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We seek to determine if a small number of measurements of upper ocean temperature and currents can be used to make estimates of the drag coefficient that have a smaller range of uncertainty than previously found. We adopt a numerical approach using forward models of the ocean’s response to a tropical cyclone, whereby the probability density function of drag coefficient values as a function of wind speed that results from adding realistic levels of noise to the simulated ocean response variables is sought. Allowing the drag coefficient two parameters of freedom, namely the values at 35 and at 45 m/s, we found that the uncertainty in the optimal value is about 20% for levels of instrument noise up to 1 K for a misfit function based on temperature, or 1.0 m/s for a misfit function based on 15 m velocity components. This is within tolerable limits considering the spread of measurement-based drag coefficient estimates. The results are robust for several different instrument arrays; the noise levels do not decrease by much for arrays with more than 40 sensors when the sensor positions are random. Our results suggest that for an ideal case, having a small number of sensors (20–40) in a data assimilation problem would provide sufficient accuracy in the estimated drag coefficient.
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                                    1 Introduction
The drag coefficient relates the kinetic energy carried by winds near the surface to the stress imposed on the ocean–atmosphere interface. It is fundamental in air–sea interaction studies because its magnitude sets the strength of air–sea momentum fluxes that, in addition to enthalpy fluxes, regulate ocean and atmosphere boundary layer properties, including wind and current velocities, boundary layer depth, and turbulent mixing (Geernaert et al. 1987). Given this influence on boundary layer properties and the surface momentum budget, its magnitude has long been recognized to be an important parameter in tropical cyclone models (e.g., Ooyama 1969; Rotunno and Emanuel 1987; Montgomery et al. 2010). A large body of work (e.g., Garratt 1977; Large and Pond 1981; Yelland et al. 1998) has established that the drag coefficient increases in magnitude with wind speed when the latter is light or moderate, but the functional dependence is uncertain at high wind speeds (Powell et al. 2003; Donelan et al. 2004; Black et al. 2007). The magnitude of this exchange coefficient at high wind speeds has potentially broad implications as global climate models move towards higher resolutions capable of resolving details of tropical cyclone structure and intensity (Collins et al. 2006). In addition to its role in tropical cyclone intensity forecasts (Bender and Ginis 2000), the surface momentum budgets affect turbulent mixing between the thermocline and mixed layer that changes the upper ocean thermal structure left in a storms wake (e.g., Pasquero and Emanuel 2008). This in turn may influence some portion of the larger-scale meridional heat fluxes (e.g., Emanuel 2001; Sriver and Huber 2007; Korty et al. 2008). Properly representing the drag coefficient at high wind speeds may yet become more important, as the frequency of the most intense events has been predicted to rise with warming climate (Bender et al. 2010).
In this article, we apply a numerical approach to ascertain whether a small number of ocean surface measurements can be used effectively to determine the macroscopic drag coefficient between tropical cyclone winds and the sea surface. At this stage, we perform a feasibility study using a twin experiment for the ocean response forced by wind-speed fields representative of tropical cyclone Frances (Zedler et al. 2009). Knowing the drag coefficient at high wind speeds is important for tropical cyclone forecast models (Bender and Ginis 2000) and global ocean models as they move towards higher resolution and begin to resolve tropical cyclones (Collins et al. 2006).
The macroscopic drag coefficient relates the Reynolds-averaged wind velocity at 10 m elevation u
                10 to a similarly averaged forcing of the surface water velocity. Here, the averaging length is chosen such that the global flow field of the tropical cyclone is preserved but local turbulence is filtered out. Since turbulence models enter the definition of this coefficient, it cannot be computed from first principles or measured directly. Rather, it is a phenomenological quantity which must be determined by experiments. On the other hand, in situ measurements are difficult and costly (Powell et al. 2003; Black et al. 2007; Jarosz et al. 2007; Sanford et al. 2007; Zedler et al. 2009). In the controlled environment of a wave tank, accurate measurements can be made, but the wind and wave fields are likely in a steady state (Donelan et al. 2004). This is likely not the case in the real ocean. Therefore, we propose an approach using parameter estimation from actual ocean measurements taken in a tropical cyclone wake. Before we can successfully attempt such a parameter estimation with real data, it is advisable to perform a feasibility study, to see if the measurements considered will be sufficiently sensitive to changes in the parameters.
For this initial study, ”true” data are extracted from a reference forward simulation of the ocean’s response to a tropical cyclone. The drag coefficient is modeled as a two-parameter piecewise linear function of wind speed, allowing us to compute the misfit function between modeled and ”true” values of the ocean state variables. The central idea behind our approach is to make a numerical estimate of the variability in the drag coefficient parameters given an ensemble of realizations of noisy measurements for temperature and current speeds. For each realization of noisy temperature, we find the drag coefficients that correspond to the minimum cost in parameter space (Kaipio and Somersalo 2005). Estimation of the posterior probability density function allows us to conduct a sensitivity experiment to explore the range of probable drag coefficient parameterizations given realistic uncertainties in the ocean response data. The two sources of error that enter the problem of using a model along with field measurements to estimate a parameter are measurement or observation error and model error or inadequacy (Kennedy and OHagan 2001; Bayarri et al. 2007). In this experiment, we are only concerned with measurement uncertainty, because we are using a twin experiment setup where the data are already extracted from the model we use. For the related inverse problem where actual field measurements are assimilated to adjust for the drag coefficient, there will also be modeling errors or biases. We discuss how some of those might affect our results at the end of the paper.
We do not attempt to adjust the surface wind stress field on a point-by-point basis. Given the stability of the problem and the limited amount of data, it would be difficult to determine a robust estimate, because the problem is underdetermined for that setup. Additionally, it would hide any existing functional relation between wind speed and wind stress. Therefore, we estimate a parameterization of the drag coefficient itself by wind speed, and compute the wind stress field from this coefficient and the wind velocity field (assumed to be known a priori). This turns an underdetermined problem into an overdetermined one, which is much easier to solve.
Sensitivity experiments often require multiple model runs. For this reason, they are best adapted for problems with either a model that is not computationally expensive or where there are a small number of parameters to estimate (Kent and Kaplan 2006; Elsner et al. 2006; Chu and Zhao 2007; Herbei et al. 2008; Song et al. 2007). In our study, we employ a computationally demanding model, which limits us to a small number of parameters. For a coarse parameterization with only two degrees of freedom for the wind stress, we show that measurements with a statistical spread around the true computed value generate statistically distributed parameter values with controlled deviations.
Previous estimates of the drag coefficient have been predominantly derived from atmospheric measurements with plane-mounted probes and dropwindsondes (Black et al. 2007; Powell et al. 2003). Due to the extreme environment in a tropical cyclone, these measurements are hard to control, which is reflected in reported accuracies of the drag coefficient of up to factors of six and two, respectively. These studies agree that the drag coefficient levels off or decreases at high wind speed, but differ in the wind speed and value at which the drag coefficient levels off. However, they are limited in their ability to quantify the uncertainty in those estimates, which is one advantage of the statistical approach we adopt for this study.
The sensitivity of the sea surface temperature to changes in wind stress has long been recognized, (Price 1981), and there are a few studies that find a drag coefficient that is consistent with the upper ocean’s response to a tropical cyclone (Sanford et al. 2007; Jarosz et al. 2007; Zedler et al. 2009). Sanford et al. (2007) uses a dynamical model to show that the depth-integrated horizontal velocity and temperature profile underneath Hurricane Frances (sampled by a vertically profiling float) is more consistent with a drag coefficient parameterization that saturates at high wind speeds than one that continues to increase (Large and Pond 1981). Jarosz et al. (2007) uses vertical profile estimates of current speed from an array of moored acoustic Doppler current profilers to directly integrate the momentum equations for the surface stress, and then uses measurements of wind speed to invert for the drag coefficient. They report the spread in their surface estimates as a function of bottom friction (which is a variable in their calculation), but do not discuss the effects of error in the wind speed.
Our work follows from a previous investigation (Zedler et al. 2009) using sea surface temperature and inferred 15 m current speed collected underneath Hurricane Frances by an array of drifters deployed (drogued at 15 m depth) just east of the Caribbean Leeward Island chain on August 30, 2004 as part of the Coupled Boundary Layers Air−Sea Transfer High Experiment (hereafter referred to as CBLAST). In that paper, simulated and measured sea surface temperature fields between models forced with wind stress fields generated using a wind speed field were compared; drag coefficient parameterizations were based on results in Powell et al. 2003; Donelan et al. 2004; Black et al. 2007. It was concluded that there is sufficient sensitivity in the model to select between these drag coefficients.
In this article, we plan to provide answers to the following questions: 
	
