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Abstract
The presence of an unpaired electron in paramagnetic molecules generates significant effects in NMR spectra, which can be 
exploited to provide restraints complementary to those used in standard structure-calculation protocols. NMR already occu-
pies a central position in drug discovery for its use in fragment screening, structural biology and validation of ligand–target 
interactions. Paramagnetic restraints provide unique opportunities, for example, for more sensitive screening to identify 
weaker-binding fragments. A key application of paramagnetic NMR in drug discovery, however, is to provide new structural 
restraints in cases where crystallography proves intractable. This is particularly important at early stages in drug-discovery 
programs where crystal structures of weakly-binding fragments are difficult to obtain and crystallization artefacts are prob-
able, but structural information about ligand poses is crucial to guide medicinal chemistry. Numerous applications show 
the value of paramagnetic restraints to filter computational docking poses and to generate interaction models. Paramagnetic 
relaxation enhancements (PREs) generate a distance-dependent effect, while pseudo-contact shift (PCS) restraints provide 
both distance and angular information. Here, we review strategies for introducing paramagnetic centers and discuss examples 
that illustrate the utility of paramagnetic restraints in drug discovery. Combined with standard approaches, such as chemical 
shift perturbation and NOE-derived distance information, paramagnetic NMR promises a valuable source of information 
for many challenging drug-discovery programs.

Keywords Nuclear magnetic resonance · Paramagnetism · Pseudo-contact shift · Paramagnetic relaxation enhancement · 
Drug discovery · Fragment screening · Protein–ligand structure determination

Introduction

NMR spectroscopy is well established as a core technique 
in drug discovery for ligand and fragment screening, vali-
dation of target interactions and, in cases where it is not 
possible to obtain crystal structures of protein–ligand com-
plexes, for structure determination (Hajduk et al. 1999; 
Gossert and Jahnke 2016; Erlanson et al. 2016). Techniques 
such as transfer-NOESY (Balaram et al. 1972; Ni 1994), 
INPHARMA (Sanchez-Pedregal et al. 2005), intermolecular 

ligand-methyl NOEs (Proudfoot et al. 2017),  NMR2 (Orts 
et al. 2016) along with screening techniques such as satu-
ration transfer difference (STD) (Mayer and Meyer 1999), 
WaterLOGSY (Dalvit et  al. 2001), relaxation-editing 
(Hajduk et al. 1997) and 2D correlation experiments (HSQC, 
HMQC) (Shuker et al. 1996) are efficient at detecting ligand 
binding and in some cases the mode of interaction. Impor-
tantly, NMR can detect changes of conformation and dynam-
ics upon ligand binding, providing unique opportunities to 
target allosteric binding sites. A recent impressive example 
is the use of an NMR-detected conformational assay that 
enabled the development of novel inhibitors targeting the 
Bcr-Abl kinase that are currently in advanced clinical trials 
(Wylie et al. 2017). Many detailed reviews have been pub-
lished on the role of NMR in structure-based drug discovery 
(Hajduk et al. 1999; Meyer and Peters 2003; Gossert and 
Jahnke 2016; Ma et al. 2016; Erlanson et al. 2016; Sugiki 
et al. 2018; Nitsche and Otting 2018).

Paramagnetic effects offer an opportunity to further 
enhance and broaden the utility of NMR in drug discovery, 
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providing new approaches for screening and sources of 
restraints for assessing ligand binding poses and struc-
tural analysis. Paramagnetism describes the presence of an 
unpaired electron in a chemical moiety. NMR spectroscopy 
is uniquely sensitive to the presence of a paramagnetic 
center since the strength of magnetic interactions between 
nuclear and electron spins depends on the involved gyro-
magnetic ratios, which is about 658 times stronger for an 
unpaired electron compared to a proton nuclear spin. In 
solution NMR, paramagnetic effects are mostly exploited 
through three main phenomena: paramagnetic relaxation 
enhancement (PRE), pseudo-contact shifts (PCS) and 
residual dipolar couplings (RDC), although additional 
mechanisms have also been used to study the structure and 
dynamics of proteins. The theory and use of paramagnetic 
NMR has been reviewed elsewhere (Bertini et al. 2002a, 
2016; Clore and Iwahara 2009; Otting 2010; Pell et al. 
2019; Parigi et al. 2019). Here, we discuss the utility of 

paramagnetic NMR in solution to overcome challenges 
in drug discovery, review strategies for introducing para-
magnetic centers, and provide perspectives for the future.

Paramagnetic nuclear relaxation resulting from 
dipole–dipole interactions between nuclear and electron 
spins is calculated as the difference in rates between para-
magnetic and diamagnetic systems. Two important mecha-
nisms to consider for biomolecular applications are Solo-
mon and Curie relaxation, which depend on the distance r 
between the electron and nuclear spin. Molecular tumbling 
and associated spectral densities give rise to PRE effects, 
which are dependent on the distance (r) between the elec-
tronic spin and the nucleus of interest to the inverse sixth 
power ( r−6 ) but not orientation (Fig. 1).

The PRE effect due to the Solomon mechanism with the 
spectral density functions written out in full, is given by 
(Solomon 1955; Solomon and Bloembergen 1956; Clore 
and Iwahara 2009):

Fig. 1  Information available from different types of paramagnetic 
effects. Paramagnetic relaxation enhancement (PRE) is proportional 
to the inverse sixth power of the distance between the paramagnetic 
center and the nucleus of interest (Eqs.  1, 3). Pseudo-contact shifts 
(PCS) provide information on the distance and the angle of the vector 
between the atom and the metal ion with respect to the principal axis 
frame of the magnetic susceptibility anisotropy (Δχ) tensor, which 

is represented as an isosurface (Eq.  7). Residual dipolar couplings 
(RDC) provide information on the orientation of a vector connecting 
two dipolar coupled spins (i.e. the amide bond connecting 1H and 15N 
nuclear spins) to the principal axis frame of the metal’s Δχ tensor, 
represented in light blue on the protein structure (Eq.  8). The para-
magnetic center is shown as a red sphere. Isosurfaces were calculated 
using Paramagpy (Orton et al. 2020)
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where �0 is the magnetic permeability of free space, �B is 
the Bohr magneton, �I is the gyromagnetic ratio of spin I , �I 
is the Larmor frequency of spin I , g is the electron g-factor, 
S is the spin quantum number and �c is the correlation time 
given by:

�r is the rotational correlation time of the paramagnetic pro-
tein or complex; �s is the lifetime (effective relaxation time) 
of the electron spin and �m is the lifetime of the complex. 
�m is typically long relative to the other terms so depending 
on the source of paramagnetism, �c may be dominated by 
�r (long �s e.g. nitroxide radicals) or by �s (where 𝜏s ≪ 𝜏r ), 
for example some paramagnetic transition metals and most 
lanthanides (Jahnke 2002; Clore and Iwahara 2009).

