ORIGINAL PAPER

Crystal Structures of 2-Phenyl-2*H*-1,2,3-Triazol-4-Carbaldehyde, an Active α-Glycosidase Inhibition Agent, and (1-Phenyl-1*H*-1,2,3-Triazol-4-yl)Methyl Benzoate and (2-(4-Fluorophenyl)-2*H*-1,2,3-Triazole-4-yl)Methanol, Two Moderately Active Compounds

Daniel Gonzaga¹ · Fernando C. da Silva¹ · Vitor F. Ferreira¹ · James L. Wardell^{2,3} · Solange M. S. V. Wardell⁴

Received: 13 August 2015/Accepted: 23 November 2015/Published online: 16 December 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The crystal structures of (1-phenyl-1*H*-1,2,3triazol-4-yl)methyl benzoate, 1a, (2-(4-fluorophenyl)-2H-1,2,3-triazole-4-yl)methanol, 2a, and 2-phenyl-2H-1,2,3triazol-4-carbaldehyde, 2b, are reported. Compounds 1a and 2a were recently reported to exhibit mild α -glycosidase inhibition activity, while compound 2b exhibited a much greater activity. Only small dihedral angles 6.52(4), 14.02(10) and $2.44(7)^{\circ}$ are present between the triazolyl ring and the attached aryl rings in 1a, 2a and 2b, respectively. The relatively flat compounds 2a and 2b contrast with compound 1a, which is "V" shaped, with a dihedral angle between the near planar phenyltriazolyl-CH₂ and phenyl-CO₂CH₂ moieties of $88.11(4)^\circ$. The intermolecular interactions in **1a** are C–H···X (X = N or π (triazole) and π (triazole) ··· π (phenyl): two different chains are formed, from (i) combinations of the C-H...N hydrogen bonds and (ii) combinations of the C–H··· π and π ··· π interactions. The intermolecular interactions in **2a** are C–H···O and C–F··· π (phenyl): the C–H···O interactions generate a sheet of molecules, containing a network of rings. Classical O-H...O hydrogen bonds, and weaker C–H··· π (triazolyl) and π (phenyl)··· π (triazolyl)

☑ James L. Wardell j.wardell@abdn.ac.uk

- ¹ Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Campus do Valonguinho, 24210-141 Niterói, RJ, Brazil
- ² FioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio De Janeiro, RJ, Brazil
- ³ Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland, UK
- ⁴ CHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, UK

interactions are present in **2b**: all three interactions together generate a chevron-type arrangement. Compound **1a** crystallizes in the *monoclinic* space group $P2_1$ with a = 4.5661(5), b = 10.5573(14), c = 13.9694(19) Å, $\beta = 90.594(6)^{\circ}$ and Z = 2. Compound **2a** crystallizes in the *monoclinic* space group $P2_1$ with a = 3.7175(7), b = 10.428(2), c = 10.689(3) Å, $\beta = 90.521(6)^{\circ}$ and Z= 2. Compound **2b** crystallizes in the *monoclinic* space group $P2_1/c$ with a = 11.4130(5), b = 4.80280(10), c = 15.5916(11) Å, $\beta = 103.373(7)^{\circ}$ and Z = 4.

Graphical Abstract The relatively flat compounds, (2-(4-fluorophenyl)-2H-1,2,3-triazole-4-yl)methanol and 2-phenyl-2H-1,2,3-triazol-4-carbaldehyde, contrast with compound (1-phenyl-1H-1,2,3-triazol-4-yl)methyl benzoate, which is "V" shaped, with a dihedral angle between the near planar phenyltriazolyl-CH2 and phenyl-CO2CH2 moieties of 88.11(4) o.

Keywords 1H-1,2,3-triazole \cdot 2H-1,2,3-triazole $\cdot \alpha$ glycosidase inhibition \cdot Hydrogen bonds, $\pi \cdots \pi$ interactions

Introduction

1,2,3-Triazole exists in two tautomeric forms, namely 1*H*-1,2,3-triazole and 2*H*-1,2,3-triazole, see Fig. 1. Derivatives of both forms have attracted much attention [1–3], in particular for their biological activities, which include as antiviral [4–6], antimalarial [7], antitubercular [8–10], antifungal [11, 12] anti-HIV [13], β-lactamase inhibition [14], anti-epileptic [15], anti-HSV [16], anti-inflammatory [17], antimicrobial [18, 19] and α -glycosidase inhibition agents [20–23]. Patents lodged in the period 2008–2011 for 1*H*-1,2,3-triazole and 2H-1,2,3-triazole derivatives have been included in a general survey for all triazolyl compounds [24].

A recent α -glycosidase inhibition study [23] involved a number of different 1-phenyl-1*H*- and 2-phenyl-2*H*-1,2,3triazol derivatives. The crystal structures of three of the compounds from that study [20] have been determined, namely, (1-phenyl-1*H*-1,2,3-triazol-4-yl)methyl benzoate, **1a**, (2-(4-fluorophenyl)-2*H*-1,2,3-triazole-4-yl)methanol, **2a** and 2-phenyl-2*H*-1,2,3-triazole-4-carbaldehyde, **2b**, see Table 1. Compounds, **1a** and **2a**, exhibited little activity, while compound **2b**, exhibited a greater inhibition, as did all the 2-aryl-2*H*-1,2,3-triazole-4-carbaldehyde derivatives. It was suggested that the aldehydes act upon both yeast maltase and PPA, with the aldehyde groups reacting with amine groups in the enzyme polypeptide chain to form Schiff bases.

We now wish to report our structural findings.

Results and Discussion

The compounds were prepared as previously reported, see Scheme 1 [20].