                    1.
                    
                      Are measurements taken with a small number of moorings, drogued surface drifters, or profiling floats sufficiently sensitive to the drag coefficient parameterization to produce reliable estimates at wind speeds above 30 m/s, provided that the measurements have reasonable statistical deviations?

                    
                  
	
                    2.
                    
                      Does the ability to reliably estimate the drag coefficient depend strongly on the placement of the measuring points?

                    
                  


              

2 Model and methodology
2.1 Model
In our experiments, we assume a bulk wind speed/stress relation of the form

$$\varvec{\tau} = \rho c_{\text{d}}(s) s {\mathbf{u}}_d, $$

                    (1)
                

with the neutral equivalent drag coefficient c
                  d to be determined as a function of s = |u
                  
                    d
                  | (Gill 1982). Here u
                  d is the vector difference between the 10 m wind u
                  10 and the surface current vector. Since the current speed is orders of magnitude smaller than the wind speed, we set u
                  d = u
                  10. ρ = 1.22 kg/m3 is the air density.
The bulk formula for wind stress is based on Monin–Obukhov similarity theory for a turbulent boundary layer, which assumes that the wind speed and stress are aligned (e.g., Sullivan and McWilliams 2010) and that the momentum is transferred locally to the ocean. Whereas the presence of swell propagating at an angle to the wind can cause significant misalignment between the wind speed and stress in low-wind regimes (Grachev and Fairall 2001), it was found in Moon et al. (2004) that the effect of misaligned swell was only a few degrees in a tropical cyclone. This is because the wind direction and magnitude in a tropical cyclone vary on short timescales, resulting in relatively young seas. The dominant component of stress is transferred via the young part of the wave spectrum. This suggests that the bulk formula is appropriately applied here. The most likely processes that lower the stress at high wind speeds, namely the presence of sea spray (Bye and Jenkins 2006) and flow separation (which acts to geometrically flatten the sea surface) (Donelan et al. 2004), affect the transfer of momentum locally.
Within our model, the function c
                  d(s) is parameterized in the range of relevant wind speeds. Up to a wind speed of 26 m/s, we follow the relation of Large and Pond (1981), which is in close agreement with parameterizations derived from other studies (Wu 1980; Smith 1980; Yelland et al. 1998; Donelan et al. 2004). Above this value, we continue this function linearly until 35 m/s and linearly again to 45 m/s. Above 45 m/s, c
                  d(s) remains constant, since not much data are available there. We have chosen this functional form because it requires the smallest number of degrees of freedom to fit the measurements. Doing this calculation for a larger number of parameters would be too computationally expensive. The drag values at wind speeds of 35 and 45 m/s form the variables of the parameter estimation (Fig. 1a). This results in perturbations of the region of maximum winds and tropical cyclone force winds in the radial profile of wind stress (Fig. 1c).
Fig. 1

                          a Drag coefficient parameterization as a function of wind speed for three exemplary values. b The radial profile of wind speed, as specified in Eq. 2. c The resulting radial profile of wind stress