In addition to paramagnetic relaxation due to the Solo-
mon mechanism ( Rpara

2,SB
 ), the presence of an external mag-

netic field leads to differing populations of the S and I spin 
energy levels according to the Boltzmann distribution (split-
ting is given by MS and MI respectively) (Bertini et al. 2002a, 
b). Dipole–dipole interaction between the nuclear spins and 
the thermal average of the total electronic magnetic moment 
⟨Sz⟩ , leads to a further relaxation contribution, Curie spin 
relaxation or magnetic susceptibility relaxation. For trans-
verse relaxation, this is given as (Gueron 1975; Vega and 
Fiat 1976; Bertini et al. 2002a):

where ⟨Sz⟩ is the expectation value of Sz . Note, that Eq. 3 
assumes an isotropic magnetic susceptibility tensor. Correc-
tions need to be applied for anisotropic magnetic suscepti-
bility (Bertini et al. 2002a). Assuming isotropic molecular 
rotation, ⟨Sz⟩ can be expanded to first order as (Bertini et al. 
2002a; Parigi et al. 2019):

and the Curie law may be used to rewrite Eqs. 3 and 4 as 
(Bertini et al. 2002a; Walder et al. 2018; Parigi et al. 2019):
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Since the interaction is with the ensemble averaged elec-
tron spin, ⟨Sz⟩2 , the electronic correlation time is no longer 
considered and the correlation time ( �Curie

c
) is given as:

Solomon relaxation typically dominates for nitroxide 
radicals and metal ions with isotropic or near-isotropic 
magnetic susceptibility, which have slower relaxing elec-
tronic spins, e.g.  Mn2+,  Gd3+ (Fig. 2a). Contributions from 
Curie relaxation are typically negligible as ⟨Sz⟩2 is much 
smaller than S(S + 1)∕3 in Eq. 1. However, the Curie con-
tribution scales with �r and magnetic field strength, making 
this effect more significant for large proteins and at higher 
magnetic fields. This dominates over the Solomon relaxation 
when �s is much faster than �r (Fig. 2b). Curie relaxation is 
therefore dominant for metal ions with fast relaxing elec-
tronic spins e.g.  Yb3+,  Dy3+ (Pintacuda et al. 2004; Bertini 
et al. 2016) with a dependence on the spin quantum num-
ber (Fig. 2c). Relaxation contributions from the Curie and 
Solomon mechanisms are illustrated in Fig. 2 and relaxation 
enhancements relative to diamagnetic transverse relaxation 
are shown in Table 1. Relative to Rdia

2
 , enhancements due to 

the Solomon mechanism, assuming a spin ½ nucleus, are 
observed between 10 and 20 Å. Above this range, no sig-
nificant enhancement is observed and below 10 Å, signal 
bleaching occurs. For relaxation dominated by the Curie 
mechanism, effects are seen below ca. 10 Å with substantial 
effects leading to bleaching below ca. 5 Å, depending on the 
spin quantum number.

In contrast to the PRE, the pseudocontact shift (PCS) 
effect leads to changes in chemical shift positions. Nuclei 
sense the sum of the external magnetic field and of a field 
caused by the electron static magnetic moment. There-
fore, the dipolar interaction between the total magnetic 
field and nuclei is not completely averaged by molecu-
lar rotation (in contrast to dipole–dipole interactions 
between nuclear spins). The anisotropy of the static 
magnetic moment yields average residual dipolar inter-
actions, which cause the PCS effect. As a result, PCS 
depends on both the distance ( r−3 ) and the angle ( �,� ) 
relative to the principle axis frame of the metal’s mag-
netic susceptibility anisotropy tensor ( Δ� ), given as axial (
Δ�ax = �z −

(
�x + �y

)
∕2

)
 and rhombic 

(
Δ�rh = �x − �y

)
 

components (Fig. 1). This angular dependence makes PCS 
measurements a particularly rich source of structural infor-
mation. Several studies have shown their use in structure 
calculations (Tu and Gochin 1999; Pintacuda et al. 2006; 
Saio et al. 2010; Schmitz et al. 2012; Yagi et al. 2013; 
Hass and Ubbink 2014; Crick et al. 2015) and refinements 
(Banci et al. 1996; Bertini et al. 2009). The PCS is given 
by (McConnell and Robertson 1958):
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While all paramagnetic centers produce a PRE effect 
of varying magnitude the PCS is limited to metal ions 
with a non-zero magnetic susceptibility anisotropy ten-
sor, Δ�  . Lanthanide metal ions are frequently used to 
induce PCS effects. Careful choice of the lanthanide 
ion allows tuning of the relative magnitudes of the PRE 
effect and the PCS effect (Fig. 3), ranging from gado-
linium ( Δ�ax = Δ�rh = 0 ), which exhibits only a strong 
PRE effect and is thus frequently used as a contrast agent 
in magnetic resonance imaging (MRI), to terbium and 
dysprosium which show large PCS effects and more mod-
est PRE.

Residual dipolar coupling (RDC) arises in the case of ani-
sotropic magnetic susceptibility of the paramagnetic center, 
which induces partial self-alignment of the molecules rela-
tive to the magnetic field. When a molecule tumbles freely 
and isotropically, dipole–dipole interactions are averaged 
to zero; in the case of partial alignment, an RDC remains, 
providing orientation information about scalar-coupled pairs 
of spins, relative to the alignment tensor. The RDC for two 
spins, 1 and 2 is defined in Eq. 8, where ℏ is the reduced 
Planck’s constant, B0 the external field strength, r12 the inter-
nuclear distance between the two spins, kB the Boltzmann 
constant, and T  the temperature; Θ and Φ are as defined 
relative to the components of the anisotropic magnetic sus-
ceptibility as in Fig. 1 (Bertini et al. 2002b; Otting 2010):

Residual dipolar couplings have been extensively reviewed 
elsewhere (Bax et al. 2001; Prestegard et al. 2004; Blackledge 
2005; Chen and Tjandra 2012).

All of these observables (and additional effects, for 
example, from cross-correlation between dipolar and Curie 
interactions (Bertini et al. 2002b)) have been exploited in 
biomolecular structure determination (Battiste and Wagner 
2000; Hus et al. 2000; Prestegard et al. 2004; Bertoncini 
et al. 2005; Volkov et al. 2006; Simon et al. 2010; Saio et al. 
2010; Hennig and Sattler 2014; Crick et al. 2015; Sjodt and 
Clubb 2017). However, it is mainly PRE and PCS measure-
ments that are used in early stage drug discovery, and on 
which this review will focus. RDCs are used primarily to 
validate PCS restraints or in the calculation and validation 
of the anisotropy tensor.
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Fig. 2  Relaxation effects in paramagnetic systems due to Solomon 
and Curie mechanisms. a For systems with a slow electronic relaxa-
tion time ( �s ) e.g. nitroxide radicals �s ∼ 100 ns, transverse paramag-
netic relaxation is dominated by the Solomon mechanism (Eq.  1). 
Relaxation enhancements relative to Rdia

2
 are seen typically between 

10–20  Å (Table  1). Curves are shown for a spin 1∕2 particle. Tum-
bling is dominated by �c (10 or 20  ns) and the complex lifetime �m 
is assumed to be long relative to �c . b For particles with a faster �s 
e.g. many lanthanide metals, the Curie relaxation mechanism domi-
nates over the Solomon contribution, which is insignificant in the 
range of interest. Curves were simulated using Eqs. 1, 3 and 4, using 
�s = 10−13 s and �c = 10  ns. S = 3/2 for example for cobalt (II). c 
Curie relaxation is illustrated for different spins states (S = 3/2, 5/2, 
7/2) and different correlation times �c = 10 or 20 ns. Other values are 
the same as for the Curie contribution in (b). The Curie contribution 
is significant between around 3 and 10 Å (see Table 1). Simulations 
are for 1H relaxation at 600 MHz (1H frequency) and 298 K
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Paramagnetic tags for protein conjugation

In order to exploit paramagnetic effects, a paramagnetic 
center is required. With the exception of proteins that harbor 
an intrinsic metal binding site, which can bind a paramag-
netic ion (Burroughs et al. 1994; Pidcock and Moore 2001; 
Bertini et al. 2002b), most proteins require the artificial 

addition of a paramagnetic center via a tag. The variety of 
tags is large and has recently been thoroughly reviewed (Joss 
and Häussinger 2019). A key criterion for all tags is limited 
mobility; otherwise motional averaging reduces the magni-
tude of the paramagnetic effects and leads to inaccurate or 
motional-averaging of distance and orientation-dependent 
effects. Here, we discuss a selection of commonly used tags 

