Skip to main content
Log in

Papaverine increases human serum albumin glycation

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Glycation is a non-enzymatic reaction that is initiated by the primary addition of sugars to amino groups of proteins. In the early phase of glycation, the synthesis of intermediates leads to formation of Amadori compounds. In the last phase, advanced glycation end products (AGE) are irreversibly formed following a complex cascade of reactions. It has recently been shown that glycation also affects diabetes-related complications and Alzheimer’s disease. In this study, human serum albumin at a concentration of 10 mg/ml was incubated in PBS with 40 mM of glucose and in different concentrations of papaverine (25, 100, 250, 500 μM) for 42 days at 37 °C. HSA with no additives as well as with glucose 40 mM were incubated as a control and as a glycated sample, respectively. Following the incubation, the samples were prepared for circular dichroism, fluorescence and absorbance techniques. The results showed that in presence of papaverine and glucose, the glycation of HSA increased notably compared with the glycated sample. In conclusion, in this work, we showed that papaverine affects HSA and increases its glycation level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., et al.: Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 110(6), 911–916 e12 (2010)

    Google Scholar 

  2. Rabbani, N., Chittari, M.V., Bodmer, C.W., Zehnder, D., Ceriello, A., Thornalley, P.J.: Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin. Diabetes 59(4), 1038–1045 (2010)

    Article  Google Scholar 

  3. Ulrich, P., Cerami, A.: Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 56, 1–21 (2001)

    Article  Google Scholar 

  4. Nathan, D.M., Cleary, P.A., Backlund, J.Y., Genuth, S.M., Lachin, J.M., Orchard, T.J., et al.: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353(25), 2643–2653 (2005)

    Article  Google Scholar 

  5. Vlassara, H., Cai, W., Crandall, J., Goldberg, T., Oberstein, R., Dardaine, V., et al.: Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. U.S.A. 99(24), 15596–15601 (2002)

    Article  ADS  Google Scholar 

  6. Zieman, S.J., Melenovsky, V., Kass, D.A.: Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 25(5), 932–943 (2005)

    Article  Google Scholar 

  7. Twigg, S.M., Cao, Z.,McLennan, S.V., Burns,W.C., Brammar, G., Forbes, J.M., et al.: Renal connective tissue growth factor induction in experimental diabetes is prevented by aminoguanidine. Endocrinology 143(12), 4907–4915 (2002)

    Article  Google Scholar 

  8. Forbes, J.M., Cooper, M.E., Oldfield, M.D., Thomas, M.C.: Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 14(8 Suppl 3), S254–S258 (2003)

    Article  Google Scholar 

  9. Gallicchio, M.A., McRobert, E.A., Tikoo, A., Cooper, M.E., Bach, L.A.: Advanced glycation end products inhibit tubulogenesis and migration of kidney epithelial cells in an ezrin-dependent manner. J. Am. Soc. Nephrol. 17(2), 414–421 (2006)

    Article  Google Scholar 

  10. Stitt, A.W.: Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br. J. Ophthalmol. 85(6), 746–753 (2001)

    Article  Google Scholar 

  11. Okamoto, K., Martin, D.P., Schmelzer, J.D., Mitsui, Y., Low, P.A.: Pro- and anti-inflammatory cytokine gene expression in rat sciatic nerve chronic constriction injury model of neuropathic pain. Exp. Neurol. 169(2), 386–391 (2001)

    Article  Google Scholar 

  12. Rohrer, L., Hersberger, M., von Eckardstein, A.: High density lipoproteins in the intersection of diabetes mellitus, inflammation and cardiovascular disease. Curr. Opin. Lipidol. 15(3), 269–278 (2004)

    Article  Google Scholar 

  13. Nobecourt, E., Jacqueminet, S., Hansel, B., Chantepie, S., Grimaldi, A., Chapman, M.J., et al.: Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia. Diabetologia 48(3), 529–538 (2005)