Molecular Confirmations

Compounds **2a** and **2b** crystallize in the *monoclinic* space group, $P2_1$ with Z = 2, while compound **2b** crystallizes in the *monoclinic* space group, $P2_1/c$ with Z = 4. The

Table 1 Compounds mentioned in this article

asymmetric unit in each case consists of a single molecule, as illustrated in Fig. 2. Selected bond lengths and angles are listed in Table 2. The bond lengths and angles associated with the 1,2,3-triazole rings are in the regions normally found for 1-aryl-1*H*-1,2,3,triazoles [see for example 25–28] and for 2-aryl-2*H*-1,2,3,triazoles [see for example Refs. 28–33].

In each of **1a**, **2a** and **2b**, the triazolyl ring is essentially planar. The dihedral angles between the triazolyl and aryl rings are listed in Table 3.

A large range of dihedral angles have been reported for both 1-aryl-1*H*-1,2,3-triazole and 2-aryl-2*H*-1,2,3-triazole compounds, for example the angles are 0.34(17) and 87.1(2)°, respectively, in 4-difluoromethyl-1-(4-methylphenyl)-1*H*-1,2,3-triazole, **1b**, [34] and in one independent molecule of 1-[5-methyl-1-(4-nitrophenyl)-1*H*-1,2,3-triazol-4-yl]ethanone, **1c** [35], see Table 1. The carbon atoms of the methylene units in **2b** and **1a** are essentially coplanar with the attached triazolyl group. Compound **1a** has a "V" shape with the angle between the near planar phenyltriazolyl-CH₂ and phenyl-CO₂CH₂ moieties of 88.11(4)°.

Crystal Structures

Compound 1a

The intermolecular interactions in **1a** are all weak, being C–H…N hydrogen bonds, C–H… π and π – π interactions. As illustrated in Fig. 3a, chains of molecules are propagated in the direction of the *b* axis, from combinations of C5–

Fig. 2 Atom arrangements and the numbering schemes for 1a, 2a and 2b. Probability ellipsoids are drawn at the 50 % level. The intramolecular hydrogen bond in 1a is drawn as a *thin dashed line*

H5...N3, C5–H5...N2 and C8–H8...N3 hydrogen bonds, see Table 4 for the symmetry operations. Of these hydrogen bonds, the C5–H5...N3 is the most significant. With C5–H5 acting as donor to two acceptors, N2 and N3, R_2^1 (3) rings are generated. The C5–H5...N3, C5–H5...N2, and C8–H8...N3 hydrogen bonds individually generate C4, C4 and C6 chains of molecules.

Further, chain of molecules, this time propagated in the direction of the *a* axis, are formed from combinations of C6–H6A··· π (triazolyl) and π (phenyl)··· π (triazolyl) stacking interactions, see Fig. 3b; Table 4. This combination of interactions provides a chevron-type arrangement. The perpendicular distance between the best planes of combined triazolyl/ phenyl rings between layers is 3.359(3) Å, and with the Cg···Cg separations of 3.738(3) Å, these π ··· π interactions are important. The packing of the molecules looking down the *b* axis is shown in Fig. 4. The structure of a related compound, 1-phenyl-4-(pyridine-3-yl-CO₂CH₂)-1*H*-1,2,3-triazole) (**1d**) [36] has been reported. There are some structural similiarities between **1a** and **1d**: (*i*) the molecule of **1d** is also "V" shaped with the angle between the planar phenyltriazolyl CH₂ and phenyl-CO₂CH₂ moieties of 83.84°, (*ii*) the dihedral angle between the triazolyl and phenyl rings is 16.54 (11)°, and (*iii*) there are similar C–H… π (triazole) and π (phenyl)… π (triazolyl) interactions [Cg…Cg = 3.895(1) Å]. However other intermolecular interactions are different in **1d**, being C– H…N(py), C–H…O(carbonyl) and C–H… π (triazolyl) hydrogen bonds, which generate a different supramolecular array to that of **1a**.

Compound 2a

The intermolecular interactions in **2a** are C8–H8…O2 and C11–H11…O2 hydrogen bonds and C10–F1… π (phenyl)

	1a	2a	2b
N1-N2	1.349(5)	1.354(2)	1.3356(12)
N2-N3	1.323(5)	1.325(2)	1.3410(12)
N3-C4	1.362(5)	1.342(3)	1.3358(13)
C4–C5	1.375(5)	1.409(3)	1.3999(15)
C5-N1	1.355(6)	1.336(3)	1.3309(15)
N1-N2-N3	106.8(3)	115.38(16)	115.28(9)
N2-N3-C4	109.4(4)	104.10(16)	103.69(8)
N3-C4-C5	108.0(4)	108.35(18)	108.25(9)
C4-C5-N1	104.8(4)	108.91(18)	109.43(10)
C5-N1-N2	110.9(4)	103.26(17)	103.34(9)
C5-N1-C7-C8	4.9(7)		
N2-N1-C7-C12	7.6(6)		
C5-N1-C7-C12	174.7(4)		
N2-N1-C7-C8	172.8(4)		
N1-N2-C7-C8		164.27(19)	0.70(15)
N1-N2-C7-C12		14.9(3)	179.39(15)
N3-N1-C7-C12		168.6(2)	3.04(14)
N3-N1-C7-C8		12.3(3)	176.87(9)

Table 2 Selected geometric parameters, \mathring{A}°

Table 3 Interplanar angles, °

Compound	Angle between triazole and phenyl rings°			
1a	6.52(4)			
2a	14.02(10)			
2b	2.44(7)			

interactions. Table 4 lists the symmetry operations and geometric parameters. Combinations of the C8– H8…O2 and C11–H11…O2 hydrogen bonds generate sheets of molecules, composed of R_3^4 (24) rings, see Fig. 5a. The sheet undulates in the direction of the *b* axis, as shown in Fig. 4b. Both the C–H…O hydrogen bonds building the sheets are on the weak side. Stacks of molecules are generated from C10–F1… π (phenyl) interactions, see Fig. 5c. The Cg(phenyl)–Cg(triazolyl) distances in adjacent layers within the stacks are 4.2623(17) Å, which suggest any π (phenyl)– π (triazolyl) must be very weak. Figure 6 illustrates the packing of molecules of **2a**.