Full size image


                We use a regional version of the Massachusetts Institute of Technology general circulation model (MITgcm) (Adcroft 1995; Marshall et al. 1997a, b) to simulate the ocean flow. The MITgcm ocean model is based on the Navier–Stokes equations for a viscid, Boussinesq, hydrostatic, and incompressible fluid. We employ a version of the model that includes the K-profile parameterization (KPP) turbulence closure (Large et al. 1994). The model is implemented with an implicit nonlinear free surface in spherical coordinates, with a horizontal resolution of \(\frac{1}{18}{\deg}\) and 40 layers in the vertical (5 m in the top 100 m; 4000 m total depth), and for a 3300 × 3700 km domain (a region 30° by 36° in latitude and longitude). Background vertical viscosity and diffusivity are set to be 1.5 × 10−4 m2/s and 1.5 × 10−6 m2/s, respectively. The coefficients for the horizontal biharmonic forms of viscosity and diffusivity have amplitudes of 5 × 109 m4/s and 2 × 108 m4/s, respectively. These values satisfy stability criteria for the terms representing dissipation by friction in the momentum and tracer equations. Boundary conditions are specified for a flow in a zonal channel with closed, no-slip side walls in both the east–west and north–south directions. In all experiments, the bottom topography is flat.
It is important to note that the MITgcm filters out the surface gravity waves because of the implicit nonlinear free surface. Because the wind stress is conveyed through the field of surface gravity waves to force currents in the upper ocean, this warrants caution in the interpretation of our results. However, as mentioned above, the misalignment between wind speed and stress due to swell should only be a few percent for a tropical cyclone, and the processes that affect the drag are local. Our estimated drag coefficient represents the fraction of momentum that is fluxed beneath the field of surface gravity waves to force the interior.
In order to perform experiments in relevant parameter ranges, initial temperature and salinity are horizontally uniform vertical profiles that are representative of pre-Hurricane Frances conditions near the Caribbean Island chain (Zedler et al. 2009). The wind velocity template (Fig. 1b) is based on measurements of sea surface pressure and wind speed taken underneath Hurricane Frances in 2004 (Morzel 2009):
$$ \begin{aligned} \left.\begin{array}{l} U_{\text{r}}=-{\rm e}^{0.1886R}+1 \\ U_{\theta}={\rm e}^{0.2653R}-1\\ \end{array}\right\} & \quad 0 \leq R < R_{\rm M}\\ \left.\begin{array}{l} U_{\text{r}}=-13.27{\rm e}^{-0.0035R}-3.33 \\ U_{\theta}=53.86{\rm e}^{-0.00544R}+2.86\\ \end{array}\right\} & \quad R_{\rm M} \leq R < 800\,\hbox{km},\\ \left.\begin{array}{l} U_{\text{r}}=0.0414R-37.23 \\ U_{\theta}=-0.0358R + 32.18\\ \end{array}\right\} & \quad 800\,\hbox{km} \leq R < \,900\, \hbox{km,}\\ \end{aligned} $$

                    (2)
                

where R
                  M = 15 km is the radius of maximum winds, U
                  r and U
                  
                    θ
                   are the radial (positive outward) and azimuthal (positive implies counterclockwise) components of the wind speed, respectively. In this equation, an exponential is fit for the tropical cyclone eye region (0 ≤ R < R
                  M) to match the solution at R
                  M, and the winds linearly decrease to 0 in the outer region (800 km ≤ R < 900 km). The wind speed template is translated at a constant speed of 5 m/s to the west at the model time step of 300 s in the absence of background flow. The storm template is representative of a Category 4 storm with a maximum wind speed of 55 m/s and a radius of maximum winds of 15 km. No heat fluxes are applied to the model.
In this section, we summarize two distinct kinds of statistical analyses. The first is a numerical estimate of the posterior distribution on the parameters and is described in Sect. 2.2. In the second, we use an ensemble of estimated posterior probability density functions to estimate the uncertainty in the parameters for given levels of noise in the measurements. This is described in Sect. 2.3.
2.2 Statistical framework
The goal of our work is to use measurements of sea surface temperature and current speed in order to determine the drag coefficient c
                  d as a function of the wind speed, or rather the two intercepts at 35 and 45 m/s in a piecewise linear function, as discussed in the previous subsection. We will refer to these as x = (x
                  1, x
                  2). The observations are sets of time series of temperature T and/or velocity components u, as extracted from the reference forward calculation of the model. We uniformly refer to these time series as the data Q(p
                  
                    i
                  , t) taken at the mooring p
                  
                    i
                  .
Using the forward model, namely the ocean flow driven by winds representative of tropical cyclone Frances with given drag coefficient parameters x, we can formally write the relation between parameters and measurements as Q = F(x), where F contains the ocean model as well as the measuring procedure. Our goal here is to find a statistical distribution (the so-called posterior probability density function) of x that reflects the measurements Q and their statistics. In our experiments, Q is taken from the reference forward simulation Q
                  
                    r
                   = F(x
                  
                    r
                  ) with additive noise, namely Q(p
                  
                    i
                  , t) = Q
                  r(p
                  
                    i
                  , t) + ε(p
                  
                    i
                  , t), where ε is a random variable with a Gaussian distribution. In this experiment, the additive noise exclusively represents “measurement” error. Because our “measurements” are extracted from the model output itself, there is no modeling error.
The methodology is based on Bayes theorem, which relates the posterior probability density function π
                  post(x) of the parameters given the observations (the desired result) to the likelihood function of the observations given the parameters (a much easier function to find). Bayes theorem can be expressed as follows:
$$ \pi_{\rm post}({\mathbf x}) \equiv \pi({\mathbf x}|{\mathbf Q}) =\frac{\pi_{\rm prior}({\mathbf x})\pi({\mathbf Q}|{\mathbf x})}{\int_{\Re^{\it n}}\pi_{\rm prior}({\mathbf x})\pi({\mathbf Q}|{\mathbf x}) {\rm d} {\mathbf x}}. $$

Here, π
                  prior(x) is the prior distribution of the parameters, which employs knowledge existing before the actual measurements are taken. The denominator of this equation is a normalization constant, since the integral is over the real vector space of dimension n ℜn corresponding to the vector x (Kaipio and Somersalo 2005). Hence, we can write
$$ \pi({\mathbf x}|{\mathbf Q}) \propto \pi_{\rm prior}({\mathbf x})\pi({\mathbf Q}|{\mathbf x}), $$

