Crystal Structures of 2-Phenyl-2H-1,2,3-Triazol-4-Carbaldehyde, an Active α-Glycosidase Inhibition Agent, and (1-Phenyl-1H-1,2,3-Triazol-4-yl)Methyl Benzoate and (2-(4-Fluorophenyl)-2H-1,2,3-Triazole-4-yl)Methanol, Two Moderately Active Compounds

Daniel Gonzaga ${ }^{1}$ • Fernando C. da Silva ${ }^{1} \cdot$ Vitor F. Ferreira $^{1} \cdot$ James L. Wardell 2,3.
Solange M. S. V. Wardell ${ }^{4}$

Received: 13 August 2015/Accepted: 23 November 2015/Published online: 16 December 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract

The crystal structures of (1-phenyl-1 $H-1,2,3$ -triazol-4-yl)methyl benzoate, 1a, (2-(4-fluorophenyl)- 2 H -1,2,3-triazole-4-yl)methanol, 2a, and 2-phenyl-2H-1,2,3-triazol-4-carbaldehyde, $\mathbf{2 b}$, are reported. Compounds $\mathbf{1 a}$ and 2a were recently reported to exhibit mild α-glycosidase inhibition activity, while compound 2b exhibited a much greater activity. Only small dihedral angles 6.52(4), 14.02 (10) and $2.44(7)^{\circ}$ are present between the triazolyl ring and the attached aryl rings in 1a, $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively. The relatively flat compounds $\mathbf{2 a}$ and $\mathbf{2 b}$ contrast with compound 1a, which is " V " shaped, with a dihedral angle between the near planar phenyltriazolyl- CH_{2} and phenyl $-\mathrm{CO}_{2} \mathrm{CH}_{2}$ moieties of $88.11(4)^{\circ}$. The intermolecular interactions in $\mathbf{1 a}$ are $\mathrm{C}-\mathrm{H} \cdots \mathrm{X}(\mathrm{X}=\mathrm{N}$ or π (triazole) and π (triazole) $\cdots \pi$ (phenyl): two different chains are formed, from (i) combinations of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and (ii) combinations of the $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi \cdots \pi$ interactions.. The intermolecular interactions in $\mathbf{2 a}$ are $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{F} \cdots \pi$ (phenyl): the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions generate a sheet of molecules, containing a network of rings. Classical O-H‥O hydrogen bonds, and weaker $\mathrm{C}-\mathrm{H} \cdots \pi($ triazolyl $)$ and $\pi($ phenyl $) \cdots \pi$ (triazolyl)

[^0]interactions are present in $\mathbf{2 b}$: all three interactions together generate a chevron-type arrangement. Compound 1a crystallizes in the monoclinic space group $P 2_{1}$ with $a=4.5661(5), \quad b=10.5573(14), \quad c=13.9694(19) \AA$, $\beta=90.594(6)^{\circ}$ and $\mathrm{Z}=2$. Compound 2a crystallizes in the monoclinic space group $P 2_{1}$ with $a=3.7175(7)$, $b=10.428(2), c=10.689(3) \AA, \beta=90.521(6)^{\circ}$ and Z $=2$. Compound 2b crystallizes in the monoclinic space group $P 2_{1} / \mathrm{c}$ with $a=11.4130(5), \quad b=4.80280(10)$, $c=15.5916(11) \AA, \beta=103.373(7)^{\circ}$ and $\mathrm{Z}=4$.
Graphical Abstract The relatively flat compounds, (2-(4-fluorophenyl)-2H-1,2,3-triazole-4-yl)methanol and 2-phe-nyl- $2 \mathrm{H}-1,2,3$-triazol-4-carbaldehyde, contrast with compound (1-phenyl-1H-1,2,3-triazol-4-yl)methyl benzoate, which is "V" shaped, with a dihedral angle between the near planar phenyltriazolyl-CH2 and phenyl-CO2CH2 moieties of 88.11(4) o.

Keywords 1H-1,2,3-triazole $\cdot 2 \mathrm{H}-1,2,3$-triazole $\cdot \alpha$ glycosidase inhibition • Hydrogen bonds, $\pi \cdots \pi$ interactions

Introduction

1,2,3-Triazole exists in two tautomeric forms, namely 1 H -1,2,3-triazole and $2 \mathrm{H}-1,2,3$-triazole, see Fig. 1. Derivatives of both forms have attracted much attention [1-3], in particular for their biological activities, which include as antiviral [4-6], antimalarial [7], antitubercular [8-10], antifungal [11, 12] anti-HIV [13], β-lactamase inhibition [14], anti-epileptic [15], anti-HSV [16], anti-inflammatory [17], antimicrobial [18, 19] and α-glycosidase inhibition agents [20-23]. Patents lodged in the period 2008-2011 for $1 \mathrm{H}-1,2,3$-triazole and $2 \mathrm{H}-1,2,3$-triazole derivatives have been included in a general survey for all triazolyl compounds [24].