Fig. 3 Compound **1a. a** A chain of molecules generated in the direction of the *b* axis, from combinations of C5–H5…N3, C5–H5…N2 and C8–H8…N3 hydrogen bonds, **b** a further chain of molecules, propagated in the direction of the *a* axis, formed from C6–

H6A... π (triazole)and weak π (phenyl)... π (triazole) interactions. Table 4 lists the symmetry operations. Intermolecular interactions are drawn as *thin dashed lines*

Table 4 Ge	eometric parameters (A, °) for intra- and interr	nolecular i	nteraction	s			
Compound	D–H…A		D–H		Н…А		D…A	
(a) Hydroge	en bonds							
1 a	C12-H12	···N2	0.95		2.48		2.799(6)	
1a	С5-Н5…]	N2 ⁱ	0.95		2.61		3.464(5)	
1a	С5-Н5…]	N3 ⁱ	0.95		2.31		3.239(5)	
1a	С8–Н8…	N3 ⁱ	0.95		2.62		3.572(6)	
2a	C8–H8…($O2^{ii}$	0.95		2.59		3.251(3)	
2a	C11–H11	···O2 ⁱⁱⁱ	0.95		2.61		3.373(3)	
2b	O1–H1…	O1 ^{iv}	0.84		1.89		2.7265(11)	
	$Y – X \cdots Cg^a$	X…Cg		X _{perp}	γ		Y−X…Cg	
(b) Y–X···π	interactions ^a							
1a	C6–H6A…Cg1 ⁱ	2.62		2.614	1	.91	143	
2a	$C10-F1\cdots Cg2^i$	3.7752(18)		3.386	2	6.23	67.57(10)	
2b	C6–C6B…Cg1 ⁱⁱ	2.81		2.596	2	2.39	143	
	$Cg(I) \cdots Cg(J)$	Cg···Cg	α		β	γ	CgI _{perp}	
(c) $\pi \cdots \pi$ int	eractions ^a							
1a	$Cg1 \cdots Cg2^{i}$	3.738(3)	6.54		22.39	28.00	3.301	
1a	Cg2…Cg1 ⁱⁱ	3.738(3)	6.54		28.00	22.39	3.457	

14.02

14.02

2.44

2.44

33.50

39.64

24.57

25.43

Т

Symmetry operations for (a): i = 1 + x, y, z; ii = -1 + x, y, z; iii = x, 1 + y, z; iv = x, -1 + y, z

4.2623(17)

4.2624(17)

3.7771(7)

3.7771(7)

Symmetry codes for (b): $i = -x, 1/2 + y, -z; ii = -x, \frac{1}{2} + y, 2-z; iii = 1 + x, y, -1 + z; iv = 1-x, -1/2 + y, \frac{3}{2} - z$

Symmetry codes for (c): i = 1 + x, y, z; ii = x, 1 + y, z

Cg1…Cg2ⁱⁱ

Cg2…Cg1ⁱ

Cg1…Cg2ⁱⁱⁱ

Cg2…Cg1^{iv}

 a Cg1 and Cg2 are the centroids of the rings, containing atoms, N2and C8, respectively; β is the angle between the vectors Cg...Cg and CgI_{perp} where CgIperp is the perpendicular distance of CgI from the plane of ring J: γ is the angle between the vectors Cg...Cg and CgJperp

Compound 2b

2a

2a

2b

2b

Present in 2b are classical O1-H1...O1 hydrogen bonds, and C6–H6B··· π (triazolyl) and π (phenyl)··· π (triazolyl) interactions. All three interactions together generate a chevron-type arrangement of molecules as illustrated in Fig. 7. The most significant of these interactions are O1-H1...O1 hydrogen bonds, which forms chains of molecules in the direction of the *b* axis. The packing of the molecules of **2b**, looking down the *b* axis is illustrated in Fig. 8. As in compound 2a, none of the triazolyl nitrogen atoms are involved in any intermolecular interaction in 2b.

Related Compounds

Comparisons of the structure of 2a can be made with those reported for 1-(4-methylphenyl)-4-OCH-1H-1,2,3-triazole, 1e, [37] and 1-(4-nitrophenyl)-4-trimethylsilyl-1*H*-1,2,3triazol-5-carbaldehyde, 1f, [38].

The structure of 1e, which was only briefly discussed in the original article [37], exhibits significant differences with that of 2a. Features of the structure of 1e are (i) a near planar molecule, as shown by the dihedral angle of 7.1° between the triazolyl and the phenyl rings, (ii) C-H(phenyl)...O(=C) and C5-H5...N3 hydrogen bonds forming chains containing R_2^2 (10) rings propagated in the direction of the *a* axis, and relatively strong π (triazolyl)... π (triazolyl) and (*iii*) π (phenyl)... π (phenyl) interactions.in which the Cg...Cg distances and perpendicular distances between planes through the phenyltriazole fragments, in both cases are 3.865(4) and 3.436(4) Å, respectively.

39.64

33.50

25.43

24.57

3.282

3.554

3.411

3.435

The position of the aldehyde group on C5 of the triazole ring in 1f, results in a much larger dihedral angle between the triazoleyland aryl planes of 62.34(5)°, compared to those in 2a and 1e. Again the carbonyl oxygen is involved in C-H···O hydrogen bonds, this time with a CH unit in the trimethylsilyl group: these C-H···O hydrogen bonds produce chains of molecules.

