimulate NK-cell proliferation and cytotoxic func-
tion (216). On the contrary, LCs require exogenous cy-
tokines to activate NK cells (216). Such specialization
may have an important impact for in vivo DC targeting for
vaccination.

DENDRITIC CELLS AND TOLERANCE

DCs are now thought to play a pivotal role in the control
of tolerance (10, 11, 109, 217), both central and peripheral.

Central Tolerance

The thymus steadily produces thymocytes expressing
newly assembled TCR some of which may be reactive
with components of self. High affinity autoreactive thymo-
cytes are eliminated on encountering self-MHC peptide
(218–220). There is evidence that both thymic epithelial
cells as well as mature DCs in the thymus may be involved
in this process (221, 222). However, autoreactive T cells
that are not deleted in the thymus need to be controlled in
the periphery to prevent immune responses to self. Hence
the need for peripheral tolerance that occurs in lymphoid
organs.

Peripheral Tolerance Through DCs

There is now evidence that immature/steady state DCs
control peripheral tolerance (reviewed in (109)). In the
absence of inflammation, these DCs present tissue anti-
gens to T cells in the absence of appropriate costimu-
lation, leading to T-cell anergy or deletion (109), or the
development of IL-10-producing, regulatory T cells as
discussed earlier (131, 133). By suppressing a mandatory
T cell help, DCs may also avoid a self-Ag specific and T-
dependent B cell activation. The molecular mechanisms
underlying the tolerogenic properties of peripheral DCs
might involve: (a) lack of and/or inappropriate costimula-
tion; (b) cell death induction by expression of Indoleamine
2,3-dioxygenase (IDO) which induces the catabolism of
tryptophan, or by Fas/Fas-L interaction; (c) secretion of
IL-10/TGF-β; and d) inhibitory receptors.

Inhibitory receptors: The effector function of immune
cells is regulated by positive and negative signals provided
through class-I recognition receptors (223–228). In hu-
mans, these are provided by KIR (Killer cell Immunoglob-
ulin Receptor) and KLR (Killer cell Lectin like Receptor)
family members of which interact specifically with cer-
tain HLA allotypes and class I related genes (229). A third
class of receptors with both activating and inhibitory func-
tions includes immunoglobulin like molecules (LILR, for
Leukocyte Immunoglobulin like Receptors, also referred
to as ILT, for Immunoglobulin Like Transcript). ILT fam-
ily members are expressed on a wide variety of cells of
both lymphoid and myeloid origin and can be divided into
three groups according to function (230): 1) The inhibitory
receptors with cytoplasmic ITIM motifs; 2) The activat-
ing receptors that associate with the ITAM containing
FcR-gamma chain; and 3) a single member ILT6 which
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does not contain a transmembrane region and might be
secreted.

The two most extensively studied members are the in-
hibitory receptors ILT2 and ILT4. ILT2 is broadly ex-
pressed on all monocytes, DCs, most B-cells and subsets
of T and NK cells (230). ILT4 is restricted to myeloid
cells and expressed on all monocytes and some DC popu-
lations. Both ILT2 and ILT4 interact with multiple class-I
alleles including HLA-G (231). Signaling through these
molecules may be at least in part responsible for the im-
munosuppressive effects of HLA-G on antigen present-
ing cell function. Ligation of ILT4 on DCs by tetrameric
HLA-G attenuates maturation in response to CD40L and
reduce DC alloproliferative capacity (232). Expression of
inhibitory ILT receptors appears to be a general feature of
tolerogenic DCs (233). DCs treated with IL-10 specif-
ically upregulate inhibitory ILT receptors (233) while
blocking inhibitory ILT receptors lead to a restoration of
the alloproliferative capacity in spite of reduced costimu-
latory molecule expression (179). This novel approach to
understanding of DCs immunoregulatory function will be
important for unraveling how pathogens evade immunity
and for targeting of these pathways for therapy and for
vaccination.