                    (3)
                

where α is understood to indicate proportionality.
Therefore, one needs to choose a prior distribution of the parameters π
                  prior(x) and calculate the probability density function of the observed parameters given the parameters π(Q|x) in order to obtain the posterior probability density function of the parameters x.
In order to model π(Q|x), we introduce the cost functionals J
                  
                    Q
                   (Q being T for temperature, UV for east and north velocity components (u, v), TUV for their combination, C for current speed, and TC for the combination of sea surface temperature and current speed) associated with the misfit between simulation and data; namely
$$ \begin{aligned} J_T &= \sum\limits_{k=1}^{N_t} \sum\limits_{i,j=1}^N [C^{-1,T}]_{ij} \left(T(p_{i},t)-T_{\text{r}}(p_{i},t)\right) \left(T(p_{j},t)-T_{\text{r}}(p_{j},t)\right),\\ J_{\text{UV}} &= \sum\limits_{k=1}^{N_t} \sum\limits_{i,j=1}^N [C^{-1,\text{U}}]_{ij} \left(u(p_{i},t)-u_{\text{r}}(p_{i},t)\right) \left(u(p_{j},t)-u_{\text{r}}(p_{j},t)\right),\\ &\quad+ \sum\limits_{k=1}^{N_t} \sum\limits_{i,j=1}^N [C^{-1,\text{V}}]_{ij} \left(v(p_{i},t)-v_{\text{r}}(p_{i},t)\right) \left(v(p_{j},t)-v_{\text{r}}(p_{j},t)\right),\\ J_{\text{C}} &= \sum\limits_{k=1}^{N_t} \sum\limits_{i,j=1}^N [C^{-1,T}]_{ij} \left(C(p_{i},t)-C_{\text{r}}(p_{i},t)\right) \left(C(p_{j},t)-C_{\text{r}}(p_{j},t)\right),\\ J_{\text{TUV}}&=J_{\text{T}}+J_{\text{UV}}\\ J_{\text{TC}}&=J_{\text{T}}+J_{\text{C}}, \end{aligned} $$

                    (4)
                

where C
                  Q is the covariance matrix of the measurement uncertainties given the model solution, and J
                  
                    Q
                   is the cost function that represents the normalized, squared misfit between the measurements and the model solution. The summation is over the number of sensors N and the number of timesteps for each sensor N
                  
                    t
                  . Here we assume that errors for two different observations (given the model solution) are spatially and temporally uncorrelated. We also assume that the errors in the east and north velocity components are uncorrelated, that all realizations of the Gaussian distributed error ε(p
                  
                    i
                  , t) have the same standard deviation, and we take C
                  
                    Q
                      ij
                    
                    
                   = σ
                  2δ
                    ij
                   where δ
                  
                    ij
                   is the Kronecker delta (= 1 when i = j; = 0 otherwise). This allows us to write
$$ J_{Q} = \sum\limits_{k=1}^{N_t} \sum\limits_{i=1}^N \sigma^{-2}\left(Q(p_i,t)-Q_{\text{r}}(p_i,t)\right) \left(Q(p_i,t)-Q_{\text{r}}(p_i,t)\right). $$

                    (5)
                

The time step between discrete sampling points is set at 1 h. When x and ε are statistically independent of one another, it follows that
$$ \pi({\mathbf{Q}}|{\mathbf{x}}) \propto {\rm e}^{-\frac{J_Q}{2}}. $$

                    (6)
                

Since there is a wide spread in measurement-based estimates of the drag coefficient (Black et al. 2007), we assume that nothing is known about the parameters except that they fall within a certain range [a, b], and choose accordingly \(\pi_{\rm prior}(\mathbf{x})\) to be a uniform distribution
$$ \pi_{\rm prior}({\mathbf{x}}) =\left\{ \begin{array}{ll} \frac{1}{(b-a)^{2}} & \hbox{for}\,{\mathbf{x}} \in (a,b)^2\\ 0 & \hbox {otherwise}. \end{array}\right. $$

We justify the choice of the interval [a, b] = [1, 3.6] for our uniform prior because it covers the range of the existing estimates for the drag coefficient (Powell et al. 2003; Donelan et al. 2004; Black et al. 2007; Jarosz et al. 2007). Thus, we obtain
$$ \pi({\mathbf{x}}|{\mathbf{Q}}) =\left\{ \begin{array}{ll} \frac{\frac{{\rm e}^\frac{-J_Q}{2}}{2.6^2}}{B} & \hbox{for}\,1 \le x_{1}, x_{2} \le 3.6\\ 0 & \hbox {otherwise}, \end{array}\right. $$

                    (7)
                

where B is the normalization constant that makes the integral of (x|Q) over the vector space ℜ2 equal to 1.
We characterize the posterior probability density function of the parameters through its mode
$$ {\mathbf{x}}_{\rm map}({\mathbf{Q}})= \mathop {\rm argmax }\limits_{{\mathbf{x}}} \pi({\mathbf{x}}| {\mathbf{Q}}), $$

                    (8)
                

in which argmax denotes the argument x where the term π(x|Q) obtains its maximum. This is equivalent to
$$ {\mathbf{x}}_{\rm map}({\mathbf{Q}}) = \mathop {\rm argmax }\limits_{{\mathbf{x}}}(-\log \pi({\mathbf{x}}|{\mathbf{Q}})) =\mathop{\hbox{argmin}}\limits_{\mathbf{x}} J_{Q}({\mathbf{x}}). $$

                    (9)
                

This is representative of the most probable set of parameters that are consistent with the observations.
Summarizing, we obtain Eq. 7 for the posterior probability density function of the parameters. Nevertheless, several assumptions entered this formula. The first of these was that the measurement errors were distributed normally. Second, we assumed that measurements given the model solution are uncorrelated in space and time, and that the errors in the north and east velocity components are also uncorrelated. This is not justified by the physics of our problem, since we would expect that information is transported from one mooring to the next and also that there is temporal correlation. We will address violations of these assumptions in some of the experiments outlined below.
2.3 Sensitivity analysis
Several assumptions led to Eq. 7, most prominently a Gaussian distribution of the errors. Since the model equations are nonlinear, we also calculate a parameter distribution x by the following method: we add noise with a Gaussian distribution to the temperature time series extracted from the reference forward simulation. We generate 1000 samples for this distribution to represent an ensemble of realizations of noisy data with the same error characteristics. If then the distribution of x is still approximately Gaussian, this would also suggest that the model F can be approximated by a linear function with reasonable accuracy, and also that a change in the statistical distribution of the measurements does not affect the outcome severely. For each realization of noise in the measurements, we precompute J
                  