D−H…A

Y…Cg

3.456(5) 3.490(3) 3.6500(11

CgJperp

3.456 3.301

3.554

3.282

3.435

3.411

Fig. 5 Compound 2a. a An undulating sheet of molecules of 2a, formed from weak C11-H11...O2 and C8-H8...O2 hydrogen bonds, and composed of R_3^4 (24) rings, **b** an alternate view of the sheet shown in **a**, clearly indicating its undulating nature and its alignment along the b axis, c a stack of molecules, with π (phenyl)– π (triazole) stacking interactions, augmented by C10-F1... π (phenyl) interactions. Intermolecular interactions are drawn as thin dashed lines. Table 4 lists the symmetry operations

Comparison of the structure of 2a can be made with the hemihydrate of $1-(3-C_6H_4)-4$ -HOCH₂-1*H*-1,2,3-triazole, **1g**, [39], 1-(3,5-dimethylphenyl)-4-HOCH₂-1*H*-1,2,3-

triazole, **1** h, [40] and 1-(4-biphenyl)-4-HOCH₂-1*H*-1,2,3triazole. **1i** [40] and 1-(4-HO₂CC₆H₄-4-HOCH₂-1*H*-1,2,3triazole. **1j** [41], 1-(2-HO₂CC₆H₄-4-HOCH₂-1*H*-1,2,3-

Fig. 6 Packing of molecules of 2a, looking down the b axis

Fig. 7 Chevron type arrangement of molecules of **2b**, generated from strong classical O1–H1…O 1 intermolecular hydrogen bonds and weaker C6–H6B… π (triazole) and π (triazole)… π (phenyl) interactions. Table 4 lists the symmetry operations. Intermolecular interactions are drawn as thin *dashed lines*

Fig. 8 Packing arrangement of molecules of 2b, looking down the *b* axis

triazole. **1k** [41] and $1-(2-HOC_6H_4-4-HOCH_2-1H-1,2,3-triazole.$ **1l**[41].

In both 1-(4-biphenyl)-4-HOCH₂-1*H*-1,2,3-triazole, **1i**, and 1-(3,5-dimethylphenyl)-4-HOCH₂-1*H*-1,2,3-triazole, **1h**, [40], there are O–H···N3 hydrogen bonds involving the hydroxyl group. However in **1i**, these generate chains of molecules, while in **1h** centrosymmetric dimers, having R_2^2 (10) rings, are formed. The dihedral angles between the triazolyl and phenyl rings are 25.29(5) and 23.71(5)° in **1i** and **1h**, respectively, and thus are much larger than that in **2b** [2.44°] and must be a consequence of the crystal packing rather than any steric effect arising from the substituents. Neither **1i** nor **1h** exhibits $\pi \cdots \pi$ stacking interactions.

In the hemihydrate of $1-(3-\text{ClC}_6\text{H}_4)-4-\text{HOCH}_2-1H-1,2,3-\text{triazole}$, [**1g.0.5**(**H**_2**O**)] [39], the hydrate plays a significant role in the supramolecular array. The most important intermolecular interactions in [**1g.0.5**(**H**_2**O**] are Ow–Hw···N3 and Ow–Hw···Ow hydrogen bonds, which generate chains of molecules of water and **1g** propagated in the direction of the *a*-axis. Additional features of the structure are O₆H₆ twelve-membered rings formed from O–H···O hydrogen bonds involving two hydrate molecules and the hydroxyl groups of two molecules each of the two independent molecules of **1g**. Also present in [(**1g**)₂(H₂O)] are weak π (phenyl)··· π (phenyl) interactions.

As illustrated by $[1g.0.5(H_2O)]$, the presence of additional donor centres radically changes the involvement of the triazole bound hydroxyl group. This is also very clearly illustrated by the group of compounds, 1j-11 [26], in which the hydroxyl group on the triazole ring preferentially links with the hydroxyl or carboxylic acid substituents on the phenyl ring, leading to the formation of helices and other supramolecular architectures.

Conclusion

There appears to be no consistent intermolecular interaction, nor dihedral angle between the aryl and triazole rings, in either of the two series of aryl-1,2,3-triazoles . The dependence of the supramolecular array on the substituent(s) is clearly apparent.

Experimental

The compounds, **1a**, **2a** and **2b**, were prepared as reported [23]. For the structure determinations, crystals of **1a** were obtained from MeOH, **2a** from EtOH and **2b** from Me_2CO solutions.