The importance of immunostimulatory and immuno-
regulatory signals has actually been already demonstrated
in the Fc receptor (FcR) system (234). FcR share the
same ligands, therefore the consequence of immune com-
plex engagement on DC function depends on the bal-
ance between activating (ITAM) and inhibitory (ITIM)
receptor types (236). In the steady state, this balance fa-
vors inhibition with the expression of ITIM containing
Fcγ RIIb (235). It is shifted however in the presence of
pro-inflammatory cytokines such as IFN-γ and TNF-α
with the upregulation of Fcγ R3 and down regulation of
RIIb, permitting immune complex mediated activation
(235). Furthermore, the blockade of the inhibitory Fcγ R
leads to spontaneous DC maturation with secretion of
IL-12 p70 (237). Thus, inhibitory and stimulatory recep-
tors expressed on DCs appear fundamental in determining
tolerance or immunity.

DENDRITIC CELLS IN VACCINATION

Vaccination against infectious agents represents a suc-
cess of immunology most particularly in diseases such as
polio, measles, hepatitis B, and tetanus (238). However,
many infectious diseases still evade the immune system,
including chronic infections such as tuberculosis, malaria,
and HIV. Further progress will be made through rational
design based on our increased understanding of how the

immune system works and how the induction of protec-
tive immunity is regulated. The same principle applies to
cancer vaccines, most particularly as cancer is a chronic
disease.

Ex vivo-generated and antigen-loaded DCs have now
been used as vaccines to improve immunity in patients
with cancer (239) and chronic HIV infection (240, 241),
thus providing a “proof-of-principle” that DC vaccines
can work. Previous reviews by us and others have empha-
sized the shortcomings of current vaccination protocols
(242—245). Furthermore, we have emphasized through-
out this article the key issues of DC biology that need
to be considered for improved vaccination. Therefore, in
summary, we will highlight a few points specific to vac-
cination in cancer.

Loading DC Vaccines with Antigen

Loading MHC class I and MHC class II molecules on
DCs with peptides derived from defined antigens is the
most commonly used strategy for DC vaccination (246,
247). Although this technique is important for “proof of
concept” studies, the use of peptides has limitations: re-
striction to a given HLA type; the limited number of well
characterized tumor-associated antigens (TAA); the rel-
atively rapid turnover of exogenous peptide-MHC com-
plexes resulting in comparatively low antigen presentation
at the time the DC arrive into draining lymph node after
injection; and, the induction of a restricted repertoire of T-
cell clones, thus limiting the ability of the immune system
to control tumor antigen variation. Thus, loading DCs with
total antigen preparations and allowing “natural” process-
ing and epitope selection is expected to improve efficacy
as well as to allow the generation of a diverse immune re-
sponse involving many clones of CD4+ T cells and CTLs.
These strategies include loading DCs with recombinant
proteins, exosomes (248), viral vectors (249), plasmid
DNA, RNA transfection (250), immune complexes (25)
and antibodies specific for DC surface molecules (246,
251). Another technique involves exploiting the capacity
of DCs to cross-priming discussed above (8, 252). This
approach can be applied to load DC vaccines to elicit
immunity against multiple antigens irrespectively of pa-
tients HLA type. Indeed, DCs cultured with killed allo-
geneic melanoma, prostate, and breast cancer cell lines
prime naı̈ve CD8+ T cells against tumor antigens in vitro
(252, 253). We have now vaccinated 20 patients with
metastatic melanoma with autologous monocyte-derived
DCs previously exposed to a killed allogeneic melanoma
cell line (eight vaccines on a monthly basis). Vaccination
has proved to be safe (no autoimmunity or other adverse
events) and has led to the induction of melanoma-specific
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T cell immunity. In two patients, this has resulted in
long-lasting tumor regression (unpublished observations).
These results warrant larger clinical studies.

Vaccination Frequency

We have found in 18 patients with metastatic melanoma
that 4 vaccinations over 6 weeks with melanoma peptide-
loaded CD34-DCs result in an increase in the number of
melanoma-specific CD8+ T cells in the blood as docu-
mented by IFN-γ ELISPOT (254, 255) and CTL assay
(256). However, the melanoma-specific CD8+ T-cell im-
munity in the blood was short-lived: all analyzed patients
lost specific T cells detectable by direct ELISPOT and
4/9 patients lost all recall responses by 2 months after the
last vaccination. Several explanations might be consid-
ered. T cells might migrate from the blood to peripheral
tissue (tumor site) (257). Alternatively, the four bi-weekly
vaccinations might have provided too frequent antigen
stimulation for optimal T cell differentiation. Mouse and
human studies of vaccination against infectious agents
(258, 259) indicate that priming should be followed by a
boost 4–6 weeks later for an optimal response. However,
these rules may not apply to a chronic disease such as
cancer. By analogy, chronic viral infections are associated
with exhausted T cells owing to chronic antigen presenta-
tion (260, 261), and their reactivation through vaccination
is likely to require different schedules. Accordingly, re-
cent studies demonstrate that DC vaccination stimulates
a pathway of accelerated generation of memory T cells
that undergo vigorous secondary expansion in response
to a variety of booster immunizations, leading to elevated
numbers of effector and memory T cells and enhanced
protective immunity (262).