Table 1  R
2
 enhancement factors, following Bertini et  al. (2004), are 

calculated for Solomon (a) and Curie (b) contributions to paramag-
netic relaxation for different correlation times ( �

c
 ) and spin states ( S ) 

as a function of the distance between the paramagnetic center (an 
unpaired electron e.g. in a nitroxide radical (a) or a metal centre (b)) 

and a proton spin. Calculations are for 600 MHz (1H frequency) and 
298 K, using Eqs. 1, 3 and 4 as described in the legend to Fig. 2 and 
assume Rdia

2
 values of 60  s−1 and 120  s−1 for �

c
 of 10 ns and 20 ns 

respectively

(a) Solomon
(
R
para

2
+ R

dia
2

)
∕Rdia

2

Electron-1H (Å) �c = 10 ns �c = 20 ns

3 10,509.60 9474.37
4 1871.30 1687.06
5 491.29 442.99
6 165.20 149.02
7 66.12 59.70
8 30.22 27.34
9 15.42 14.00
10 8.66 7.91
11 5.32 4.90
12 3.57 3.31
13 2.59 2.43
14 2.02 1.92
15 1.67 1.61
16 1.46 1.41
17 1.32 1.29
18 1.23 1.20
19 1.16 1.15
20 1.12 1.11
30 1.01 1.01

(b) Curie
(
R
para

2
+ R

dia
2

)
∕Rdia

2

�c = 10 ns �c = 20 ns

Metal-1H (Å) S = 3∕2 S = 5∕2 S = 7∕2 S = 3∕2 S = 5∕2 S = 7∕2

3 292.08 1585.77 5135.65 287.77 1562.32 5059.67
4 52.81 283.05 914.86 52.04 278.88 901.33
5 14.58 74.94 240.56 14.38 73.84 237.02
6 5.55 25.76 81.23 5.48 25.40 80.04
7 2.80 10.82 32.82 2.78 10.67 32.35
8 1.81 5.41 15.28 1.80 5.34 15.07
9 1.40 3.17 8.04 1.39 3.14 7.94
10 1.21 2.16 4.74 1.21 2.14 4.69
20 1.00 1.02 1.06 1.00 1.02 1.06
30 1.00 1.00 1.01 1.00 1.00 1.01
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and some of those employed in the examples covered in this 
review.

The earliest examples of the conjugation of spin labels 
involved nitroxide spin labels, among the smallest tags, 
introduced by the Hubbell lab for use in EPR (Todd et al. 
1989) (Fig. 4). These consist of a nitroxide group, attached 
to bulky quaternary carbons to prevent quenching of the rad-
ical (Roser et al. 2016). They are normally conjugated to a 
cysteine by a disulfide bridge (Ajtai et al. 1990; Battiste and 
Wagner 2000) and are used for PREs due to their isotropic 
susceptibility tensor. IPSL (N-(1-oxyl-2,2,5,5-tetramethyl-
3-pyrrolidinyl)iodoacetamide) conjugation with cysteines 
produces thioether bonds, which are chemically more stable 
than the disulfide bonds formed by MTSL (1-oxyl-2,2,5,5-
tetramethylpyrroline-3-methyl)methanethiosulfonate) and 
thus preferred (Göbl et  al. 2014). Alternatives include 
other PROXYL-based (2,2,5,5-tetramethyl-3-pyrrolidine-
N-oxyl) tags (Gillespie and Shortle 1997; Pavićević et al. 
2017), which can be adapted to bind to lysine residues, as 
well as lipids and nucleic acids (Keana et al. 1976; Barnwal 
et al. 2017). One disadvantage of these molecules is that 
their flexibility and the types of motion they undergo are 
strongly dependent on their local environment (Lietzow and 

Hubbell 2004; López et al. 2012). While this can be useful 
for studying the environment of the tags, a preferably rigid 
and well-defined tag position is required for generation of 
structural restraints. Rotamer libraries of spin labels attached 
to amino acid side chains have been modeled for analysis 
and in silico calculations (Kroncke et al. 2010; Polyhach 
et al. 2011; Freed et al. 2011).

For PCS studies, an anisotropic magnetic susceptibility 
tensor is required, which can be provided by paramagnetic 
metal ions, such as ytterbium and thulium (Fig. 3). These 
can be attached using lanthanide binding tags (LBTs), e.g. 
(i) chemically-synthesized metal chelating tags that are 
conjugated to solvent-accessible cysteine(s); (ii) peptide 
tags that coordinate the metal, or (iii) via direct binding of 
the metal to histidine residues. LBTs have been thoroughly 
reviewed recently (Nitsche and Otting 2017; Joss and Häu-
ssinger 2019). In the following, we provide a brief summary.

Single-armed cysteine-linked LBTs include dipicolinic 
acid (Su et al. 2006, 2008) and cysteinyl-phenyl-triami-
nohexaacetate (Cys-Ph-TAHA) (Peters et al. 2011), as well 
as DOTA-type tags, including DOTA-M8 (Häussinger et al. 
2009) and DOTA-M7FPy (Müntener et al. 2018) (Fig. 4). 
DOTA-style LBTs are synthesized pre-chelated with metal 

Fig. 3  Properties of various paramagnetic, non-radioactive lantha-
nides. For each metal, the electron angular momentum (J) is given. 
The PRE contribution is shown as a yellow isosurface correspond-
ing to paramagnetic broadening of the 1H NMR signals by 80 Hz at 
800  MHz for a protein with a rotational correlation time of 15  ns. 
Representative PCS isosurfaces (blue/red positive/negative) are 

shown for pseudocontact shifts of ± 5 ppm using the Δχ tensors for 
calbindin  D9k (Bertini et  al. 2001). Electronic relaxation times 

(
�e
)
 

are given for 18.8 T (Alsaadi et al. 1980). Reprinted with permission 
from reference (Pintacuda et  al. 2007). Copyright 2007 American 
Chemical Society
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ions, while TAHA and dipicolinic acid are easily accessi-
ble by chemical synthesis on the scale of hundreds of mil-
ligrams (Su et al. 2008; Peters et al. 2011) and the metal 
is added after protein conjugation, allowing chelation of a 
range of paramagnetic metals. Of importance is the rigidity 
of the tag, which corresponds to a larger effective magnetic 
anisotropy tensor and, by extension, greater paramagnetic 
effects—in this case, out of the single-arm tags, the DOTA-
type tags have been shown to be more rigid and to give rise 
to larger tensors (Joss and Häussinger 2019). Earlier versions 
of the DOTA tags suffered from exchange between two coor-
dinating geometries (square antiprism and twisted-square 
antiprism), but this problem was reduced by further func-
tionalization (Polášek et al. 2004; Häussinger et al. 2009; 
Liu et al. 2014). Some LBTs have free coordination sites 

for either water or other groups, such as carboxylic acid side 
chains (Su et al. 2008; Swarbrick et al. 2011; Peters et al. 
2011; Lee et al. 2015). This can lead to additional dynamics 
in the system and can impact the effective tensor obtained. 
However, this can also be of benefit since, with the avail-
ability of a residue such as aspartic acid on the surface of the 
protein nearby, this can stabilize and rigidify the position of 
the paramagnetic center and thereby increase the observed 
paramagnetic effects (Su et al. 2008; Lee et al. 2015).