Table 5 Crystal data and structure refinement

Empirical formula $C_9H_9N_3O$ $C_1cH_{13}N_3O_2$ $C_9H_6FN_3O$ Formula weight 175.19 279.29 191.17 Temperature, K 120(2) 100(2) 100(2) Wavelength, Å 0.71075 0.71075 0.71075 Crystal system, space group Monoclinic, $P_{2_1}c$ Monoclinic, P_{2_1} Monoclinic, P_{2_1} Unit cell dimensions $a, Å$ 11.4130(5) 4.5661(5) 3.7175(7) $b, Å$ 4.80280(10) 10.5573(14) 10.428(2) c, Å $c, Å$ 15.5916(11) 13.9694(6) 90.521(6) $90.521(6)$ $\gamma, °$ 90 90 90 90 $90.594(6)$ $90.521(6)$ $\gamma, °$ 90 90 90 90 $90.521(6)$ 7.9° $\gamma, °$ 90 90 90 90 $90.521(6)$ 7.9° $\gamma, °$ 90 90 90 90 $90.521(6)$ 7.9° $\gamma, °$ 90 90 90 90 $90.521(6)$ 7.9	mpirical formula ormula weight emperature, K /avelength, Å rystal system, space group nit cell dimensions <i>a</i> , Å	C ₉ H ₉ N ₃ O 175.19	C ₁₆ H ₁₃ N ₃ O ₂	C ₉ H ₆ FN ₃ O
Formula weight175.19279.29191.17Temperature, K120(2)100(2)100(2)Wavelength, Å0.710750.710750.71075Crystal system, space groupMonoclinic, P_{21} /cMonoclinic, P_{21} Monoclinic, P_{21} Unit cell dimensions a , Å11.4130(5)4.5661(5)3.7175(7) b , Å4.80280(10)10.5573(14)10.428(2) c , Å15.5916(11)13.9694(19)10.689(3) a , °909090 β , °103.373(7)90.594(6)90.521(6) γ , °909090Volume, Å ³ 831.47(7)673.37(15)414.35(16) Z 422Density (calculated) Mg/m ³ 1.4001.3771.532Absorption coefficient, mm ⁻¹ 0.0960.0940.121F(000)368292196Crystal size, mm0.25 × 0.18 × 0.100.14 × 0.03 × 0.010.04 × 0.03 × 0.01Theta range for data collection, °3.59-27.433.50-27.463.81-27.37Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-13 <= 1 <= 13$ Reflections collected8094635287	ormula weight emperature, K /avelength, Å rystal system, space group nit cell dimensions a, Å	175.19	270.20	
Temperature, K 120(2) 100(2) 100(2) Wavelength, Å 0.71075 0.71075 0.71075 Crystal system, space group Monoclinic, P_{2_1}/c Monoclinic, P_{2_1} Monoclinic, P_{2_1} Unit cell dimensions a , Å 11.4130(5) 4.5661(5) 3.7175(7) b , Å 4.80280(10) 10.5573(14) 10.428(2) c , Å c , Å 15.5916(11) 13.9694(19) 10.689(3) x , ° 90 90 90 90 β , ° 103.373(7) 90.594(6) 90.521(6) γ , ° 90 90 90 90 Volume, Å ³ 831.47(7) 673.37(15) 414.35(16) Z 4 2 2 Density (calculated) Mg/m ³ 1.400 1.377 1.532 Absorption coefficient, mm ⁻¹ 0.096 0.094 0.121 F(000) 368 292 196 Crystal size, mm 0.25 × 0.18 × 0.10 0.14 × 0.03 × 0.01 0.04 × 0.03 × 0.01 Theta range for data collection, ° 3.59–27.43 3.50–27.46 3.81–27.37	emperature, K /avelength, Å rystal system, space group nit cell dimensions <i>a</i> , Å		219.29	191.17
Wavelength, Å0.710750.710750.71075Crystal system, space groupMonoclinic, $P2_1/c$ Monoclinic, $P2_1$ Monoclinic, $P2_1$ Unit cell dimensions $a, Å$ 11.4130(5)4.5661(5)3.7175(7) $b, Å$ 4.80280(10)10.5573(14)10.428(2) $c, Å$ 15.5916(11)13.9694(19)10.689(3) $a, °$ 909090 $\beta, °$ 103.373(7)90.594(6)90.521(6) $\gamma, °$ 909090Volume, Å ³ 831.47(7)673.37(15)414.35(16)Z422Density (calculated) Mg/m ³ 1.4001.3771.532Absorption coefficient, mm ⁻¹ 0.0960.0940.121F(000)368292196Crystal size, mm0.25 × 0.18 × 0.100.14 × 0.03 × 0.010.04 × 0.03 × 0.01Theta range for data collection, °3.59-27.433.50-27.463.81-27.37Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-20 <= 1 <= 19$ $-18 <= 1 <= 18$ $-13 <= 1 <= 13$ Reflections collected80094635287	Vavelength, Å rystal system, space group nit cell dimensions <i>a</i> , Å	120(2)	100(2)	100(2)
Crystal system, space group Monoclinic, $P2_1/c$ Monoclinic, $P2_1$ Monoclinic, $P2_1$ Unit cell dimensions - <td>rystal system, space group nit cell dimensions a, Å</td> <td>0.71075</td> <td>0.71075</td> <td>0.71075</td>	rystal system, space group nit cell dimensions a, Å	0.71075	0.71075	0.71075
Unit cell dimensions a, Å 11.4130(5) 4.5661(5) 3.7175(7) b, Å 4.80280(10) 10.5573(14) 10.428(2) c, Å 15.5916(11) 13.9694(19) 10.689(3) α , ° 90 90 90 β , ° 103.373(7) 90.594(6) 90.521(6) γ , ° 90 90 90 Volume, Å ³ 831.47(7) 673.37(15) 414.35(16) Z 4 2 2 Density (calculated) Mg/m ³ 1.400 1.377 1.532 Absorption coefficient, mm ⁻¹ 0.096 0.094 0.121 F(000) 368 292 196 Crystal size, mm 0.25 × 0.18 × 0.10 0.14 × 0.03 × 0.01 0.04 × 0.03 × 0.01 Theta range for data collection, ° 3.59–27.43 3.50–27.46 3.81–27.37 Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ Reflections collected 8009 4663 5287	nit cell dimensions a, Å	Monoclinic, P2 ₁ /c	Monoclinic, <i>P</i> 2 ₁	Monoclinic, $P2_1$
a, Å11.4130(5)4.5661(5)3.7175(7)b, Å4.80280(10)10.5573(14)10.428(2)c, Å15.5916(11)13.9694(19)10.689(3) α , °909090 β , °103.373(7)90.594(6)90.521(6) γ , °909090Volume, ų831.47(7)673.37(15)414.35(16)Z422Density (calculated) Mg/m³1.4001.3771.532Absorption coefficient, mm ⁻¹ 0.0960.0940.121F(000)368292196Crystal size, mm0.25 × 0.18 × 0.100.14 × 0.03 × 0.010.04 × 0.03 × 0.01Theta range for data collection, °3.59-27.433.50-27.463.81-27.37Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-20 <= 1 <= 19$ $-18 << = 13;$ $-13 << = k <= 13;$ $-13 << = 1 << = 13$ Reflections collected800946635287	a, Å			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-	11.4130(5)	4.5661(5)	3.7175(7)
c, Å15.5916(11)13.9694(19)10.689(3) α , °909090 β , °103.373(7)90.594(6)90.521(6) γ , °909090Volume, ų831.47(7)673.37(15)414.35(16)Z422Density (calculated) Mg/m³1.4001.3771.532Absorption coefficient, mm ⁻¹ 0.0960.0940.121F(000)368292196Crystal size, mm0.25 × 0.18 × 0.100.14 × 0.03 × 0.010.04 × 0.03 × 0.01Theta range for data collection, °3.59-27.433.50-27.463.81-27.37Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-20 <= 1 <= 19$ $-18 <= 1 <= 18$ $-13 <= 1 <= 13$ Reflections collected800946635287	b, Å	4.80280(10)	10.5573(14)	10.428(2)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	c, Å	15.5916(11)	13.9694(19)	10.689(3)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	α, °	90	90	90