Assessing Immune Efficacy

The ultimate parameters of efficacy of DC vaccines is
the rate of objective tumor regression and improved sur-
vival. However, a detailed measurement of elicited T-cell
and B-cell responses in the blood can provide important
clues as to the efficacy of a given DC vaccine.

The Type of T Cell Immunity

Vaccine-specific T cell immunity has been classically
measured by the quantity of tumor-antigen specific CD8+

T cells (263). However, there is no defined threshold for
how many T cells are sufficient to induce tumor regres-
sion. The elicited tumor antigen-specific T cells should be
capable of cytokine production, proliferation on antigen
re-exposure, migration to the tumor site and CTL func-
tion (264). Markers indicative of T-cell migration capacity

include differential expression of CCR7 and CD45 iso-
forms: CCR7+ CD45RO+ T cells (central memory) will
most likely migrate to lymph nodes, whereas the shift to-
ward a CCR7− phenotype (effector memory) (265) should
be associated with migration to the tissue.

Activation of Other Immune Effectors. CD4+ T cells,
NKT and NK cells, and B cells also need to be taken
into account when analyzing vaccine specific immunity. In
particular, CD4+ T cells seem to be fundamental for prim-
ing long-lived CD8+ T-cell memory (266–268). In fact,
the lack of CD4+T-cell activation in peptide-vaccination
strategies might explain their limited efficacy in patients
with cancer. Although a large number of circulating effec-
tor CD8+ T cells might be elicited by such vaccines, in the
absence of CD4+ T-cell help, their quality might be com-
promised and the establishment of specific CD8+ T-cell
memory is unlikely (269). The induction of NKT cells,
which kill a wide spectrum of tumor cells (270), or NK
cells, which recognize MHC-class-I-deficient tumor cells
(223), could be desirable, yet caution must be taken with
regard to the cytokines that they produce. For example,
IL-13-producing NKT cells may inhibit CTL-mediated
tumor elimination and favor tumor progression (271).

Regulatory/Suppressor T cells

A major obstacle to the success of cancer vaccines, and
possibly vaccines in chronic infections, including DCs
might be the presence of regulatory/suppressor T cells
and the demonstration that DCs regulate their expansion
as discussed above. Indeed, a large body of experimen-
tal evidence shows that these T cells suppress anti-tumor
immunity and that their removal allows tumor eradication
(272, 273). An increased frequency of CD4+CD25+ T
cells has been observed in the blood and tissues of patients
with cancer (274–276). It is conceivable that distinct DC
subsets and/or distinct DC maturation stimuli will have
different capacities to induce regulatory T cells. This as-
pect needs to be explored further. Naturally occurring
CD4+CD25+ suppressor T cells may be controlled by pre-
treatment of patients with drugs that can eliminate and/or
control these cells, meaning that DC vaccination may be
more effective when combined with other therapies.

CONCLUDING REMARKS

DCs are the critical decision-making cells in the im-
mune response. DCs are an attractive target for thera-
peutic manipulation of the immune system to enhance
otherwise insufficient immune responses to tumor anti-
gens. However, the complexity of the DC system requires
rational manipulation of DCs to achieve protective or

Journal of Clinical Immunology, Vol. 25, No. 6, 2005



564 DUBSKY ET AL.

therapeutic immunity. Thus, further research is needed
to analyze the immune responses induced in patients
by distinct ex vivo-generated DC subsets activated via
different pathways. The ultimate ex vivo-generated DC
vaccine will be heterogeneous and composed of sev-
eral subsets, each of which will target a specific im-
mune effector. These ex vivo strategies should help iden-
tify the parameters for DC targeting in vivo, which
represents the next step in the development of DC-based
vaccination.
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