An elegant method to rigidify the position and orienta-
tion of the metal relative to the protein is to use a two-
armed tag, binding at two cysteines, e.g. CLaNP-5 (Keiz-
ers et al. 2007) and the T1 and T2 tags from Lee et al. (Lee 
et al. 2016), leading to large susceptibility anisotropy and 
alignment tensors (Fig. 4). CLaNP-7 has been developed 

Fig. 4  Structures of selected paramagnetic tags discussed in this 
work. a Single-arm synthetic lanthanide binding tags (LBTs). b 
Double-arm synthetic LBTs. c Lanthanide binding peptide sequences 
used in Barthelmes et al. (2011) and Barb and Subedi (2016). Resi-
dues marked in magenta interact with the lanthanide ion. Residues in 

cyan form part of the lanthanide binding peptide sequence. Residues 
in black are flanking residues from the native protein loop sequence, 
with the number of flanking residues varied to produce different tags. 
d Nitroxyl radical tags. a–c Can be used to introduce PCS, PRE and 
RDC effects, depending on the metal used; d are used solely for PRE
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with a smaller total charge than CLaNP-5 in order to 
reduce any effect on the electrostatic potential of the pro-
tein (Liu et al. 2012). This tag, however, is pH-dependent 
in the presence of a histidine residue in its vicinity, hypo-
thetically due to the imidazole interacting with a water 
(or hydroxide ion) bound to the vacant coordination site. 
This leads to multiple NMR signals at some pH values. 
Two-armed tags that bind transition metals are also avail-
able (Miao et al. 2019). As transition metals have smaller 
anisotropy tensors, these are more applicable to systems 
where the tagging site is close to the binding site. Due 
to the fourfold degeneracy of the anisotropy tensors, as 
well as the flexibility of the tag linker and protein and any 
errors in the measurements, multiple sites for LBT attach-
ment are usually required to unambiguously localize, for 
example, a ligand binding site (Bertini et al. 2016) (Fig. 5). 
For small ligands, this is particularly challenging as, even 
for a fully asymmetric tensor, multiple positions in space 
can have the same PCS magnitude, leading to degenerate 
positions. For larger ligands, this is less of a problem as 
there are more atoms involved, leading to a wider variation 
in shifts across the molecule and fewer sites on the protein 
that would match the necessary gradients. Even for small 
ligands though, the use of multiple tensors or tag positions 
can be used to triangulate the position of the ligand and 
additionally, chemical and structural considerations can 
be used to remove impossible or unlikely solutions (John 
et al. 2006). The different orientations of the tensors from 
CLaNP and T1/T2 tags could lead to complementary data 
in this way, while using only one set of mutations for the 
binding of the tag. The same is true of the T1 and T2 
tag pair, which are enantiomers and therefore provide dif-
ferent tensors. In the case that these tensors have a high 
intersection angle (close to orthogonal) to one another, 
the use of both tags at the same site can reduce this degen-
eracy. A potential disadvantage of double cysteine tags is 
the requirement for two cysteines within a suitable dis-
tance for tagging, which typically must be introduced by 

mutagenesis. This can be challenging depending on the 
protein studied and may impact on protein stability and 
function.

In some cases, cysteines are key to the function or fold 
of biomolecules and are therefore impossible to mutate out 
or tag. Therefore, strategies have been developed to avoid 
the reliance on cysteine residues. These include peptide 
tags and histidine chelation. Double histidine chelation 
requires two histidine residues, situated at i and i + 4 on an 
α-helix or i and i + 2 on a β-strand, which directly chelate the 
metal. Again, mutations are often required for this, but the 
technique has been shown to work with copper ions, using 
iminodiacetic acid as a ‘lid’ to fill outstanding chelation 
vacancies on the metal (Cunningham et al. 2015) or simply 
with cobalt ions chelating the histidines without additional 
molecules for chelation (Bahramzadeh et al. 2018). For this 
technique, in order to chelate only the desired metal, any 
existing metal is first removed with EDTA, which the protein 
must be able to withstand.

Metal-binding peptides may be introduced to enable genetic 
encoding of the metal-binding site for recombinant protein 
production. Peptide sequences, based on calcium-binding 
motifs, have been iteratively evolved to bind selectively and 
with high affinity (Kd ≈ nM) to lanthanide metals (Nitz et al. 
2003). Early tags were attached to the N- and C-termini of pro-
teins, with rigidification in some cases provided by cross-link-
ing to a cysteine (Saio et al. 2009). However, this still requires 
further protein modifications and the availability of an appro-
priate cysteine. Other strategies involve a two-point anchored 
peptide LBT, via insertion in a protein loop. Although this 
risks disrupting the protein fold, several studies have shown 
that with careful choice of tag and insertion location, this can 
be achieved with minimal structural change. A detailed study 
of IL1β incorporated a 17-residue LBT sequence in three 
different loops with variable flanking residues and mutation 
of existing loop residues (Fig. 4) (Silvaggi et al. 2007; Bar-
thelmes et al. 2011). The observation of larger RDCs com-
pared to samples with single-attachment peptide LBTs and 

Fig. 5  Localization of a ligand via PCS restraints requires multiple 
tensor isosurfaces located at different positions, illustrated by over-
lapping spheres. The intersection between two spheres is a circle (a). 
Introducing a third isosurface reduces this to two points of intersec-

tion (red arrows) (b). Unambiguous localization requires four isosur-
faces (red arrow) (c). In reality, more positions may be required, for 
example as a result of tag motion. It may also be possible to exclude 
some positions based on chemical and structural considerations
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good agreement between predicted and back-calculated PCSs 
indicate its rigidity. A crystal structure shows that the IL1β fold 
is preserved although slightly higher dynamics are observed in 
the LBT region from Lipari-Szabo analysis (Lipari and Szabo 
1982a, b) of 15N NMR relaxation data, not unexpected for a 
loop region. An interesting advantage of such tags for X-ray 
crystallography is that phasing information can be determined 
from the presence of the heavy metal ion (Silvaggi et al. 2007). 
This is useful where similar structures are not available for 
molecular replacement, or when molecular replacement alone 
gives poor results (Panjikar et al. 2009). Similar results have 
been shown for immunoglobulin G (IgG) binding proteins 
with insertion into a loop between two helices (Fig. 4) (Barb 
et al. 2012; Barb and Subedi 2016). Compared to the loop 
used by Barthelmes et al. (Barthelmes et al. 2011) the C-ter-
minal residues are removed and the Trp is replaced by Ala, as 
the observation of two indole NH signals indicated multiple 
side-chain conformations for the tryptophan (Su et al. 2006; 
Barb et al. 2012). RDCs were used to confirm correlation with 
existing structures and a structure of the protein with bound 
lanthanide ions was determined using Xplor-NIH (Banci et al. 
2004; Schwieters et al. 2006). As expected, motion of the LBT 
domain was observed relative to the core of the protein and 
therefore improvements were made to the LBT by removal of 
flanking residues leading to a further reduction in tag mobil-
ity, and a consequent increase in tensor magnitude (Barb and 
Subedi 2016).

It is also possible to introduce paramagnetic centers via 
unnatural amino acids, which may already incorporate a par-
amagnetic center (Schmidt et al. 2014) or bind specifically 
to a paramagnetic tag (Fleissner et al. 2009; Loh et al. 2015; 
Kugele et al. 2019). These have the disadvantage of requir-
ing the introduction of an unnatural amino acid, usually via 
Amber codon suppression, which typically involves some 
optimization of expression protocols. However, a significant 
advantage is that native cysteines, which may be required 
for functional activity, can be preserved. This approach is 
currently not commonly used in drug discovery but may 
present a potential area for future development. The reader 
is referred to relevant papers for further information (Cel-
litti et al. 2008; Jones et al. 2010; Liu et al. 2014; Lang et al. 
2015; Braun et al. 2019).