γ , °909090Volume, ų831.47(7)673.37(15)414.35(16)Z422Density (calculated) Mg/m³1.4001.3771.532Absorption coefficient, mm ⁻¹ 0.0960.0940.121F(000)368292196Crystal size, mm0.25 × 0.18 × 0.100.14 × 0.03 × 0.010.04 × 0.03 × 0.01Theta range for data collection, °3.59–27.433.50–27.463.81–27.37Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-13 <= h <= 13;$ $-20 <= 1 <= 19$ $-18 <= 1 <= 18$ $-13 <= h <= 13;$ $-13 <= 1 <= 13$ Reflections collected800946635287	β, °	103.373(7)	90.594(6)	90.521(6)
Volume, \mathring{A}^3 831.47(7)673.37(15)414.35(16)Z422Density (calculated) Mg/m³1.4001.3771.532Absorption coefficient, mm ⁻¹ 0.0960.0940.121F(000)368292196Crystal size, mm0.25 × 0.18 × 0.100.14 × 0.03 × 0.010.04 × 0.03 × 0.01Theta range for data collection, °3.59-27.433.50-27.463.81-27.37Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-20 <= 1 <= 19$ $-18 <= 1 <= 18$ $-13 <= 1 <= 13$ Reflections collected800946635287	γ, °	90	90	90
Z422Density (calculated) Mg/m31.4001.3771.532Absorption coefficient, mm ⁻¹ 0.0960.0940.121F(000)368292196Crystal size, mm0.25 × 0.18 × 0.100.14 × 0.03 × 0.010.04 × 0.03 × 0.01Theta range for data collection, °3.59-27.433.50-27.463.81-27.37Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-13 <= l <= 13$ Reflections collected800946635287Index range dust reflections1821 [B(irt) = 0.0164]2762 [B(irt) = 0.0664]0.02641	olume, Å ³	831.47(7)	673.37(15)	414.35(16)
Density (calculated) Mg/m³1.4001.3771.532Absorption coefficient, mm ⁻¹ 0.0960.0940.121F(000)368292196Crystal size, mm $0.25 \times 0.18 \times 0.10$ $0.14 \times 0.03 \times 0.01$ $0.04 \times 0.03 \times 0.01$ Theta range for data collection, ° $3.59-27.43$ $3.50-27.46$ $3.81-27.37$ Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-20 <= 1 <= 19$ $-18 <= 1 <= 18$ $-13 <= 1 <= 13$ Reflections collected800946635287		4	2	2
Absorption coefficient, mm^{-1} 0.0960.0940.121F(000)368292196Crystal size, mm 0.25 × 0.18 × 0.100.14 × 0.03 × 0.010.04 × 0.03 × 0.01Theta range for data collection, °3.59–27.433.50–27.463.81–27.37Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-20 <= 1 <= 19$ $-18 <= 1 <= 18$ $-13 <= 1 <= 13$ Reflections collected800946635287	ensity (calculated) Mg/m ³	1.400	1.377	1.532
F(000)368292196Crystal size, mm $0.25 \times 0.18 \times 0.10$ $0.14 \times 0.03 \times 0.01$ $0.04 \times 0.03 \times 0.01$ Theta range for data collection, ° $3.59-27.43$ $3.50-27.46$ $3.81-27.37$ Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-20 <= 1 <= 19$ $-18 <= 1 <= 18$ $-13 <= 1 <= 13$ Reflections collected 8009 4663 5287	bsorption coefficient, mm^{-1}	0.096	0.094	0.121
Crystal size, mm $0.25 \times 0.18 \times 0.10$ $0.14 \times 0.03 \times 0.01$ $0.04 \times 0.03 \times 0.01$ Theta range for data collection, ° $3.59-27.43$ $3.50-27.46$ $3.81-27.37$ Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-20 <= 1 <= 19$ $-18 <= 1 <= 18$ $-13 <= 1 <= 13$ Reflections collected 8009 4663 5287	(000)	368	292	196
Theta range for data collection, ° $3.59-27.43$ $3.50-27.46$ $3.81-27.37$ Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-20 <= 1 <= 19$ $-18 <= 1 <= 18$ $-13 <= 1 <= 13$ Reflections collected 8009 4663 5287 Index reflections 1821 [B(int) = 0.01(41) 2762 [B(int) = 0.06(41) 605121	rystal size, mm	$0.25 \times 0.18 \times 0.10$	$0.14 \times 0.03 \times 0.01$	$0.04\times0.03\times0.01$
Index ranges $-14 <= h <= 14;$ $-5 <= h <= 5;$ $-4 <= h <= 3;$ $-5 <= k <= 6;$ $-13 <= k <= 13;$ $-13 <= k <= 13;$ $-20 <= 1 <= 19$ $-18 <= 1 <= 18$ $-13 <= 1 <= 13$ Reflections collected800946635287Independent reflections1891 (D(int) = 0.0164)2762 (D(int) = 0.0664)	heta range for data collection, $^{\circ}$	3.59–27.43	3.50-27.46	3.81-27.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	idex ranges	-14 < = h < = 14;	-5 < = h < = 5;	-4 < = h < = 3;
-20 <= l <= 19 $-18 <= l <= 18$ $-13 <= l <= 13$ Reflections collected800946635287Indexendent reflections1881 [B(int) = 0.0164]2762 [B(int) = 0.0664]1862 [B(int) = 0.0512]		-5 < = k < = 6;	-13 < = k < = 13;	-13 < = k < = 13;
Reflections collected 8009 4663 5287 Indexendent reflections 1891 [B(int) = 0.0164] 2763 [B(int) = 0.0664] 1863 [D(int) = 0.0510]		-20 < = 1 < = 19	-18 < = 1 < = 18	-13 < = 1 < = 13
Independent reflections 1991 [D(int) 0.0164] 2762 [D(int) 0.0664] 1962 [D(int) 0.0510]	eflections collected	8009	4663	5287
Independent reflections $1881 [R(int) = 0.0104]$ $2/02 [R(int) = 0.0004]$ $1803 [R(int) = 0.0512]$	idependent reflections	1881 [R(int) = 0.0164]	2762 [R(int) = 0.0664]	1863 [R(int) = 0.0512]
Reflections observed (> 2σ) 1642 1884 1513	eflections observed (> 2σ)	1642	1884	1513
Data completeness 0.99 1.00 1.00	ata completeness	0.99	1.00	1.00
Absorption correction Semi-empirical from equivalents Semi-empirical from equivalents Semi-empirical from equivalents	bsorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Refinement method Full-matrix least-squares on F^2 Full-matrix least-squares on F^2 Full-matrix least-squares on F	efinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data/restraints/parameters 1881/0/120 2762/1/190 1863/1/130	ata/restraints/parameters	1881/0/120	2762/1/190	1863/1/130
Goodness-of-fit on F^2 0.99 1.04 0.90	oodness-of-fit on F ²	0.99	1.04	0.90
Absolute structure parameter – 0.00 0.00	bsolute structure parameter	_	0.00	0.00
Final R indices $[I > 2\sigma(I)]$ R ₁ = 0.034 R ₁ = 0.071 R ₁ = 0.040	inal R indices $[I > 2\sigma(I)]$	$R_1 = 0.034$	$R_1 = 0.071$	$R_1 = 0.040$
$wR_2 = 0.087$ $wR_2 = 0.166$ $wR_2 = 0.089$		$wR_2 = 0.087$	$wR_2 = 0.166$	$wR_2 = 0.089$
R indices (all data) $R_1 = 0.039$ $R_1 = 0.109$ $R_1 = 0.054$	indices (all data)	$R_1 = 0.039$	$R_1 = 0.109$	$R_1 = 0.054$
$wR_2 = 0.091$ $wR_2 = 0.196$ $wR_2 = 0.097$		$wR_2 = 0.091$	$wR_2 = 0.196$	$wR_2 = 0.097$
Largest diff. peak and hole, e $Å^{-3}$ 0.24 and -0.24 0.34 and -0.34 0.18 and -0.19	argest diff. peak and hole, e $Å^{-3}$	0.24 and -0.24	0.34 and -0.34	0.18 and -0.19
CCDC No 1,417,606 1,417,783 1,417,607	CDC No	1,417,606	1,417,783	1,417,607