    Article  Google Scholar 

  14. Soro-Paavonen, A., Zhang, W.Z., Venardos, K., Coughlan, M.T., Harris, E., Tong, D.C.K., et al.: Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. J. Hypertens. 28(4), 780–788 (2010)

    Article  Google Scholar 

  15. Zhao, T., Cheng, Y.N., Tan, H.N., Liu, J.F., Xu, H.L., Pang, G.L., et al.: Site-specific chemical modification of human serum albumin with polyethylene glycol prolongs half-life and improves intravascular retention in mice. Biol. Pharm. Bull. 35(3), 280–288 (2012)

    Article  Google Scholar 

  16. Iberg, N., Fluckiger, R.: Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. J. Biol. Chem. 261(29), 13542–13545 (1986)

    Google Scholar 

  17. Rohovec, J.,Maschmeyer, T., Aime, S., Peters, J.A.: The structure of the sugar residue in glycated human serum albumin and its molecular recognition by phenylboronate. Chemistry 9(10), 2193–2199 (2003)

    Article  Google Scholar 

  18. Anguizola, J., Matsuda, R., Barnaby, O.S., Hoy, K.S., Wa, C., Debolt, E., et al.: Review: glycation of human serum albumin. Clin. Chim. Acta 425C, 64–76 (2013)

    Article  Google Scholar 

  19. Khan, M.W., Qadrie, Z.L., Khan, W.A.: Antibodies against gluco-oxidatively modified human serum albumin detected in diabetes-associated complications. Int. Arch. Allergy Immunol. 153(2), 207–214 (2010)

    Article  Google Scholar 

  20. Barnaby, O.S.: Characterization of Glycation Sites on Human Serum Albumin usingMass Spectrometry, pp. 1–256. Student Research Projects, Dissertations, and Theses - Chemistry Department (2010)

  21. Khan, M.W., Rasheed, Z., Khan, W.A., Ali, R.: Biochemical, biophysical, and thermodynamic analysis of in vitro glycated human serum albumin. Biochemistry (Mosc) 72(2), 146–152 (2007)

    Article  Google Scholar 

  22. Azod, L., Rashidi, M., Afkhami-Ardekani, M., Kiani, G., Khoshkam, F.: Effect of opium addiction on diabetes. Am. J. Drug Alcohol Abuse 34(4), 383–388 (2008)

    Article  Google Scholar 

  23. Merits, V.: The opium alkaloids and diabetes. J. Am. Med. Assoc. 9, 786 (1914)

    Google Scholar 

  24. Opium –Wikipedia, the Free Encyclopedia. http://en.wikipedia.org/wiki/opium(18/10/2010)

  25. Karam, G.A., Rashidinejad, H.R., Aghaee, M.M., Ahmadi, J., Rahmani, M.R., Mahmoodi, M., et al.: Opium can differently alter blood glucose, sodium and potassium in male and female rats. Pak. J. Pharm. Sci. 21(2), 180–184 (2008)

    Google Scholar 

  26. Schmitt, A., Gasic-Milenkovic, J., Schmitt, J.: Characterization of advanced glycation end products: mass changes in correlation to side chain modifications. Anal. Biochem. 346(1), 101–106 (2005)

    Article  Google Scholar 

  27. Valencia, J.V., Weldon, S.C., Quinn, D., Kiers, G.H., DeGroot, J., TeKoppele, J.M., et al.: Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics. Anal. Biochem. 324(1), 68–78 (2004)

    Article  Google Scholar 

  28. Sattarahmady, N., Khodagholi, F., Moosavi-Movahedi, A.A., Heli, H., Hakimelahi, G.H.: Alginate as an antiglycating agent for human serum albumin. Int. J. Biol. Macromol. 41(2), 180–184 (2007)

    Article  Google Scholar 

  29. Yan, S.F., Ramasamy, R., Schmidt, A.M.: Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat. Clin. Pract. Endoc. 4(5), 285–293 (2008)

    Article  Google Scholar 

  30. Sharma, S.D., Pandey, B.N., Mishra, K.P., Sivakami, S.: Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro. J. Biochem. Mol. Biol. Biophys. 6(4), 233–242 (2002)