A recent α-glycosidase inhibition study [23] involved a number of different 1-phenyl- 1 H - and 2-phenyl-2 H -1,2,3triazol derivatives. The crystal structures of three of the compounds from that study [20] have been determined, namely, (1-phenyl-1H-1,2,3-triazol-4-yl)methyl benzoate, 1a, (2-(4-fluorophenyl)-2H-1,2,3-triazole-4-yl)methanol, 2a and 2-phenyl-2H-1,2,3-triazole-4-carbaldehyde, 2b, see Table 1. Compounds, 1a and 2a, exhibited little activity, while compound $\mathbf{2 b}$, exhibited a greater inhibition, as did all the 2-aryl-2H-1,2,3-triazole-4-carbaldehyde derivatives. It was suggested that the aldehydes act upon both yeast maltase and PPA, with the aldehyde groups reacting with amine groups in the enzyme polypeptide chain to form Schiff bases.

We now wish to report our structural findings.

Results and Discussion

The compounds were prepared as previously reported, see Scheme 1 [20].

Molecular Confirmations

Compounds $\mathbf{2 a}$ and $\mathbf{2 b}$ crystallize in the monoclinic space group, $P 2_{1}$ with $\mathrm{Z}=2$, while compound $\mathbf{2 b}$ crystallizes in the monoclinic space group, $P 2_{1} / \mathrm{c}$ with $\mathrm{Z}=4$. The

Fig. 1 a 1H-1,2,3-triazole,
b $2 \mathrm{H}-1,2,3$-triazole

(a)

(b)

Table 1 Compounds mentioned in this article

(1a: $\mathrm{Ar}=\mathrm{Ph}, \mathrm{X}=\mathrm{PhCO}_{2} \mathrm{CH}_{2}, \mathrm{Y}=\mathrm{H}$)
(1b: $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{F}_{2} \mathrm{CH}$)
(1c: $\mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{Me}, \mathrm{Y}=\mathrm{MeCO}$)
(1d: $\mathrm{Ar}=\mathrm{Ph}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=$ pyridin-3-ylCO 2 Me$)$
(1e: $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{OCH}$
(1f: $\mathrm{Ar}=4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{OCH}, \mathrm{Y}=\mathrm{Me}_{3} \mathrm{Si}$)
(1g: $\mathrm{Ar}=3-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{HOCH}_{2}$)
(1h: $\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{HOCH}_{2}$)
(1i: $\mathrm{Ar}=4-\mathrm{PhC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{HOCH}_{2}$)
(1j: $\mathrm{Ar}=4-\mathrm{HO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{HOCH}_{2}$)
(1k: $\mathrm{Ar}=2-\mathrm{HO}_{2} \mathrm{CC}_{6} \mathrm{H}_{3}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{HOCH}_{2}$)
(11: $\mathrm{Ar}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{HOCH}_{2}$)

(2b: $\mathrm{Ar}=4-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{OCH}, \mathrm{Y}=\mathrm{H}$)
(2a: $\mathrm{Ar}=\mathrm{Ph}, \mathrm{X}=\mathrm{HOCH}_{2}, \mathrm{Y}=\mathrm{H}$)
asymmetric unit in each case consists of a single molecule, as illustrated in Fig. 2. Selected bond lengths and angles are listed in Table 2. The bond lengths and angles associated with the $1,2,3$-triazole rings are in the regions normally found for 1 -aryl $1 H-1,2,3$, triazoles [see for example 25-28] and for 2-aryl-2H-1,2,3,triazoles [see for example Refs. 28-33].

In each of $\mathbf{1 a}, \mathbf{2 a}$ and $\mathbf{2 b}$, the triazolyl ring is essentially planar. The dihedral angles between the triazolyl and aryl rings are listed in Table 3.

A large range of dihedral angles have been reported for both 1 -aryl- $1 \mathrm{H}-1,2,3$-triazole and 2-aryl-2H-1,2,3-triazole compounds, for example the angles are 0.34(17) and 87.1(2) ${ }^{\circ}$, respectively, in 4-difluoromethyl-1-(4-methyl-phenyl)-1H-1,2,3-triazole, 1b, [34] and in one independent molecule of 1-[5-methyl-1-(4-nitrophenyl)-1 H -1,2,3-tria-zol-4-yl]ethanone, 1c [35], see Table 1. The carbon atoms of the methylene units in $\mathbf{2 b}$ and $\mathbf{1 a}$ are essentially coplanar with the attached triazolyl group. Compound 1a has a "V" shape with the angle between the near planar phenyltriazolyl- CH_{2} and phenyl- $\mathrm{CO}_{2} \mathrm{CH}_{2}$ moieties of 88.11(4) ${ }^{\circ}$.

Crystal Structures

Compound $1 \mathbf{a}$

The intermolecular interactions in 1a are all weak, being $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions. As illustrated in Fig. 3a, chains of molecules are propagated in the direction of the b axis, from combinations of C5-

Scheme 1 Reagents; $i=\mathrm{D}-$ glucose; $i i=$ aq. $\mathrm{CuSO}_{4} ; \Delta$, $i i i=\mathrm{NaIO}_{4} ; i v=\mathrm{NaBH}_{4}$, $\mathrm{MeOH} ; v=\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{CuI} ; v i=\mathrm{PhCOCl}$

1(a)

2(a)

2(b)

Fig. 2 Atom arrangements and the numbering schemes for 1a, 2a and 2b. Probability ellipsoids are drawn at the 50% level. The intramolecular hydrogen bond in 1a is drawn as a thin dashed line
$\mathrm{H} 5 \cdots \mathrm{~N} 3, \mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2$ and $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~N} 3$ hydrogen bonds, see Table 4 for the symmetry operations. Of these hydrogen bonds, the $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 3$ is the most significant. With C5-H5 acting as donor to two acceptors, N2 and N3, R_{2}^{1} (3) rings are generated. The $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 3, \mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2$, and $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~N} 3$ hydrogen bonds individually generate $\mathrm{C} 4, \mathrm{C} 4$ and C6 chains of molecules.