X-Ray Crystallography

Data for compounds **1a** and **2b** were obtained at 120(2) K while data for compound **2a** were collected at 100(2) K, all with Mo-K α radiation by means of a Bruker–Nonius Roper CCD camera on kappa-goniostat instrument of the NCS crystallographic service, based at the University of Southampton. Data collection, data reduction and unit cell refinement were achieved with DENZO [41] and

COLLECT [42] programs. Correction for absorption was achieved in each program SADABS 2007/2 [43]. The program MERCURY [44] was used in the preparation of the Figures. SHELXL97 [45] and PLATON [46] were used in the calculation of molecular geometry. The structures were solved by direct methods using SHELXS-97 [45] and fully refined by means of the program SHELXL-97 [45]. Difference map provided position for the aldehydic hydrogen atoms of **2b**. All other hydrogen atoms were placed in calculated positions. Crystal data and structure refinement details are listed in Table 5.

Supplementary Material

Full details of the crystal structure determinations in cif format are available in the online version, at doi: (to be inserted), and have also been deposited with the Cambridge Crystallographic Data Centre with deposition numbers, 1417606, 1417783 and 1417607, respectively for **1a**, **2a** and **2b**. Copies of these can be obtained free of charge on written application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1223 336033); on request by e-mail to deposit@ccdc.cam.ac.uk or by access to http:// www.ccdc.cam.ac.uk.

Acknowledgments The use of the NCS crystallographic service at Southampton and the valuable assistance of the staff there are gratefully acknowledged. JLW thanks FAPERJ, Brazil for support.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://crea tivecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Dehaen W, Bakulev VA (2014) Topics in heterocyclic Chem, vol 40. Springer, Berlin
- Rachwal S, Katritzky AR (2008). In: Katritzy AR, Ramsden CA, Scriven EFV, Taylor RJK eds, Comp Heterocyclic Chem III Ed, 5.01. Pergamon, Oxford, pp 1–158
- Bellagamba M, Bencivenni L, Gontrani L, Guidoni L, Sadun C (2013) Struct Chem 4:933–943
- Ferreira MLG, Pinheiro LCS, Santos-Filho AO, Peçanha MDS, Sacramento CQ, Machado V, Ferreira VF, Souza TML, Boechat N (2014) Med Chem Res 23:1501–1511
- Jordão AK, Afonso PP, Ferreira VF, de Souza MC, Almeida MC, Beltrame CO, Paiva DP, Wardell SMSV, Wardell JL, Tiekink ER, Damaso CR, Cunha AC (2009) Eur J Med Chem 44:37773783
- Himanshu H, Tyagi R, Olsen CE, Errington W, Parmar VS, Prasad AK (2002) Biorg Med Chem 10:963–968
- Boechat N, Ferreira MLG, Pinheiro LCS, Aguiar AC, Andrade IM, Krettli AU (2014) Chem Biol Drug Des 84:325–332
- Ferreira ML, de Souza MVN, Wardell SMSV, Wardell JL, Vasconcelos TRA, Ferreira VF, Lourenço MCS (2010) J Carbohydr Chem 29:265–274
- Jordão AK, Sathler PC, Ferreira VF, Campos VR, de Souza MCBV, Castro HC, Lannes A, Lourenco A, Rodrigues CR, Bello ML, Lourenco MCS, Carvalho GSL, Almeida MCB, Cunha AC (2011) Bioorg Med Chem 19:5605–5611
- Boechat N, Ferreira VF, Ferreira SB, Ferreira MLG, da Silva FC, Bastos MM, Costa MC, Lourenço MCS, Pinto AC, Krettli AU, Aguiar AC, Teixeira BM, da Silva NV, Martins PRC, Bezerra