Having successfully introduced a paramagnetic center, as 
discussed above, multiple applications are possible to aid the 
drug discovery process, which are discussed further below 
and summarized in Table 2.

PRE in drug discovery

As shown in Eqs. 1 and 3, the PRE for a given nuclear spin 
depends on the distance to the paramagnetic center ( r−6 ) but 
not the angle (Fig. 1). As a result, the structural information 

provided has a shorter range and is not as rich as PCS data, 
which is distance and orientation dependent and decays with 
r−3 ; however, the PRE effect is still readily exploited in drug 
discovery.

PREs can be used to enhance the sensitivity of drug 
screening, either by introducing a paramagnetic center on 
the protein or via a ligand known to bind the target protein 
of interest. The paramagnetic center induces a PRE effect on 
any interacting molecules introducing a relaxation effect that 
depends on the distance, r , as well as the exchange rate kex of 
the complex and the residence time �m = k−1

off
 of the ligand, 

although the latter is typically ignored as discussed earlier 
(Eqs. 2, 4) (Clore and Iwahara 2009). Exchange effects can 
be accounted for by considering the McConnell equations 
(McConnell 1958; Clore and Iwahara 2009). It has previ-
ously been demonstrated that a weakly populated minor state 
(with a short distance r, and thus a very strong PRE) can be 
identified by intermolecular PREs, as long as the exchange 
rate is larger than the PRE enhancement and the chemical 
shift difference between two states, i.e. in fast exchange on 
the chemical shift and relaxation timescales (Iwahara and 
Clore 2006; Clore and Iwahara 2009). In the case of small 
molecules e.g. ligands, the considerably faster �c of the free 
ligand means that exchange contributions do not make a sig-
nificant additional contribution to the transverse relaxation 
rate. Thus for ligand-observed experiments, the PRE effect 
experienced by the ligand is scaled by the population of the 
protein–ligand complex as discussed below (Eq. 9) (Jahnke 
2002; John et al. 2006).

For weakly binding ligands e.g. fragments, the experi-
ment can be carried out in a ligand-observed fashion, which 
benefits from the narrow linewidths due to fast tumbling of 
the free ligand (rather than the slower tumbling of the protein 
complex). However, due to the strength of the PRE effect, 
even weakly-interacting molecules can be easily detected 
by line broadening of their signals upon addition of para-
magnetic protein, compared to a diamagnetic reference, and 
furthermore, the protein requirements are very low (Fig. 6). 
These effects were demonstrated in two key papers in the 
early 2000s (Jahnke et al. 2000, 2001), and later for a protein 
with a native metal-binding site into which a paramagnetic 
ion could be exchanged (Bertini et al. 2004). In one approach 
a compound known to bind a target protein is modified to 
contain a paramagnetic label and is used to screen fragments 
binding at a second site, “second-site screening” (Jahnke 
et al. 2000), potentially allowing the two ‘hits’ to be linked 
to create a tighter binding compound. In this example only 
10 μM Bcl-xL was required to detect a compound binding 
with a dissociation equilibrium constant Kd ≈ 1 mM at the 
second site. One-dimensional R1� measurements are used 
to detect the increased relaxation rate of interacting ligands, 
due to their reduced average distance to the spin label. This 
method is particularly robust against false positives: if the 
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second ligand competes with the first, no signal will be seen 
as the two ligands must bind concurrently for a PRE effect 
to be observed. If there is no binding, no change in R1� 
rates between paramagnetic and diamagnetic samples will 
be observed since the average interaction distance with the 
spin-labeled ligand will remain much longer than if there is 
a binding interaction (Jahnke 2002). The method overcomes 
solubility problems typically associated with second-site 
screening, which can make it challenging to saturate a bind-
ing site with the known (first) ligand.

In a second paper, the use of PREs for primary screening 
was also demonstrated in a method known as SLAPSTIC 
(spin labels attached to protein side chains as a tool to iden-
tify interacting compounds) (Jahnke et al. 2001): the protein 
can be covalently tagged with a paramagnetic group, in this 
example using spin-labelling of lysines on FK506 binding 
protein, FKBP, and then used to screen a range of binding 
and non-binding compounds. Due to the dependence of the 
PRE on r−6 , spin-labeled residues need to be in the range ca. 
10–20 Å from the binding site for ligand binding to benefit 

from the relaxation-enhancement effect without being broad-
ened beyond detection, assuming the Solomon contribution 
is the dominant effect (Jahnke 2002). The observed relaxa-
tion rate is given by:

where R2,free and R2,bound are the diamagnetic relaxation rates 
of free and bound ligand, respectively; R2,ex is the exchange 
contribution due to exchange broadening from intermediate 
exchange; Rpara

2,bound
 is the paramagnetic relaxation of bound 

ligand and pb is the bound fraction. R2,ex can be typically 
ignored for weak binding ligands (high micromolar affinity) 
(Jahnke et al. 2001), since the paramagnetic contribution is 
calculated as Rpara

2,obs
− Rdia

2,obs
 , and the exchange contribution to 

the paramagnetic and diamagnetic R2 rates is almost equiva-
lent and so will be cancelled (Clore and Iwahara 2009). A 
term in Rpara

2,free
 can also typically be ignored. Considering 

calculations for the average distance between molecules 
in solution (a 1 M solution has an average center-to-center 

(9)R2,obs =
(
1 − pb

)
R2,free + pbR2,bound + pbR

para

2,bound
+ R2,ex

Fig. 6  Applications of PRE in 
drug discovery. a Screening 
applications: Spectra for a 
mixture of ligands are compared 
with and without protein at 
short and long spin-lock 
durations ( � ), using a T1� 
spin-lock sequence. At long 
spin-lock durations, signals 
from ligands that interact with 
spin-labeled protein are 
broadened (*) due to the 
proximity to the paramagnetic 
center. This increases the 
observed R2 rate by the amount 
pb

(
R2,bound + R

para

2,bound

)
 (Eq. 9). 

Non-interacting ligands do not 
experience significant attenua-
tion. The spin-lock also serves 
to attenuate protein signals (not 
shown in the schematic figure) 
due to their faster transverse 
relaxation reducing overlap. b 
Structural restraints: Compari-
son of R2 rates for the ligand 
signals in the presence of 
diamagnetic or paramagnetic-
labeled protein may be used to 
determine Rpara

2
 , which can be 

converted to a distance r 
between the paramagnetic 
center (green mesh) and the 
ligand (red mesh) signal (Eqs. 1, 
3)
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particle separation of 11.8 Å, and a 1 mM solution 118 Å) 
and considering estimates for the protein radius (10–30 Å for 
molecular weights 5–100 kDa) the average interaction dis-
tance of molecules at typical NMR concentrations (< 1 mM) 
is beyond the reach of both Solomon and Curie contributions 
(Erickson 2009). In addition, both contributions depend on 
the rotational correlation time, �r , which for a small mol-
ecule in solution is on the order of 10 ps, further reducing 
the effect of these contributions. Consequently, this indi-
cates that at typical NMR concentrations used for screening, 
R
para

2,free
 is unlikely to be a significant contributor. At higher 

concentrations (approaching 1  M), Rpara

2,free
 could require 

consideration, however, this is unrealistic for biomolecular 
applications, and furthermore, the increased sensitivity of 
paramagnetic screening allows reduced sample concentra-
tions. However, even weakly interacting molecules will see a 
substantial enhancement due to Rpara

2,bound
 , which is determined 

by the tumbling time of the protein. This increases the sen-
sitivity of paramagnetic screening to weakly binding frag-
ments. Measurement of R1� rates, as described above, can 
allow differentiation between different ligands although the 
relaxation is affected by both distance from the PRE center 
and residence time.