Further, chain of molecules, this time propagated in the direction of the a axis, are formed from combinations of C6-H6A $\cdots \pi$ (triazolyl) and π (phenyl) $\cdots \pi$ (triazolyl) stacking interactions, see Fig. 3b; Table 4. This combination of interactions provides a chevron-type arrangement. The perpendicular distance between the best planes of combined triazolyl/ phenyl rings between layers is $3.359(3) \AA$, and with the $\mathrm{Cg} \cdots \mathrm{Cg}$ separations of 3.738(3) \AA, these $\pi \cdots \pi$ interactions are important. The packing of the molecules looking down the b axis is shown in Fig. 4.

The structure of a related compound, 1-phenyl-4-(pyr-idine-3-yl- $\mathrm{CO}_{2} \mathrm{CH}_{2}$)-1H-1,2,3-triazole) (1d) [36] has been reported. There are some structural similiarities between $\mathbf{1 a}$ and $\mathbf{1 d}$: (i) the molecule of $\mathbf{1 d}$ is also " V " shaped with the angle between the planar phenyltriazolyl CH_{2} and phenyl$\mathrm{CO}_{2} \mathrm{CH}_{2}$ moieties of 83.84°, (ii) the dihedral angle between the triazolyl and phenyl rings is $16.54(11)^{\circ}$, and (iii) there are similar $\mathrm{C}-\mathrm{H} \cdots \pi$ (triazole) and $\pi($ phenyl $\cdots \pi$ (triazolyl) interactions $[\mathrm{Cg} \cdots \mathrm{Cg}=3.895(1) \AA]$. However other intermolecular interactions are different in $\mathbf{1 d}$, being $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}($ py $), \quad \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (carbonyl) and $\mathrm{C}-\mathrm{H} \cdots \pi$ (triazolyl) hydrogen bonds, which generate a different supramolecular array to that of $\mathbf{1 a}$.

Compound $2 \boldsymbol{a}$

The intermolecular interactions in $\mathbf{2 a}$ are $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2$ and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 2$ hydrogen bonds and $\mathrm{C} 10-\mathrm{F} 1 \cdots \pi$ (phenyl)

Table 2 Selected geometric parameters, \AA°

	$\mathbf{1 a}$	$\mathbf{2 a}$	2b
N1-N2	$1.349(5)$	$1.354(2)$	$1.3356(12)$
N2-N3	$1.323(5)$	$1.325(2)$	$1.3410(12)$
N3-C4	$1.362(5)$	$1.342(3)$	$1.3358(13)$
C4-C5	$1.375(5)$	$1.409(3)$	$1.3999(15)$
C5-N1	$1.355(6)$	$1.336(3)$	$1.3309(15)$
N1-N2-N3	$106.8(3)$	$115.38(16)$	$115.28(9)$
N2-N3-C4	$109.4(4)$	$104.10(16)$	$103.69(8)$
N3-C4-C5	$108.0(4)$	$108.35(18)$	$108.25(9)$
C4-C5-N1	$104.8(4)$	$108.91(18)$	$109.43(10)$
C5-N1-N2	$110.9(4)$	$103.26(17)$	$103.34(9)$
C5-N1-C7-C8	$4.9(7)$		
N2-N1-C7-C12	$7.6(6)$		
C5-N1-C7-C12	$174.7(4)$		
N2-N1-C7-C8	$172.8(4)$		
N1-N2-C7-C8		$164.27(19)$	$0.70(15)$
N1-N2-C7-C12		$14.9(3)$	$179.39(15)$
N3-N1-C7-C12		$168.6(2)$	$3.04(14)$
N3-N1-C7-C8		$12.3(3)$	$176.87(9)$

Table 3 Interplanar angles, ${ }^{\circ}$

Compound	Angle between triazole and phenyl rings ${ }^{\circ}$
1a	$6.52(4)$
2a	$14.02(10)$
2b	$2.44(7)$

interactions. Table 4 lists the symmetry operations and geometric parameters. Combinations of the C8$\mathrm{H} 8 \cdots \mathrm{O} 2$ and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 2$ hydrogen bonds generate sheets of molecules, composed of R_{3}^{4} (24) rings, see Fig. 5a. The sheet undulates in the direction of the b axis, as shown in Fig. 4b. Both the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds building the sheets are on the weak side. Stacks of molecules are generated from $\mathrm{C} 10-\mathrm{F} 1 \cdots \pi$ (phenyl) interactions, see Fig. 5c. The Cg (phenyl) -Cg (triazolyl) distances in adjacent layers within the stacks are 4.2623(17) \AA, which suggest any π (phenyl) $-\pi($ triazolyl $)$ must be very weak. Figure 6 illustrates the packing of molecules of $\mathbf{2 a}$.