                    Q
                   on an adaptive grid around the optimum. Using a lookup strategy, we retrieve the parameters x that correspond to the minimum value of J
                  
                    Q
                  , which approximates the solution to x = F
                  −1(Q). In this way, we generate a probability density function of the estimated drag coefficient with a specified level of uncertainty in the measurements.
2.4 Experiments
Since this article is a feasibility study, we avoid the additional complications arising from simulating the tracks of drifters and floats, and assume all measurements are taken from moorings. While this is not realistic for actual measurements, it is justified by the fact that the mathematical structure of the problem is very similar in that it does not depend on whether your data is collected from a Eulerian or Lagrangian frame of reference. Furthermore, the structure of the tropical cyclone response itself when measured from either reference frame looks very similar so long as it is amply sampled (Zedler et al. 2002; Sanford et al. 2007; Zedler et al. 2009). At these moorings, we have the ability to measure the sea surface temperature and the velocity. The number and positions of moorings can be adjusted. We will discuss how placement and density of moorings influence the quality of the estimation in Sect. 3.
In order to assess whether the parameters are well determined by measurements, we perform two sets of experiments. First, we numerically estimate the posterior probability density function, π(x| Q), following Eq. 7 for an ensemble of Q with noise that has certain error characteristics. In some instances, we refer to the numerical estimate of the posterior distribution simply as the posterior distribution. We note here that we do not have a closed-form expression of the posterior density of the parameters. Additionally, because our numerical estimate of the posterior distribution is on a predefined grid, we could be spatially aliasing variability. Second, we perform a sensitivity analysis to study the accuracy of the parameters under different settings and configurations. For both experiments, the results are numerically estimated on a mesh, with a spacing dx = 0.2 on the square [1, 3.6]2. We refine to a spacing of dx = 0.1 on [1.6, 3.0]2 and further to dx = 0.05 on [2.05, 2.55]2, where x
                  1 = c
                  d(35 m/s) × 103 and x
                  2 = c
                  d(45 m/s) × 103 are the scaled parameterization variables. The contour plots of the numerical estimate of the posterior density function are based on forward simulations with the same sampling strategy. We let \(x_{{r_{1} }} = x_{{r_{2} }} = 2.3 \) represent the true solution Q
                  r(p
                  
                    i
                  , t) and use the MITgcm to compute the measured values of sea surface temperature T
                  r and 15 m velocity u
                  r for this parameter set (Fig. 1a, c).
Because the marginal distributions of the parameters with respect to the noise, calculated as described in the Sect. 2.3, appear (qualitatively) to be normally distributed, we use the standard deviation of the curve to represent the uncertainty in the parameters, given the standard deviation in the measurements σ.
In most experiments, ε(p
                  
                    i
                  , t) = ε(p
                  
                    i
                  ), i.e., the amplitude of the random measurement noise is constant over time. In order to study the influence of changes in the noise over time, a series of experiments was also conducted with
$$ \varepsilon(p_{i},t)=\varepsilon(p_{i}) \sin\left(\frac{2\pi kt}{71}\right), $$

                    (10)
                

where t is the time in hours and k is the frequency of the sine wave in units of cycles per 71 h period, the observation window for our simulations.


3 Results
In the first experiment, we study the posterior density function obtained from an array of 21 moorings on a regular grid inside the box indicated in Fig. 2a, with three columns in the north–south direction of seven moorings each. The spacings of the moorings in the longitudinal and latitudinal directions were \(0.25{\deg}\) and \(0.5{\deg},\) respectively. When presented as a function of the parameters x
                1 and x
                2, the estimated posterior density function π(x|T) is concave, with a maximum at x
                1 = x
                2 = 2.3. This reflects the fact that the “true” drag coefficient parameterization for the reference forward simulation was based on the laboratory results of Donelan et al. (2004), which suggest saturation of the drag coefficient at that value. The posterior density function for sea surface temperature (Fig. 3a) appears very concentrated around the true value, indicating that these measurements are very likely to produce reliable estimates. The elongation of the contour lines indicates that the problem is ill-conditioned (see the discussion of Fig. 5a below).
Fig. 2
Snapshot of the sea surface temperature with wind vectors and hypothetical sensor array for sampling arrays. The storm has passed the moorings and is moving to the left. Two boxes are drawn for subsets of points from the large area (encompassing the entire simulated response) and a smaller area where the wake becomes fully developed. Example arrays for the smaller area are shown for the three sampling configurations. a For the configuration where latitude columns are added sequentially to the west (here, the number of rows is four). b For the configurations where longitude rows are added two at a time to the north and south of the maximum response (here shown for three rows). c For the configurations where the points are drawn randomly (all 100 points shown here). The first ten random points in the series are highlighted with white stars
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                Fig. 3

                        a Numerically estimated posterior probability density function π(x | T) for temperature for measurements at 21 moorings at a noise level of 0.1 K. b Posterior probability density function \(\pi({\bf x} | \mathbf{UV})\) for velocity components at a noise level of 0.1 m/s
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                Fig. 4
Histograms of values of x
                        1 and x
                        2 for various noise levels in the data, normalized by the maximum value. The thick black curve is a Gaussian fit to the marginal probability density function (as noted in the legend). a For 2σ
                        T = 0.16 K, x
                        1. b For 2σ
                        T = 0.16 K, x
                        2. c For 2σ
                        T = 0.32 K, x
                        1. d For 2σ
                        T = 0.32 K, x
                        2. e For 2σ
                        T = 1.0 K, x
                        1. f For 2σ
                        T = 1.0 K, x
                        2
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                Fig. 5