In NMR experiments with protein–ligand complexes, 
interacting ligands experience an increased relaxation rate, 
pbR2,bound , due to the slower tumbling of the protein–ligand 
complex. In the case of SLAPSTIC, this effect is enhanced 
by the paramagnetic contribution pbR

para

2,bound
 , benefitting 

from an approximately 50-fold relaxation enhancement at 
12 Å as a result of the Solomon PRE effect (Jahnke 2002). 
This dramatically reduces the protein requirements with 
only 20 μM spin-labeled FKBP needed to detect interact-
ing partners compared to 60 μM unlabeled FKBP. An R1� 
sequence was used to detect increased line-broadening of 
interacting ligands at longer spin-lock times, compared to 
non-interacting compounds, which do not experience the 
enhanced relaxation in the bound state. A particular advan-
tage is that the PRE effect and R1� sequence quench protein 
signals, which otherwise can obscure ligand signals. Fur-
thermore, R1� experiments can be acquired as a function of 
spinlock time giving a quantitative assessment of the relaxa-
tion rate for different ligands (Jahnke et al. 2000). Bertini 
et al. found that the use of a paramagnetic metalloprotein 
reduced the protein requirements for ligand screening by 
a factor of five to ten, depending on the binding affinity of 
the compound tested (Bertini et al. 2004). The effect on a 
CPMG experiment, where the increase in relaxation rate is 
dominated by the contribution from R2 is increased by use 
of a paramagnetic metal ion in or near the binding site. With 
cobalt used in this case, the R2 contribution is dominated 
by Curie relaxation. The R2 enhancement under conserved 
conditions was shown to vary from a factor of 1.25 at 9 Å to 
180 times at a 3 Å distance from the paramagnetic center. A 

similar screening application was demonstrated by using a 
two-point anchored lanthanide binding peptide on the SH2 
domain of Grb2, bound to  Gd3+, which like nitroxide spin 
labels, induces a PRE via the Solomon mechanism, although 
with S = 7/2, allowing a reduction in the protein require-
ments and increased sensitivity to weakly-binding ligands 
(Saio et al. 2011).

In addition to screening, PRE effects can also be used as a 
source of distance restraints to provide information on ligand 
pose in a binding site (Figs. 5, 6). To date, this approach 
has been less widely used than PCS restraints (discussed 
below) for protein–ligand applications. In the two examples 
described above, a possible source of distance information 
can be obtained from the differential relaxation of ligand 
protons, with protons closer to the paramagnetic center 
showing a faster R2 rate. This requires knowledge of the 
position of the paramagnetic center as well as information on 
the R2 rates in Eq. 9 in order to extract Rpara

2,bound
 . Depending 

on the dominant relaxation mechanism, Eqs. 1 or 3 can then 
be used to extract distance information. When determining 
distances from transverse relaxation rates due to PREs from 
metals with a non-vanishing Δ� , additional effects due to 
RDCs and DSA-CSA (dipolar shielding anisotropy-chemical 
shift anisotropy) cross-correlation effects can affect the PRE 
(Orton and Otting 2018). The latter can be minimized by 
measuring 1H spins with a lower CSA, compared to 15N 
for example, while the former can be reduced by measuring 
at lower magnetic fields and carefully selecting the lantha-
nide metal to reduce Δ� (Orton and Otting 2018). A careful 
choice of paramagnetic metal is important to accurately cor-
relate PRE effects with distances. For example, transverse 
PRE for lanthanides with fast electronic relaxation times 
has minor contributions from the Solomon mechanism but 
is dominated by Curie relaxation (Orton and Otting 2018). 
Such challenges are mitigated for spin-labels with an iso-
tropic � tensor, such as nitroxide labels. In addition, inter-
molecular contributions may also affect the accuracy of dis-
tances determined from paramagnetic relaxation rates. This 
effect can be reduced by measuring samples at lower con-
centration (to minimize non-specific intermolecular interac-
tions) within the sensitivity limits of the sample, although 
such effects can be hard to eliminate entirely (Orton and 
Otting 2018). Non-specific intermolecular effects are great-
est for solvent-exposed regions. In fact the utility of non-spe-
cific intermolecular effects is demonstrated by solvent PREs 
to map surface interactions of complexes (Madl et al. 2009, 
2011; Orton and Otting 2018). Solvent PREs using soluble 
PRE tags are used to map protein surfaces: here the soluble 
paramagnetic center is used at high concentration (mM) the 
paramagnetic center is typically  Gd3+, which has a high spin 
state (S = 7/2), enhancing the Solomon PRE according to 
Eq. 1 and a slow electronic relaxation making the complex 
lifetime, described according to a second-shell interaction 
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model with the complex assumed to tumble at the correla-
tion time of the protein, significant for �c (Eq. 2). This results 
in significant PREs for surface exposed residues (Pintacuda 
and Otting 2002; Madl et al. 2009).

An example of PRE used to determine binding poses 
involves inhibitors of HIV-1 fusion, which bind a small 
hydrophobic pocket on the gp41 protein, which could not 
be crystallized with bound ligands. Using a spin-labeled 
peptide, which bound in an adjacent pocket, similar to the 
second-site screening approach (Jahnke et al. 2000), para-
magnetic relaxation rates due to the Solomon mechanism 
were extracted by varying the concentrations of the receptor-
peptide complex in the diamagnetic and paramagnetic forms 
in order to extract Rpara

2,bound
 (paramagnetic relaxation of the 

bound form) (Balogh et al. 2009). These data were used in 
combination with computationally docked ligand positions 
to select poses that match the PRE data. This was followed 
by an energy minimization calculation, using Xplor-NIH, 
incorporating the PRE data in the form of NOE distance 
restraints, leading to a consensus structure in agreement with 
the experimental data from one of the starting docked poses, 
and providing further information about the ligand–protein 
interactions (Gochin et al. 2011). The PRE-docked struc-
tures were also in good agreement with PCS data measured 
from the same tag with  Co2+ chelated (Balogh et al. 2009).

PCS in drug discovery

PCS can be used in a variety of ways in drug discovery 
thanks to the provision of both distance- and orientation-
dependent restraints, and the clear chemical shifts of the 
protein residues visible in 2D correlation spectra, without 
complex processing. Applications include compound screen-
ing and finding generalized binding site locations, as well 
as generating PCS-driven or PCS-filtered binding poses and 
structures (Figs. 7, 8). Different approaches to the tagging 
have been tried in these cases, with the tag applied to either 
the protein or to the ligand itself. As the effects are seen for 
all NMR-active nuclei, many have been explored, including 
1H, 15N, 13C and 19F nuclei discussed below. As the PCS 
effect is dependent on r−3 , rather than r−6 for PREs, struc-
tural information using PCS can be obtained at longer dis-
tances. PCS sufficient for use in calculations have been seen 
at distances as large as 38 Å for 19F ligands (Zimmermann 
et al. 2019), and it is expected that with newer tags, distances 
of 100 Å or even greater would also be possible (Joss and 
Häussinger 2019). 

Locating a binding site

A critical point on the drug discovery pathway is deter-
mining the position of fragment or ligand binding on the 

target protein. A variety of NMR-based methods can be used 
to determine the binding site (Gossert and Jahnke 2016; 
Sugiki et al. 2018; Nitsche and Otting 2018) but paramag-
netism can also provide a highly sensitive approach.