Table 4 Geometric parameters $\left({ }^{\circ},^{\circ}\right)$ for intra- and intermolecular interactions

Compound	D-H $\cdots \mathrm{A}$		D-H		H $\cdots \mathrm{A}$			D...A	D-H $\cdots \mathrm{A}$
(a) Hydrogen bonds									
1a	C12-H12 \cdots N2		0.95		2.48			2.799(6)	100
1a	C5-H5 $\cdots \mathrm{N} 2^{\text {i }}$		0.95		2.61			3.464(5)	150
1a	C5-H5 $\cdots{ }^{\text {3 }}{ }^{\text {i }}$		0.95		2.31			$3.239(5)$	165
1a	C8-H8 $\cdots \mathrm{N} 3^{\text {i }}$		0.95		2.62			3.572(6)	174
2a	C8-H8 \cdots O2 ${ }^{\text {ii }}$		0.95		2.59			3.251(3)	126
2a	C11-H11..O2 $2^{\text {iii }}$		0.95		2.61			3.373 (3)	138
2 b	$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {iv }}$		0.84		1.89			2.7265 (11)	174
$\mathrm{Y}-\mathrm{X} \cdots \mathrm{Cg}^{\text {a }}$		X $\cdots \mathrm{Cg}$	$\mathrm{X}_{\text {perp }}$		γ		$\mathrm{Y}-\mathrm{X} \cdots \mathrm{Cg}$		Y $\cdots \mathrm{Cg}$
(b) Y-X $\cdots \pi$ interactions ${ }^{\text {a }}$									
1a	C6-H6A $\cdots \mathrm{Cg} 1^{\text {i }}$	2.62	2.614		1.91		143		3.456(5)
2a	C10-F1 \cdots Cg $2^{\text {i }}$	3.7752(18)	3.386		26.23		67.57(10)		3.490 (3)
2 b	C6-C6B $\cdots \mathrm{Cg}_{1}{ }^{\text {ii }}$	2.81	2.596			22.39		143	3.6500 (11
$\mathrm{Cg}(\mathrm{I}) \cdots \mathrm{Cg}(\mathrm{J})$		$\mathrm{Cg} \cdots \mathrm{Cg}$	α	β		γ		$\mathrm{CgI}_{\text {perp }}$	$\mathrm{CgJ}_{\text {perp }}$
(c) $\pi \cdots \pi$ interactions ${ }^{\text {a }}$									
1a	$\mathrm{Cg} 1 \cdots \mathrm{Cg} 2^{\text {i }}$	3.738 (3)	6.54		22.39		28.00	3.301	3.456
1a	$\mathrm{Cg} 2 \cdots \mathrm{Cg} 1^{\text {ii }}$	3.738 (3)	6.54		28.00		22.39	3.457	3.301
2a	Cg1 $\cdots \mathrm{Cg} 2^{\text {ii }}$	4.2623(17)	14.02		33.50		39.64	3.282	3.554
2 a	$\mathrm{Cg} 2 \cdots \mathrm{Cg} 1^{1}$	4.2624(17)	14.02		39.64		33.50	3.554	3.282
2 b	$\mathrm{Cg} 1 \cdots \mathrm{Cg} 2^{\text {iii }}$	3.7771(7)	2.44		24.57		25.43	3.411	3.435
2 b	$\mathrm{Cg} 2 \cdots \mathrm{Cg} 1^{\text {iv }}$	3.7771(7)	2.44		25.43		24.57	3.435	3.411

Symmetry operations for (a): $i=1+\mathrm{x}, \mathrm{y}, \mathrm{z} ; i i=-1+\mathrm{x}, \mathrm{y}, \mathrm{z} ; i i i=\mathrm{x}, 1+\mathrm{y}, \mathrm{z} ; i v=\mathrm{x},-1+\mathrm{y}, \mathrm{z}$
Symmetry codes for (b): $i=-\mathrm{x}, 1 / 2+\mathrm{y},-\mathrm{z} ; i i=-\mathrm{x}, 1 / 2+\mathrm{y}, 2-\mathrm{z} ; i i i=1+\mathrm{x}, \mathrm{y},-1+\mathrm{z} ; i v=1-\mathrm{x},-1 / 2+\mathrm{y}, 3 / 2-\mathrm{z}$
Symmetry codes for (c): $i=1+\mathrm{x}, \mathrm{y}, \mathrm{z} ; i i=\mathrm{x}, 1+\mathrm{y}, \mathrm{z}$
${ }^{\text {a }} \mathrm{Cg} 1$ and Cg 2 are the centroids of the rings, containing atoms, N 2 and C 8 , respectively; β is the angle between the vectors $\mathrm{Cg} \ldots \mathrm{Cg}$ and $\mathrm{CgI} \mathrm{I}_{\mathrm{perp}}$ where $\mathrm{CgI}_{\text {perp }}$ is the perpendicular distance of CgI from the plane of ring $\mathrm{J}: \gamma$ is the angle between the vectors $\mathrm{Cg} \cdots \mathrm{Cg}$ and $\mathrm{CgJ} \mathrm{J}_{\text {perp }}$

Compound $2 \boldsymbol{b}$

Present in 2b are classical $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ hydrogen bonds, and C6-H6B $\cdots \pi$ (triazolyl) and π (phenyl) $\cdots \pi$ (triazolyl) interactions. All three interactions together generate a chevron-type arrangement of molecules as illustrated in Fig. 7. The most significant of these interactions are $\mathrm{O} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} 1$ hydrogen bonds, which forms chains of molecules in the direction of the b axis. The packing of the molecules of $\mathbf{2 b}$, looking down the b axis is illustrated in Fig. 8. As in compound 2a, none of the triazolyl nitrogen atoms are involved in any intermolecular interaction in $\mathbf{2 b}$.