                        a Numerically estimated posterior probability density function π(x | T) with a noise level of 0.32 K. For the middle row of six moorings in the configuration from Fig. 2b. b Same as in a, but for three rows of six moorings, as shown in Fig. 2b
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              The posterior density function for 15 m velocity components (Fig. 3b) is much wider, indicating that these measurements are less useful information for estimating the drag coefficients. Nevertheless, the contours of constant cost trace approximate concentric circles, indicating a well-conditioned parameter estimation problem.
The estimated marginal density function of x given Q, as outlined in Sect. 2.3, approximates a Gaussian (Fig. 4). This is true for both the marginal probability densities of x
                1 and x
                2 and for the full range of noise levels considered. Therefore, instead of plotting the probability density function, we report standard deviations in the following.
In all experiments, we apply perturbations to the measurements, which change randomly between the moorings but are constant in time. This is justified by Table 1, where we study the influence of oscillating noise of different frequencies, as specified in Eq. 10. The results there show that the standard deviation is much smaller for oscillating noise than for constant perturbations (shown for a noise level of 0.32 K). At a frequency above 6 cycles/71 h, the uncertainty in the drag coefficient parameters that correspond to a given level of noise is negligible. We chose 71 h because it is very close to twice the inertial period at of 32 h at \(22{\deg}\hbox{N}, \) and also because it was the observation window for our model simulation, so that we could test the sensitivity of noise for a wide range of frequencies. The inertial frequency is close to a frequency of k = 2 in Eq. 10, corresponding to a period of 35.5 h. The higher-order sine waves represent a type of noise that could for instance result from turbulence in the flow. The results of this sensitivity experiment suggest that unresolved turbulence in the flow field should not significantly affect the uncertainty in our estimated drag coefficient curve. This reflects the fact that random errors fluctuating sinusoidally with high frequencies in the reference field average out in the calculation of the misfit function.
Table 1 Dependence of the quality of the parameter estimation on the perturbations of the sea surface temperature oscillating over timeFull size table


              Next, we study how the size of the measuring window affects the quality of the estimation. For the results in Table 2, we begin with a single column of seven moorings in the north–south direction and then duplicate it step-by-step to fill the small window in Fig. 2a. It turns out that the standard deviations decrease considerably in the beginning, but not much improvement is achieved after four columns of moorings.
Table 2 Dependence of the quality of the parameter estimation on the number of measurements in the east–west directionFull size table


              For the results in Table 3, we start with a row of six moorings in the east–west direction at the latitude of maximum sea surface temperature response, adding columns to enlarge the domain one on each side at a time to fill in the small window in Fig. 2b. It is relevant here to note that the case with one row of sensors contains the largest temperature changes, and hence has the largest signal-to-noise ratio in the temperature anomaly fields (Fig. 5a). The level curves form elongated ellipses with the long axis along the direction x
                1 =  −x
                2. The parameter estimation problem is not well conditioned: there are multiple solutions for the drag coefficient that correspond to minimum cost, since the estimation of the sum x
                1 + x
                2 is much more accurate than the estimation of x
                1 − x
                2. This reflects the fact that the resulting temperature wake after a quick event such as an ocean storm is a function of the temporal integral of the wind stress at a point, rather than its point-by-point evolution. In our model, the maximum change in sea surface temperature is a linear function of the temporally integrated wind stress. Therefore, opposite changes in x
                1 and x
                2 tend to cancel each other in the integration. When data are added from the rows to the north and the south of the maximum response, we are adding data forced by lower wind speeds, which have smaller signal-to-noise ratios in their temperature anomaly fields (Fig. 5b). The larger axis of the ellipse that defines constant contours of the posterior probability density function π(x|Q) is therefore rotated about \(15{\deg}\) towards the x
                1 axis, and the projection of the uncertainty along that axis accordingly increases when the number of sensors is increased from 6 to 18. The fact that the posterior density function is rotated for the case of one row of moorings aligned along the maximum sea surface temperature response underlines the importance of collecting at least some cross-track data for distinguishing the response to the storm. Overall, we find a result similar to that for the case where the moorings were added in north–south columns. Namely, there is not much improvement after data from three rows of moorings are used in the calculation of π(x|Q). Based on the results of these two experiments, we conclude that measurements from a small area are sufficient to estimate the parameters to a tolerable level of uncertainty.
Table 3 Dependence of the quality of the parameter estimation on the number of measurements in the north–south directionFull size table