Covalent attachment of a paramagnetic metal to a ligand 
or series of ligands induces PCS on simple protein-observed 
1H, 15N or 1H, 13C correlation spectra (Otting 2010) upon 
binding to the protein. Provided that the diamagnetic pro-
tein spectrum assignments and a structure are available, the 
paramagnetic spectra can be assigned either manually or 
with software such as Echidna (Schmitz et al. 2006). The 
observed PCS can be used to calculate the effective tensor 
and the location of the paramagnetic center (Schmitz et al. 
2008; Rinaldelli et al. 2015; Strickland et al. 2016; Orton 
et al. 2020).

The shifts can be used in a similar manner to chemical 
shift perturbations (CSP) in order to validate a hypoth-
esized binding position. As the PCS are purely distance and 
orientation dependent and are not affected by (potentially 
allosteric) changes in chemical environment, they directly 
report on the true binding site, in contrast to CSP analysis, 
which can be affected by allosteric changes. An example 
of this approach is DOTA-tagged sevoflurane, which binds 
to calmodulin N- and C-lobes. The binding position was 
identified by calculating an effective Δ� tensor from the 
induced Δ�PCS on the protein (Brath et al. 2015). The posi-
tion of the calculated tensor, combined with knowledge of 
the maximum distance between the metal and the ligand, 
was used to map a sphere onto the protein, indicating the 
location of the ligand. The magnitude of the effective tensor 
was also used to qualitatively compare dissociation constants 
Kd. In fast exchange, ligands with a lower Kd (higher affinity) 
have a greater population in the bound state leading to larger 
shifts on the protein, resulting in a larger effective tensor. A 
greater effective Δ� is seen in the C-lobe in comparison to 
the N-lobe of calmodulin, in agreement with previous affin-
ity studies. Although in this case a similar Kd was observed 
by ITC for DOTA-tagged sevoflurane as for untagged sevo-
flurane, a concern is that the addition of such a large tag 
to a ligand could substantially alter its binding mode. It is 
also notable that in this case the Kd was not included in the 
calculations, which led to differences between the effective 
tensors in the two cases. The magnitude of these tensors are 
therefore not transferable to other systems with different Kd 
values, for example for screening applications. For such a 
purpose, the tensors must be calculated by either consid-
ering the Kd values or by calculating the tensor using the 
shifts seen on the signals of the tagged ligand. For the latter, 
as with all tensor calculations, a minimum of eight signals 
would be required.

While tagging the ligand enables detection of the bind-
ing region on the protein, tagging the protein allows PCS 
for the ligand signals to be detected, potentially allowing 
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determination of the binding pose. The key challenge is then 
to determine the bound-state shifts for the ligand signals 
(δbound) for use in structure calculations or filtering of dock-
ing poses. Different strategies have been employed in differ-
ent exchange regimes, which are discussed below.

Weakly binding ligands, fast exchange

Tagging the protein of interest provides an opportunity to 
use transferred PCS to a ligand binding in fast exchange. 

Comparable to the PRE applications described earlier, the 
ligand experiences PCS in the bound state, with the effect 
observed as a weighted average of the time spent in the 
bound and free states (Fig. 7). Transferred PCS was demon-
strated by the Otting group using a ligand in fast exchange 
binding a protein with a natural binding site for a metal 
cofactor (John et al. 2006). In the case that the total ligand 
concentration, cL , is much greater than the concentration of 
protein, cP , as in John et al. (2006), the fraction of bound 
ligand, f bound , is:

Fig. 7  Applications of PCS in drug discovery. a Δχ-tensor: for 
spin- and isotope-labeled protein, the anisotropic magnetic suscepti-
bility (Δχ-tensor) can be determined using standard 2D correlation 
experiments, e.g. 1H, 15N HSQC, using peak positions relative to the 
diamagnetic reference (e.g.  Lu3+) to calculate the PCS shift (ΔδPCS), 
for each metal. Various software packages (Table 3) are available to 
calculate the paramagnetic tensor for each metal ion. b Determin-
ing or extrapolating the PCS for the (fully) bound ligand, δbound: 
Restraints can be obtained by calculating the peak shift for ligand sig-
nals (ΔδPCS) relative to the diamagnetic reference, which is a result 
of the distance and orientation of a ligand residue with respect to the 
Δχ-tensor (Eq. 7). Different methods are required to determine δbound 
in the diamagnetic and paramagnetic cases in order to determine 
ΔδPCS depending on the exchange regime of the ligand and satura-
tion of the protein–ligand complex. (i) For ligands in fast exchange 
a titration may be used. Combined with knowledge of the equilib-
rium binding affinity constant, Kd , δbound can be extrapolated. At low 
ligand concentrations 

(
cL

)
 , the ligand signal shifts towards δbound with 

increasing cL . At high ligand concentrations, the ligand signal is dom-

inated by the free ligand pool and ΔδPCS decreases as a function of Kd 
(Eqs.  10, 11). (ii) In intermediate exchange, the bound state signals 
are broadened beyond detection. For 19F ligands, 19F-CEST may be 
used: intensity reduction is observed relative to a reference spectrum 
as a function of the saturation frequency ( �sat ). Intensity reduction is 
observed for the position of the free ligand (δunbound) and the bound 
ligand (δbound). For 1H signals, a relaxation dispersion experiment 
may be used and the profiles fit to determine the shift of the bound 
state. (iii) In slow exchange, the ligand is tightly bound and tumbles 
with the correlation time of the protein, leading to broad linewidths 
for the ligand signals. In 1H spectra, this renders the ligand signals 
indistinguishable from protein signals. Modifying the ligand to con-
tain a tertiary butyl group (tert-butyl) leads to a strong, sharp signal, 
which is easily observed. 2D NOESY spectra allow identification of 
cross-peaks from the sharp tert-butyl signal to other ligand peaks, 
allowing determination of ΔδPCS, relative to the diamagnetic refer-
ence (magenta). If a 19F-labeled ligand is available, signals, whilst 
broadened, are easily detectable with no background signals, allowing 
easy determination of ΔδPCS
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with

Δ�bound
PARA

 and Δvbound
PARA

 in Eqs. 11 and 12 represent the PCS 
and paramagnetic relaxation contribution, respectively, that 
occur in the fully bound state. For lanthanides, Δvbound

PARA
 is 

dominated by Curie relaxation (Eq. 5) (John et al. 2006).
This assumes short electron relaxation times (as found for 

lanthanides) and long �r (rotational correlation time) at high 
magnetic fields. Δ�obs

PARA
 and Δvobs

PARA
 represent the observed 

shift and line broadening, respectively. From Eqs. 10–12, 
plotting Δ�PARA or ΔvPARA against cL

cP
 allows calculation of 

the Kd and Δ�bound
PARA

 or Δvbound
PARA

 respectively from 1D ligand 
titration spectra. The PCS, along with PRE if measured, of 
the bound state can then be input into one of several software 
packages that integrate PCS data processing into docking or 
scoring in order to determine the binding position (Table 3). 

(10)f bound =
cbound
L

cL
=

cP

Kd + cL

(11)Δ�obs
PARA

= f boundΔ�bound
PARA

(12)Δvobs
PARA

= f boundΔvbound
PARA

The addition of line-broadening information to the PCS data, 
due to the dependence on r−6 , is particularly beneficial for 
short-range interactions, where the resolution of PCS data 
is lower; it is of most use on spins with small γ, commonly 
15N and 13C, as the peaks are not attenuated as drastically 
compared to 1H nuclei, although care must be taken due to 
the effect of chemical shift anisotropy on heteronuclear PRE, 
that can even lead to negative PRE effects (Orton et al. 
2016). This can however be easily calculated and available 
software accounts for this in calculation of tensors and pre-
dicted PRE values for a given structure (Orton et al. 2020).