Related Compounds

Comparisons of the structure of 2a can be made with those reported for 1-(4-methylphenyl)-4-OCH-1 H -1,2,3-triazole, 1e, [37] and 1-(4-nitrophenyl)-4-trimethylsilyl-1H-1,2,3-triazol-5-carbaldehyde, 1f, [38].

The structure of $\mathbf{1 e}$, which was only briefly discussed in the original article [37], exhibits significant differences with that of $\mathbf{2 a}$. Features of the structure of $\mathbf{1 e}$ are (i) a near planar molecule, as shown by the dihedral angle of 7.1° between the triazolyl and the phenyl rings, (ii) $\mathrm{C}-\mathrm{H}$ (phenyl) $\cdots \mathrm{O}(=\mathrm{C})$ and $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 3$ hydrogen bonds forming chains containing $R_{2}^{2}(10)$ rings propagated in the direction of the a axis, and relatively strong π (triazolyl) $\cdots \pi$ (triazolyl) and (iii) π (phenyl) $\cdots \pi$ (phenyl) interactions.in which the $\mathrm{Cg} \cdots \mathrm{Cg}$ distances and perpendicular distances between planes through the phenyltriazole fragments, in both cases are $3.865(4)$ and $3.436(4) \AA$, respectively.

The position of the aldehyde group on C 5 of the triazole ring in $\mathbf{1 f}$, results in a much larger dihedral angle between the triazoleyland aryl planes of $62.34(5)^{\circ}$, compared to those in $\mathbf{2 a}$ and 1e. Again the carbonyl oxygen is involved in $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, this time with a CH unit in the trimethylsilyl group: these $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds produce chains of molecules.

Fig. 4 Packing of molecules of 1a, looking down the b axis

Fig. 5 Compound 2a. a An undulating sheet of molecules of $\mathbf{2 a}$, formed from weak $\mathrm{C} 11-$ $\mathrm{H} 11 \cdots \mathrm{O} 2$ and $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2$ hydrogen bonds, and composed of R_{3}^{4} (24) rings, \mathbf{b} an alternate view of the sheet shown in \mathbf{a}, clearly indicating its undulating nature and its alignment along the b axis, \mathbf{c} a stack of molecules, with π (phenyl)π (triazole) stacking interactions, augmented by C10F1 $\cdots \pi$ (phenyl) interactions. Intermolecular interactions are drawn as thin dashed lines. Table 4 lists the symmetry operations

(a)

(b)

(c)

Comparison of the structure of $\mathbf{2 a}$ can be made with the hemihydrate of $1-\left(3-\mathrm{C}_{6} \mathrm{H}_{4}\right)-4-\mathrm{HOCH}_{2}-1 \mathrm{H}-1,2,3$-triazole, 1g, [39], 1-(3,5-dimethylphenyl)-4- $\mathrm{HOCH}_{2}-1 \mathrm{H}-1,2,3-$
triazole, 1 h , [40] and 1-(4-biphenyl)-4- $\mathrm{HOCH}_{2}-1 \mathrm{H}-1,2,3-$ triazole. 1i [40] and 1-(4- $\mathrm{HO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}-4-\mathrm{HOCH}_{2}-1 \mathrm{H}-1,2,3-$ triazole. $\mathbf{1 j}$ [41], $1-\left(2-\mathrm{HO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}-4-\mathrm{HOCH}_{2}-1 H-1,2,3-\right.$

Fig. 6 Packing of molecules of Ra, looking down the b axis

Fig. 7 Chevron type arrangement of molecules of $\mathbf{2 b}$, generated from strong classical $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ intermolecular hydrogen bonds and weaker C6-H6B $\cdots \pi$ (triazole) and π (triazole) $\cdots \pi$ (phenyl) interactions. Table 4 lists the symmetry operations. Intermolecular interactions are drawn as thin dashed lines

Fig. 8 Packing arrangement of molecules of $\mathbf{2 b}$, looking down the b axis
triazole. 1k [41] and 1-(2- $\mathrm{HOC}_{6} \mathrm{H}_{4}-4-\mathrm{HOCH}_{2}-1 H-1,2,3-$ thiazole. $1 \mathbf{1 1}$ [41].

In both 1-(4-biphenyl)-4- $\mathrm{HOCH}_{2}-1 \mathrm{H}-1,2,3$-triazole, $\mathbf{1 i}$, and 1-(3,5-dimethylphenyl)-4- $\mathrm{HOCH}_{2}-1 \mathrm{H}-1,2,3$-triazole, 1h, [40], there are $\mathrm{O}-\mathrm{H} \cdots \mathrm{N} 3$ hydrogen bonds involving the hydroxyl group. However in $\mathbf{1 i}$, these generate chains of molecules, while in $\mathbf{1 h}$ centrosymmetric dimers, having R_{2}^{2} (10) rings, are formed. The dihedral angles between the triazolyl and phenyl rings are $25.29(5)$ and $23.71(5)^{\circ}$ in $\mathbf{1 i}$ and $\mathbf{1 h}$, respectively, and thus are much larger than that in ab [2.44 ${ }^{\circ}$] and must be a consequence of the crystal packing rather than any steric effect arising from the substituents. Neither $\mathbf{1 i}$ nor $\mathbf{1 h}$ exhibits $\pi \cdots \pi$ stacking interactions.