              Additionally, we investigate how the density of moorings in a fixed window affects the quality of the estimation. To this end, we randomly distribute moorings in the small and the large rectangle in Fig. 2c, respectively. The results are shown in Fig. 6. The top graph for the small domain indicates that 10% accuracy is already achieved with less than 20 moorings. Not much improvement can be achieved beyond 40 sensors. The results for sea surface temperature and for current speed are nearly coincident. For the large window, more measurements are necessary, mostly because measurements outside the region of maximum response or to the left of the storm do not pick up any information. 
Fig. 6
Standard deviation of x
                        1, based on π(x|Q) for sea surface temperature, velocity components at 15 m, and the sum of the two, as a function of number of sensors included in the calculation. A running average was applied over every ten points; the standard deviation of the mean is shown at selected points. a For the small domain. b For the large domain
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              Since, as discussed above, the number of moorings has a minor influence, we use a sensor array with 21 points according to Fig. 2a for the remaining experiments. The standard deviation of x(Q) is a monotonically increasing function of noise level in the surface measurements. Indeed, the function is mostly linear over the relevant range of noise levels (see Fig. 7a). When the cost function is based on surface measurements only, the smallest standard deviation in x
                1 is achieved for a combination of current components and temperature. The largest uncertainty in the estimated drag coefficient is obtained when current speed is used. This is what we would expect, considering that the current speed does not contain any direction information. When a combination of the current speed and sea surface temperature are used, the standard deviation in x
                1 is reduced by a factor of over two considering the 15 m current speed alone. Still, as expected, the standard deviation in x
                1 is lower when the cost function is based on a combination of temperature and current components than when it is based on a combination of temperature and current speeds. These results suggest that in a data assimilation experiment where the drag coefficient parameterization is adjusted to accord the closest match between observed and simulated near-surface values, the smallest uncertainty is achieved when a combination of current components and temperature is used.
Fig. 7
Standard deviation of x
                        1 as a function of noise level. The misfit functions are based on a sea surface temperature, 15 m current components, 15 m current speed, the sum of 15 m current components and sea surface temperature, and the sum of 15 m current speed and sea surface temperature; b temperature and current components in the upper 200 m of water at 30 distinct depths
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              If temperature measurements from the upper 200 m of water are included in the cost function (Fig. 7b), the standard deviation in x
                1 is reduced by a factor of two, indicating that the use of floats in addition to drifters can improve the accuracy of the estimated drag coefficient considerably. As the same figure shows, using the current at various depths does not yield a considerable improvement. This suggests that the most important factor for setting the storm response is the structure of the temperature response. The mechanism there would be that the wind stress sets up the strength of the vertical shear in the horizontal currents across the base of the mixed layer, which plays a role in determining how much vertical turbulent mixing occurs. This implies that using float data along with drifter data, is helpful for minimizing error in the estimated drag coefficient.
These results reflect the fact that shear-induced turbulent mixing is a self-regulatory process for velocity amplitude. In a tropical cyclone wake, the wind driven currents drive shear instabilities that result in deepening of the mixed-layer. Over timescales of a few hours, the wind stress can be treated as a body force over the mixed-layer depth and currents are nearly uniform over that interval. As the mixed layer deepens in response to increasing wind stress, the increase in the amplitude of the upper ocean currents is mitigated by the fact that the momentum is distributed over a larger depth. The direction of kinetic energy input is downward. At the same time, the temperature change in the mixed-layer is enhanced as it deepens because ever-colder water is pulled up from the stably stratified thermocline and the temperature of the water that is vertically mixed decreases. For these reasons, the temperature response is much more distinct between simulations than the current speed in the upper 100 m of water. The current speed difference between two simulations is largest below the mixed-layer depth and above 200 m, whereas the largest temperature differences are in the upper 100 m of water.