    Google Scholar 

  31. Habeeb, A.F.: Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal. Biochem. 14(3), 328–336 (1966)

    Article  Google Scholar 

  32. Kumar, P.A., Kumar,M.S., Reddy, G.B.: Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem. J. 408(2), 251–258 (2007)

    Article  Google Scholar 

  33. Barnaby, O.S., Cerny, R.L., Clarke,W., Hage, D.S.: Quantitative analysis of glycation patterns in human serum albumin using 16O/18O-labeling and MALDI-TOF MS. Clin. Chim. Acta 412(17–18), 1606–1615 (2011)

    Article  Google Scholar 

  34. Wa, C., Cerny, R.L., Clarke, W.A., Hage, D.S.: Characterization of glycation adducts on human serum albumin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Chim. Acta 385(1–2), 48–60 (2007)

    Article  Google Scholar 

  35. Karam, G.A., Reisi, M., Kaseb, A.A., Khaksari, M., Mohammadi, A., Mahmoodi, M.: Effects of opium addiction on some serum factors in addicts with non-insulin-dependent diabetes mellitus. Addict. Biol. 9(1), 53–58 (2004)

    Article  Google Scholar 

  36. Nakayama, M., Saito, A., Kitazawa, H., Takahashi, M., Sato, M., Fuse, K., et al.: Papaverine-induced polymorphic ventricular tachycardia in relation to QTU and giant T-U waves in four cases. Intern. Med. 51(4), 351–356 (2012)

    Article  Google Scholar 

  37. De Bruyne, B., Pijls, N.H., Barbato, E., Bartunek, J., Bech, J.W., Wijns, W., et al.: Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation 107(14), 1877–1883 (2003)

    Article  Google Scholar 

  38. Asgari, S.A., Asli, M.M., Madani, A.H., Maghsoudi, P.A., Ghanaei, M.M., Shakiba, M., et al.: Treatment of loin pain suspected to be renal colic with papaverine hydrochloride: a prospective double-blind randomised study. BJU Int. 110(3), 449–452 (2012)

    Article  Google Scholar 

  39. Greenfield, N.J.: Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1(6), 2876–2890 (2006)

    Article  Google Scholar 

  40. Khazaei, M.R., Bakhti, M., Habibi-Rezaei, M.: Nicotine reduces the cytotoxic effect of glycated proteins on microglial cells. Neurochem. Res. 35(4), 548–558 (2010)

    Article  Google Scholar 

  41. Jakus, V.: Study of inhibition of protein glycation by fluorescence spectroscopy. Biomed. 54(192), 446 (1997)

    Google Scholar 

  42. Nawale, R.B., Mourya, V.K., Bhise, S.B.: Non-enzymatic glycation of proteins: a cause for complications in diabetes. Indian J. Biochem. Biophys. 43(6), 337–344 (2006)

    Google Scholar 

  43. Watkins, N.G., Neglia-Fisher, C.I., Dyer, D.G., Thorpe, S.R., Baynes, J.W.: Effect of phosphate on the kinetics and specificity of glycation of protein. J. Biol. Chem. 262(15), 7207–7212 (1987)

    Google Scholar 

  44. Belpaire, F.M., Bogaert, M.G.: Metabolism of papaverine. II. Species differences. Xenobiotica 5(7), 421–429 (1975)

    Article  Google Scholar 

  45. Seidler, N.W., Yeargans, G.S.: Effects of thermal denaturation on protein glycation. Life Sci. 70(15), 1789–1799 (2002)

    Article  Google Scholar 

  46. Kapp, E.A., Daya, S., Whiteley, C.G.: Protein-ligand interactions: interaction of nitrosamines with nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun. 167(3), 1383–1392 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ahmadzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadzadeh, A. Papaverine increases human serum albumin glycation. J Biol Phys 40, 97–107 (2014). https://doi.org/10.1007/s10867-013-9337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-013-9337-5

Keywords

Navigation