In the hemihydrate of $1-\left(3-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)-4-\mathrm{HOCH}_{2}-1 \mathrm{H}-$ 1,2,3-triazole, [1g.0.5($\left.\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)$] [39], the hydrate plays a significant role in the supramolecular array. The most important intermolecular interactions in $\left[\mathbf{1 g . 0 . 5}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right]\right.$ are $\mathrm{Ow}-\mathrm{Hw} \cdots \mathrm{N} 3$ and $\mathrm{Ow}-\mathrm{Hw} \cdots \mathrm{Ow}$ hydrogen bonds, which generate chains of molecules of water and $\mathbf{1 g}$ propagated in the direction of the a-axis. Additional features of the structure are $\mathrm{O}_{6} \mathrm{H}_{6}$ twelve-membered rings formed from $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving two hydrate molecules and the hydroxyl groups of two molecules each of the two independent molecules of $\mathbf{1 g}$. Also present in $\left[(\mathbf{1 g})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ are weak $\pi($ phenyl $) \cdots \pi($ phenyl $)$ interactions.

As illustrated by [$\mathbf{1 g . 0 . 5}\left(\mathbf{H}_{2} \mathbf{O}\right)$], the presence of additional donor centres radically changes the involvement of the triazole bound hydroxyl group. This is also very clearly illustrated by the group of compounds, $\mathbf{1} \mathbf{j}-\mathbf{1 1}$ [26], in which the hydroxyl group on the triazole ring preferentially links with the hydroxyl or carboxylic acid substituent on the phenyl ring, leading to the formation of helices and other supramolecular architectures.

Conclusion

There appears to be no consistent intermolecular interaction, nor dihedral angle between the aryl and triazole rings, in either of the two series of aryl-1,2,3-triazoles . The dependence of the supramolecular array on the substituent(s) is clearly apparent.

Experimental

The compounds, la, $\mathbf{2 a}$ and $\mathbf{2 b}$, were prepared as reported [23]. For the structure determinations, crystals of $\mathbf{1 a}$ were obtained from $\mathrm{MeOH}, \mathbf{2 a}$ from EtOH and $\mathbf{2 b}$ from $\mathrm{Me}_{2} \mathrm{CO}$ solutions.

Table 5 Crystal data and structure refinement

	2b	1a	1b
Empirical formula	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{FN}_{3} \mathrm{O}$
Formula weight	175.19	279.29	191.17
Temperature, K	120(2)	100(2)	100(2)
Wavelength, \AA	0.71075	0.71075	0.71075
Crystal system, space group	Monoclinic, $P 2{ }_{1} / \mathrm{c}$	Monoclinic, $P 2_{1}$	Monoclinic, $P 2_{1}$
Unit cell dimensions			
a, \AA	$11.4130(5)$	4.5661(5)	3.7175(7)
b, \AA	4.80280(10)	10.5573(14)	10.428(2)
c, \AA	15.5916(11)	13.9694(19)	10.689(3)
α, ${ }^{\circ}$	90	90	90
$\beta,{ }^{\circ}$	103.373(7)	90.594(6)	90.521(6)
$\gamma,{ }^{\circ}$	90	90	90
Volume, \AA^{3}	831.47(7)	673.37(15)	414.35(16)
Z	4	2	2
Density (calculated) $\mathrm{Mg} / \mathrm{m}^{3}$	1.400	1.377	1.532
Absorption coefficient, mm^{-1}	0.096	0.094	0.121
F(000)	368	292	196
Crystal size, mm	$0.25 \times 0.18 \times 0.10$	$0.14 \times 0.03 \times 0.01$	$0.04 \times 0.03 \times 0.01$
Theta range for data collection, ${ }^{\circ}$	3.59-27.43	3.50-27.46	3.81-27.37
Index ranges	$\begin{aligned} & -14<=\mathrm{h}<=14 \\ & -5<=\mathrm{k}<=6 \\ & -20<=1<=19 \end{aligned}$	$\begin{aligned} & -5<=\mathrm{h}<=5 \\ & -13<=\mathrm{k}<=13 \\ & -18<=1<=18 \end{aligned}$	$\begin{aligned} & -4<=\mathrm{h}<=3 \\ & -13<=\mathrm{k}<=13 \\ & -13<=1<=13 \end{aligned}$
Reflections collected	8009	4663	5287
Independent reflections	1881 [R(int) $=0.0164]$	2762 [R(int) $=0.0664$]	1863 [R(int) $=0.0512$]
Reflections observed ($>2 \sigma$)	1642	1884	1513
Data completeness	0.99	1.00	1.00
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data/restraints/parameters	1881/0/120	2762/1/190	1863/1/130
Goodness-of-fit on F^{2}	0.99	1.04	0.90
Absolute structure parameter	-	0.00	0.00
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\begin{aligned} & \mathrm{R}_{1}=0.034 \\ & \mathrm{wR}_{2}=0.087 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.071 \\ & \mathrm{wR}_{2}=0.166 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.040 \\ & \mathrm{wR}_{2}=0.089 \end{aligned}$
R indices (all data)	$\begin{aligned} & \mathrm{R}_{1}=0.039 \\ & \mathrm{wR}_{2}=0.091 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.109 \\ & \mathrm{wR}_{2}=0.196 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.054 \\ & \mathrm{wR}_{2}=0.097 \end{aligned}$
Largest diff. peak and hole, e \AA^{-3}	0.24 and -0.24	0.34 and -0.34	0.18 and -0.19
CCDC No	1,417,606	1,417,783	1,417,607