4 Sources of error
Above, we conducted a twin experiment and have thus assumed that the model we use, including wind data and boundary conditions, is exact. As a consequence, only errors of the measurements with statistical distribution were considered. All of the errors in our outlined experiments are represented in the uncertainties added to the data—this includes uncertainty due to imperfect knowledge of the initial conditions and all the other possible sources of error, many of which are discussed below. Added together, these errors may contribute to large uncertainties in the data used for the calculation. In our calculation, we consider errors that are random in space and constant in time, up to a level of 1.1 K or 1.1 m/s in the temperature or current measurements. At these levels of error, which are significant relative to the total expected response, the uncertainty propagates to tolerable spreads in the estimated drag coefficients. While other types of errors could also be included, they are beyond the scope of this study. Some of these will be addressed in our future data assimilation twin experiments. Below, we discuss the possible effects of other errors that would be introduced from the model and measurement in a more realistic experiment where actual field data is used. The model errors discussed below consist of unknown biases relating to the grid resolution, parameterization of subgridscale turbulence, and imperfect representation of the initial condition. We discuss the measurement errors first, and modeling errors or inadequacies second.
First, for the more realistic case where actual data is used in the analysis, current speed estimates and temperature measurements would likely be made from moored or drifting platforms. Drifter speeds can be calculated using first-order differencing of position fixes, available at a frequency of up to once per three hours. The associated Nyquist frequency is 1 cycle per 6 h, which is sufficient to resolve the inertial period at 22°N, the central latitude of Frances during the passage over the instrument array, of 32 h. Doing this study at a specific central latitude is justifiable because the major characteristics of the classical ocean response to a tropical cyclone—lowering of the sea surface temperature and large amplitude near-inertial currents at 15 m—are still present at other latitudes where tropical cyclones form. Although the frequency of the near-inertial currents and the degree of resonant forcing of the ocean on the right-hand side of the storm (which helps to set how much vertical turbulent mixing of the water column occurs) vary as a function of latitude and/or storm translational speed, in an operational sense, the simulation is always done at the latitude of the target data set. There are several sources of error that can enter a velocity calculation. First and foremost, the uncertainty in the position varies between 150 and 1000 m (Lumpkin and Elipot 2010). Secondly, the positions are transmitted at irregular time intervals, so some sort of interpolation needs to be performed before the velocity is calculated. In the past, this has been done either using some form of optimal interpolation (Hansen and Poulain 1996) or by fitting a spline, and then calculating the velocity using central first order differencing of the interpolated position fixes. Furthermore, the drifters do not perfectly follow the 15-m flow field. The reported wind slip of drifters of 0.5–3.5 cm/s (Niiler et al. 1995) in moderate winds would add additional errors to the estimated current, but it is much smaller than typical maximum inertial current speeds under a tropical cyclone of 1–2 m/s. However, the wind slippage of a drifter subjected to tropical cyclone force winds could be higher, and is unknown. The sea surface temperature sensors deployed ahead of Hurricane Frances had a nominal accuracy of 0.1 K (Black et al. 2007), but the accuracy associated with attachment to a drifter would be smaller. The accuracy for measurements from two different sea surface temperature sensors commonly deployed on drifters is around 0.1 K (Reverdin et al. 2010). The temperature sensors deployed on ARGO floats (ARGO Steering Team 1998) are very accurate, with a reported uncertainty of 0.005 K (Oka and Ando 2004). These uncertainties are smaller than our stated errors.
A second consideration for a more realistic calculation would be the availability and accuracy of wind speed and direction measurements, which are hard to measure and therefore often sparse in space and time. Targeted ocean field surveys are usually accompanied by dense atmospheric measurements such as flight level wind, stepped frequency microwave radiometer measurements, and radio sondes, in addition to the usual buoy and ship data. The wind data available for Hurricane Frances, which is our proposed test case, are discussed in Zedler et al. (2009). We take the wind data on large scales to be relatively well known. Turbulent fine-scale deviations from these data are statistical in nature and of high frequency. Therefore, according to Table 1, we expect that they would have a comparatively minor influence.
A third consideration for the realistic case is that the density of air is variable, whereas we have set it as a constant. Changing the density of air to a different constant value would have no effect on our results, because our ”data” are extracted from a reference forward run forced with the same constant density. In the real case, the density of moist air can be calculated from the ideal gas law, which depends on temperature, pressure, and relative humidity. We have made an estimate of the air density profile based on the radial wind and surface pressure profiles for Frances (Morzel 2009), and a drag coefficient parameterization representative of Donelan et al. (2004). This assumed a constant relative humidity and air temperature. The maximum difference between a constant density (set at the environment pressure) and a variable one was 8% at the center of the storm, and it decreases monotonically to 0.46% at the extratropical storm radius of 270 km (winds above 17.5 m/s). The average percent difference over this radius is 2 ± 2%.
For the more realistic case, we would need to consider modeling inadequacy in addition to measurement errors. One source of model error comes from the parameterization of subgridscale turbulent mixing. This is especially important for simulating the ocean’s response to a tropical cyclone. Different turbulent mixing schemes typically do not produce the same decrease in sea surface temperature when exposed to the same wind forcing (Niiler and Kraus 1977; Zedler et al. 2002; Jacob and Shay 2003). These differences can be significant, especially if the initial mixed layer is shallow. Specifically, when three different one-dimensional turbulent mixing models were compared for Hurricane Felix, which passed over a shallow mixed layer region (≈20 m) near Bermuda in 1995, simulated changes in sea surface temperature ranged over 1.5 K (Zedler et al. 2002) when the observed cooling was 3–4 K. Similarly, simulations of Hurricane Gilbert when it passed over a moderately deep mixed-layer region (30–40 m) in the western Gulf of Mexico in 1988 using four different entrainment schemes varied over a range of ≈1 K, relative to a total simulated temperature change of 2–3 K (Jacob and Shay 2003). Zedler et al. (2009) found that for a category 4 storm translating at a constant speed for Frances-type initial conditions (a deep mixed layer and a weak thermocline), the sea surface temperature responses predicted by two turbulent mixing parameterizations that are quite different in formulation, namely the Price–Weller–Pinkel (Price et al. 1986) model and the KPP model (Large et al. 1994), differed by a maximum of a few tenths of a degree. This was on the order of the root mean square difference in the measured and the observed sea surface temperatures for Hurricane Frances. That is to say, the uncertainty introduced between these two turbulent mixing parameterizations was no more significant than that introduced by measurement error. This is encouraging for our calculation, which is designed for the dataset collected during Hurricane Frances. However, it is clear that in general, the drag coefficient that you select will depend on the turbulent mixing scheme that you implement. In this experiment, we have implemented the KPP turbulent mixing model. The KPP mixing model has found widespread use, e.g., it is implemented in the National Center for Atmospheric Research Community Climate System Model (Collins et al. 2006, CCSM). The global CCSM model is currently being configured on a finer resolution grid that will begin to resolve tropical cyclones. Therefore, our results will be of interest to the community of researchers who use the KPP turbulence model.
Additional modeling errors or biases are introduced by the choice of horizontal and vertical grid discretization. To address the effect of the chosen grid on the simulated temperature response, we conducted a companion experiment with a similar setup and the same vertical grid at nominal horizontal resolutions ranging between 6 km and 500 m. The difference fields for sea surface temperature between these two resolutions are a maximum of 0.1 K, which is well within our stated error bounds. At a nominal resolution of 9 km, and for a similar setup, we conducted simulations with the vertical spacing ranging between 5 and 3 m (in the upper 100 m of water), and found the difference fields for sea surface temperature to be a maximum of about 0.2 K, which was also within our stated error bounds.
Naturally, modeling errors are introduced because the initial condition is not realistic. This calculation was initialized with a quiescent ocean that has horizontally uniform profiles of temperature. In reality, there is a field of mesoscale (Jacob and Shay 2003), and also of pre-existing near-inertial oscillations (Zedler et al. 2002). The sea surface temperature field can have spatial variations associated with the mesoscale features or previous wind events (such as a tropical cyclone). These errors are essentially nonstatistical. Rather, they result in unknown systematic errors of the measurements which, in contrast to known systematic errors, cannot be recognized using this statistical approach. On the other hand, the surface currents associated with the mesoscale can be estimated from sea surface height altimetry, and can be filtered out of the drifter velocity estimates since they are separated in frequency space from the inertial oscillations. By filtering the velocities of data to be assimilated, we can estimate the component of the velocity that is stored in the near-inertial band. Another approach would be to put a quasi-realistic version of the mesoscale into the model’s initial flow and temperature fields.


5 Conclusions
Using twin experiments and a sensitivity analysis, our results show that under idealized circumstances, the bulk drag coefficient between air and water can be estimated with reasonable accuracy from scattered surface measurements in the ocean. For certain conditions, we demonstrated that realistic statistical errors in the measurements propagate to tolerable statistical spreads in the results. We found that only a small number of sensors (20–40) are needed to obtain sufficient accuracy, and larger numbers of sensors do not improve the accuracy very much. We also identified several sources of error that could occur in a more realistic calculation. We demonstrated that the parameter estimation problem for temperature is not quite well conditioned, and that using velocity data also improves the situation. However, the best improvement was achieved when depth information for the temperature was included. Sensor placement makes a difference in the spread of estimated drag coefficient values, as is suggested by comparing calculations for randomly placed sensors concentrated over large and small regions centered on the maximum response for temperature. However, in both cases, the spread in the estimated drag coefficients was within a reasonable error tolerance.
The work presented here should be understood as a feasibility study. Based on our results, we are currently implementing a parameter estimation code which allows for higher resolution of the bulk drag coefficient with respect to wind speed. Here, we show the shape of the cost function with a very coarse parametrization of the drag coefficient; with more free parameters, this approach is not feasible anymore, and we resort to a gradient-based data assimilation method.
We are applying this calculation to data collected in the wake of Hurricane Frances, as part of the CBLAST experiment (Black et al. 2007). If the method is successful, we will apply our technique to other storms as well. In particular, due to the statistical nature of our approach, a combination of data from several storms can be used to obtain better accuracy.
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