FAFM, Camilo ALS, da Silva GP, Costa CCP (2011) J Med Chem 54:5988–5999

- Lima-Neto RG, Cavalcante NNM, Srivastava RM, Mendonça FJB, Wanderley AG, Neves RP, dos Anjos JV (2012) Molecules 17:5882–5892
- da Silva IF, Martins PRC, da Silva EG, Ferreira SB, Ferreira VF, da Costa KRC, de Vasconcellos MC, Lima ES, da Silva FC (2013) Med Chem 9:1085–1090
- da Silva FC, de Souza MCBV, Frugulhetti ICPP, Castro HC, Souza SLO, de Souza TML, Rodrigues DQ, Souza AMT, Abreu PA, Passamani F, Rodrigues CR, Ferreira VF (2009) Eur J Med Chem 44:373–383
- Weide T, Saldanha SA, Minond D, Spicer TP, Fotsing JR, Spaargaren M, Frere JM, Bebrone C, Sharpless KB, Hodder PS, Fokin VV (2010) ACS Med Chem Lett 1:150–154
- 15. Rogawski MA (2006) Epilepsy Res 69:273-294
- Jordão AK, Ferreira VF, Souza TML, Faria GGS, Machado V, Abrantes JL, Souza MCBV, Cunha AC (2011) Bioorg Med Chem 19:1860–1965
- Shafi S, Alam MM, Mulakayala M, Mulakayala NC, Vanja G, Kalle AM, Pallu R, Alam MS (2012) Eur J Med Chem 49:324–333
- Banday AH, Shameem SA, Ganai B (2012) Org Med Chem Lett 2:13
- Sumangala V, Poojary B, Chidananda N, Fernandes J, Kumari NS (2010) Arch Pharm ReS 33:1911–1918
- Senger MR, Gomes LCA, Ferreira SB, Kaiser CR, Ferreira VF, Paes-Silva F Jr (2012) ChemBioChem 13:1584–1593
- Périon R, Ferriéres V, García-Moreno MI, Mellet CO, Duval R, Fernández JMG, Plusquellec D (2005) Tetrahedron 61:9118–9124
- Zhou Y, Zhao Y, Boyle KMO, Murphy PV (2008) Bioorg Med Chem Lett 18:954–956
- Gonzaga D, Senger MR, da Silva FC, Ferreira VF, Silva FP Jr (2014) Eur J Med Chem 74:461–476
- Ferreira VF, da Rocha DR, da Silva FC, Ferreira PG, Boechat NA, Magalhães JL (2013) Expert Opin Ther Pat 23:319–331
- Sureshbabu B, Venkatachalam R, Sankararaman S (2014) CrystEngComm 16:6098–6106
- Ramana CV, Goriya Y, Durugkar KA, Chatterjee S, Krishnaswamy S, Gonnade RG (2013) CrystEngComm 15:5283–5300
- Lumpi L, Glöcklhofer F, Holzer B, Stöger B, Hametner C, Reider GA, Fröhlich J (2014) Cryst Growth Des 14:1018–1031
- Kumar AS, Kommu N, Ghuleb VD, Sahoo AK (2014) J Mater Chem A 2:7917–7926
- Chevallier F, Blin T, Nagaradja E, Lassagne F, Roisnel T, Halauko YS, Matulis VE, Ivashkevich OA, Mongin F (2012) Org Biomol Chem 10:4878–4885
- 30. Liu Y, Yan W, Chen Y, Petersen JL, Shi X (2008) Org Lett 10:5389–5392
- Dong ZQ, Liu FM, Zeng YM (2011) J Chem Crystallogr 41:1158–1164
- 32. Kamal A, Swapna P (2013) RSC Adv 3:7419-7426
- 33. Zhang Y, Wang D, Wang W, Gao T, Wang L, Li J, Huang G, Chen B (2010) Synlett 11:1617–1622
- Costa MS, Boechat N, Ferreira VF, Wardell SMSV, Skakle JMS (2006) Acta Crystallogr E62:o1925–o1927
- Vinutha N, Kumar SM, Nithinchandra K, Balakrishna K, Lokanath NK, Revannasiddaiah D (2013) Acta Crystallogr E66:01724
- 36. Karimov Z, Abdugafurov I, Talipov S, Tashkhodjaev B (2010) Acta Crystallogr E66:01674
- Costa MS, Boechat N, Rangel EA, da Silva FC, de Souza AMT, Rodrigues CR, Castro HC, Junior IN, Lourenço MCS, Wardell SMSV, Ferreira VF (2006) Biorg Med Chem 14:86448653
- Piterskaya YL, Khramchikhin AV, Stadnichuk MD, Bel'sky VK, Stash AL (1996) Zh Obshch Khim 66:1180–1187

- Boechat N, Ferreira MLG, Bastos MM, Wardell JL, Wardell SMSV, Tiekink ERT (2011) Acta Crystallogr E67:o2934–o2935
- Beyer B, Ulbricht C, Winter A, Hager MD, Hoogenboom R, Herzer N, Baumann SO, Kickelbick G, Görls H, Schubert US (2010) New J Chem 34:2622–2633
- Otwinowski Z, Minor W (1997) In: Carter CW Jr, Sweet RM (eds) Methods in enzymology, vol 276, macromolecular crystallography Part A. Academic Press, New York, pp 307–326
- Hooft RWW (1998) COLLECT, data collection software. Nonius BV, Delft
- 43. Sheldrick GM (2007) SADABS Version 2007/2. Bruker AXS Inc., Madison
- 44. Mercury 3.3. Cambridge Crystallographic Data Centre, UK
- 45. Sheldrick GM (2008) Acta Crystallogr A 64:112-122
- 46. Spek AL (2003) J Appl Crystallogr 36:7-13