X-Ray Crystallography

Data for compounds $\mathbf{1 a}$ and $\mathbf{2 b}$ were obtained at $120(2) \mathrm{K}$ while data for compound $\mathbf{2 a}$ were collected at $100(2) \mathrm{K}$, all with Mo-K α radiation by means of a Bruker-Nonius Roper CCD camera on kappa-goniostat instrument of the NCS crystallographic service, based at the University of Southampton. Data collection, data reduction and unit cell refinement were achieved with DENZO [41] and

COLLECT [42] programs. Correction for absorption was achieved in each program SADABS 2007/2 [43]. The program MERCURY [44] was used in the preparation of the Figures. SHELXL97 [45] and PLATON [46] were used in the calculation of molecular geometry. The structures were solved by direct methods using SHELXS-97 [45] and fully refined by means of the program SHELXL-97 [45]. Difference map provided position for the aldehydic hydrogen atoms of $\mathbf{2 b}$. All other hydrogen atoms were
placed in calculated positions. Crystal data and structure refinement details are listed in Table 5.

Supplementary Material

Full details of the crystal structure determinations in cif format are available in the online version, at doi: (to be inserted), and have also been deposited with the Cambridge Crystallographic Data Centre with deposition numbers, 1417606, 1417783 and 1417607, respectively for 1a, 2a and $\mathbf{2 b}$. Copies of these can be obtained free of charge on written application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1223 336033); on request by e-mail to deposit@ccdc.cam.ac.uk or by access to http:// www.ccdc.cam.ac.uk.

Acknowledgments The use of the NCS crystallographic service at Southampton and the valuable assistance of the staff there are gratefully acknowledged. JLW thanks FAPERJ, Brazil for support.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://crea tivecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Dehaen W, Bakulev VA (2014) Topics in heterocyclic Chem, vol 40. Springer, Berlin
2. Rachwal S, Katritzky AR (2008). In: Katritzy AR, Ramsden CA, Scriven EFV, Taylor RJK eds, Comp Heterocyclic Chem III Ed, 5.01. Pergamon, Oxford, pp 1-158
3. Bellagamba M, Bencivenni L, Gontrani L, Guidoni L, Sadun C (2013) Struct Chem 4:933-943
4. Ferreira MLG, Pinheiro LCS, Santos-Filho AO, Peçanha MDS, Sacramento CQ, Machado V, Ferreira VF, Souza TML, Boechat N (2014) Med Chem Res 23:1501-1511
5. Jordão AK, Afonso PP, Ferreira VF, de Souza MC, Almeida MC, Beltrame CO, Paiva DP, Wardell SMSV, Wardell JL, Tiekink ER, Damaso CR, Cunha AC (2009) Eur J Med Chem 44:37773783
6. Himanshu H, Tyagi R, Olsen CE, Errington W, Parmar VS, Prasad AK (2002) Biorg Med Chem 10:963-968
7. Boechat N, Ferreira MLG, Pinheiro LCS, Aguiar AC, Andrade IM, Krettli AU (2014) Chem Biol Drug Des 84:325-332
8. Ferreira ML, de Souza MVN, Wardell SMSV, Wardell JL, Vasconcelos TRA, Ferreira VF, Lourenço MCS (2010) J Carbohydr Chem 29:265-274
9. Jordão AK, Sathler PC, Ferreira VF, Campos VR, de Souza MCBV, Castro HC, Lannes A, Lourenco A, Rodrigues CR, Bello ML, Lourenco MCS, Carvalho GSL, Almeida MCB, Cunha AC (2011) Bioorg Med Chem 19:5605-5611
10. Boechat N, Ferreira VF, Ferreira SB, Ferreira MLG, da Silva FC, Bastos MM, Costa MC, Lourenço MCS, Pinto AC, Krettli AU, Aguiar AC, Teixeira BM, da Silva NV, Martins PRC, Bezerra

FAFM, Camilo ALS, da Silva GP, Costa CCP (2011) J Med Chem 54:5988-5999
11. Lima-Neto RG, Cavalcante NNM, Srivastava RM, Mendonça FJB, Wanderley AG, Neves RP, dos Anjos JV (2012) Molecules 17:5882-5892
12. da Silva IF, Martins PRC, da Silva EG, Ferreira SB, Ferreira VF, da Costa KRC, de Vasconcellos MC, Lima ES, da Silva FC (2013) Med Chem 9:1085-1090
13. da Silva FC, de Souza MCBV, Frugulhetti ICPP, Castro HC, Souza SLO, de Souza TML, Rodrigues DQ, Souza AMT, Abreu PA, Passamani F, Rodrigues CR, Ferreira VF (2009) Eur J Med Chem 44:373-383
14. Weide T, Saldanha SA, Minond D, Spicer TP, Fotsing JR, Spaargaren M, Frere JM, Bebrone C, Sharpless KB, Hodder PS, Fokin VV (2010) ACS Med Chem Lett 1:150-154
15. Rogawski MA (2006) Epilepsy Res 69:273-294
16. Jordão AK, Ferreira VF, Souza TML, Faria GGS, Machado V, Abrantes JL, Souza MCBV, Cunha AC (2011) Bioorg Med Chem 19:1860-1965
17. Shafi S, Alam MM, Mulakayala M, Mulakayala NC, Vanja G, Kalle AM, Pallu R, Alam MS (2012) Eur J Med Chem 49:324-333
18. Banday AH, Shameem SA, Ganai B (2012) Org Med Chem Lett 2:13
19. Sumangala V, Poojary B, Chidananda N, Fernandes J, Kumari NS (2010) Arch Pharm ReS 33:1911-1918
20. Senger MR, Gomes LCA, Ferreira SB, Kaiser CR, Ferreira VF, Paes-Silva F Jr (2012) ChemBioChem 13:1584-1593
21. Périon R, Ferriéres V, García-Moreno MI, Mellet CO, Duval R, Fernández JMG, Plusquellec D (2005) Tetrahedron 61:9118-9124
22. Zhou Y, Zhao Y, Boyle KMO, Murphy PV (2008) Bioorg Med Chem Lett 18:954-956
23. Gonzaga D, Senger MR, da Silva FC, Ferreira VF, Silva FP Jr (2014) Eur J Med Chem 74:461-476
24. Ferreira VF, da Rocha DR, da Silva FC, Ferreira PG, Boechat NA, Magalhães JL (2013) Expert Opin Ther Pat 23:319-331
25. Sureshbabu B, Venkatachalam R, Sankararaman S (2014) CrystEngComm 16:6098-6106
26. Ramana CV, Goriya Y, Durugkar KA, Chatterjee S, Krishnaswamy S, Gonnade RG (2013) CrystEngComm 15:5283-5300
27. Lumpi L, Glöcklhofer F, Holzer B, Stöger B, Hametner C, Reider GA, Fröhlich J (2014) Cryst Growth Des 14:1018-1031
28. Kumar AS, Kommu N, Ghuleb VD, Sahoo AK (2014) J Mater Chem A 2:7917-7926
29. Chevallier F, Blin T, Nagaradja E, Lassagne F, Roisnel T, Halauko YS, Matulis VE, Ivashkevich OA, Mongin F (2012) Org Biomol Chem 10:4878-4885
30. Liu Y, Yan W, Chen Y, Petersen JL, Shi X (2008) Org Lett 10:5389-5392
31. Dong ZQ, Liu FM, Zeng YM (2011) J Chem Crystallogr 41:1158-1164
32. Kamal A, Swapna P (2013) RSC Adv 3:7419-7426
33. Zhang Y, Wang D, Wang W, Gao T, Wang L, Li J, Huang G, Chen B (2010) Synlett 11:1617-1622
34. Costa MS, Boechat N, Ferreira VF, Wardell SMSV, Skakle JMS (2006) Acta Crystallogr E62:o1925-o1927
35. Vinutha N, Kumar SM, Nithinchandra K, Balakrishna K, Lokanath NK, Revannasiddaiah D (2013) Acta Crystallogr E66:o1724
36. Karimov Z, Abdugafurov I, Talipov S, Tashkhodjaev B (2010) Acta Crystallogr E66:o1674
37. Costa MS, Boechat N, Rangel EA, da Silva FC, de Souza AMT, Rodrigues CR, Castro HC, Junior IN, Lourenço MCS, Wardell SMSV, Ferreira VF (2006) Biorg Med Chem 14:86448653
38. Piterskaya YL, Khramchikhin AV, Stadnichuk MD, Bel'sky VK, Stash AL (1996) Zh Obshch Khim 66:1180-1187
39. Boechat N, Ferreira MLG, Bastos MM, Wardell JL, Wardell SMSV, Tiekink ERT (2011) Acta Crystallogr E67:o2934-o2935
40. Beyer B, Ulbricht C, Winter A, Hager MD, Hoogenboom R, Herzer N, Baumann SO, Kickelbick G, Görls H, Schubert US (2010) New J Chem 34:2622-2633
41. Otwinowski Z, Minor W (1997) In: Carter CW Jr, Sweet RM (eds) Methods in enzymology, vol 276, macromolecular crystallography Part A. Academic Press, New York, pp 307-326
42. Hooft RWW (1998) COLLECT, data collection software. Nonius BV, Delft
43. Sheldrick GM (2007) SADABS Version 2007/2. Bruker AXS Inc., Madison
44. Mercury 3.3. Cambridge Crystallographic Data Centre, UK
45. Sheldrick GM (2008) Acta Crystallogr A 64:112-122
46. Spek AL (2003) J Appl Crystallogr 36:7-13

[^0]: James L. Wardell
 j.wardell@abdn.ac.uk

 1 Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Campus do Valonguinho, 24210-141 Niterói, RJ, Brazil
 2 FioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio De Janeiro, RJ, Brazil
 3 Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland, UK
 4 CHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, UK