Calculations using these data, as with all calculations 
involving a single anisotropic magnetic susceptibility ten-
sor, lead to up to fourfold degeneracy in the position of the 
calculated ligand due to the symmetry of the tensor itself. 
In this example, both 1H and 13C spectra of the ligand were 
measured in order to maximize the available restraints (John 
et al. 2006). The calculated ligand position was in good 
agreement with the binding position of a structurally similar 
ligand seen in crystal structures, demonstrating the validity 
of the method for this case.

Other examples have been demonstrated using tagged 
proteins. A lanthanide binding peptide tag covalently linked 
to a native cysteine via an intramolecular disulfide bond on 

Fig. 8  Calculation of ligand poses using paramagnetic data. PRE data 
including distance information (left) and PCS including distance and 
orientation information (right) may be used directly in structure cal-
culations, potentially along with additional NMR restraints e.g. chem-
ical shift perturbations (CSPs) and NOE restraints (if available) using 
molecular dynamics-based programs such as HADDOCK or Xplor-
NIH (Tables 2, 3). Alternatively, docking software (Table 3) may be 

used to generate a selection of docking poses. Predicted ΔδPCS val-
ues and/or distances to a paramagnetic center can be calculated for 
each pose, based on knowledge of the metal tensor or position of the 
paramagnetic center. The results are compared to the experimentally 
determined ligand shifts, allowing filtering or scoring of the compu-
tationally-generated poses and determination of the best fitting pre-
dicted ligand pose
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the SH2 domain of Grb2 (Saio et al. 2009) was used to meas-
ure Δ�PCS to both a high affinity ligand (a macrocyclic inhib-
itor) and low affinity peptide (pYTN), in combination with 
Xplor-NIH PARA-restraints module (Schwieters et al. 2003; 
Banci et al. 2004). Knowledge of the Kd from titrations was 
used to extract Δ�PCS for the ligand in fast exchange, while 
for the ligand in slow exchange, deuterated protein was used 
to observe the bound-state shifts (Saio et al. 2011). Although 
only one tag position was used, four metal ions provided 
different tensors. A similar approach with ligands in fast 
exchange was demonstrated on FKBP-12, using a two-point 
anchored CLaNP-5 tag. Three tag positions were used and 
Kd from NMR titrations enabled estimation of Δ�PCS using 
Xplor-NIH PARA-restraints module, resulting in an average 
RMSD to the NOE-calculated ligand position of 2.8 ± 0.4 Å 
(Guan et al. 2013).

Tight binders, slow exchange

In the case of slow exchange, typically seen for high-affinity 
inhibitors in advanced drug discovery programs, separate 
NMR signals are observed for the bound and unbound 

ligand in the ratio seen in solution. This is advantageous 
for the use of PCS as the shift induced (i.e. Δ�PCS in Eq. 7) 
can be directly read out from the spectrum and used in fur-
ther calculations (Saio et al. 2011). If the exchange is on a 
suitable timescale, exchange spectroscopy (EXSY) can be 
used to assist with assignment (Jeener et al. 1979; John and 
Otting 2007). However, the challenge in such cases is that 
the ligand tumbles with the overall correlation time of the 
protein and so no benefit is obtained from the faster tumbling 
of the free ligand pool, i.e. the transferred PCS effect is lost, 
leading to broader linewidths.

Chen et al. present an approach using a ligand decorated 
with a tert-butyl group, which benefits from rapid bond rota-
tion and nine equivalent protons, leading to an extremely 
narrow linewidth (Chen et al. 2016). The tert-butyl signal 
can be observed in NOESY spectra, allowing Δ�PCS to be 
calculated, and may enable identification of other ligand 
peaks due to NOE transfers (Fig. 7). Together the Δ�PCS data 
can be used to position the tert-butyl group and other parts 
of the ligand where NOEs are identified. In this example 
ligand PCS was used in combination with docking poses to 
select a confirmation interacting with dengue virus protease. 

Table 3  Software used in paramagnetic-NMR applications discussed in this paper

Software References Description Paramagnetic restraints

Xplor-NIH Schwieters et al. (2003) Structure determination program for use 
with NMR, X-ray and neutron scattering 
data

PARArestraints Banci et al. (2004) Module for adding paramagnetic restraints 
into Xplor-NIH

PCS, RDC, PRE, cross-
correlated relaxation 
rate (CCR)

AutoDock Vina Trott and Olson (2010) Small molecule docking
AutoDock 4.2 Morris et al. (2009) Small molecule docking, previous genera-

tion to AutoDock Vina
HADDOCK Schmitz and Bonvin (2011) and Van Zundert 

et al. (2016)
Docking, including possibility to add 

paramagnetic, CSP and other restraints e.g. 
distance restraints (ambiguous or unambig-
uous) to guide docking

PCS, RDC

DOCK6 UCSF Allen et al. (2015) Small molecule docking
Rosetta Schmitz et al. (2012) and Kuenze et al. 

(2019)
Structure calculation of proteins, protein–

ligand and protein–protein complexes, 
including paramagnetic restraints

PCS, RDCs, PREs

Echidna Schmitz et al. (2006) Assignment of paramagnetic 15N HSQC 
using assigned diamagnetic spectrum and 
crystal structure

PCS

Paramagnetic CYANA Güntert (2004) and Barbieri et al. (2004) Structure determination, including use of 
paramagnetic data as structural restraints

PCS, RDC, CCR 

Numbat Schmitz et al. (2008) Fitting of magnetic anisotropy tensor from 
PCS values and a PDB stucture

PCS

Paramagpy Orton et al. (2020) Fitting and visualisation of tensors based on 
experimental data

PCS, RDC, PRE, CCR 

FANTEN Rinaldelli et al. (2015) Web-based calculation of magnetic anisot-
ropy tensor from PCS and/or RDC data. 
Multiple metals can be simultaneously 
fitted

PCS, RDC
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In cases with tight binding compounds where crystallog-
raphy proves intractable, this approach may be invaluable.

A 19F-PCS approach has recently been demonstrated 
by the Häussinger group using tightly-binding 19F-labeled 
sulfonamide inhibitors of human carbonic anhydrase as 
models for a tight-binding system, with attachment of the 
rigid DOTA-M8-SSPy and M7PyThiazole-DOTA tags at 
five different sites with Ser to Cys mutations (Zimmermann 
et al. 2019). Due to the lack of background in 19F spectra, 
simple 1D 19F spectra can be used to detect Δ�PCS , with 
lanthanide-fluorine distances up to 38 Å detectable, leading 
to unambiguous localization of the inhibitors (Fig. 7). The 
distance range is considerably longer than that achieved in 
1H NMR (typically up to 25 Å). Accuracy of the 19F place-
ment approaches 0.8 Å in some cases, compared to X-ray 
structures (Kim et al. 2000). However, the authors demon-
strate that the accuracy depends on the number and choice 
of tensors, and the angle between them.

Intermediate exchange

Many lead or lead-like compounds do not bind tightly 
enough to enter the slow exchange regime, but also do not 
benefit from fast exchange observed with fragments. This 
leads to the challenging prospect of structure determination 
in intermediate exchange, with severe line broadening in this 
regime limiting the ability to track ligand shifts easily for Kd 
determination, preventing determination of the bound-state 
shifts using methods described above. Despite this, several 
approaches have been taken to determine the bound-state 
shift, and hence Δ�PCS , indirectly.

One approach involves using chemical exchange satura-
tion transfer (CEST) (Vallurupalli et al. 2012) to identify 
the population of bound ligand where the bound signal is 
broadened beyond detection (PCS-CEST) (Fig. 7) (Gao et al. 
2017). 19F mono- and di-fluorinated inhibitors of the BRM 
bromodomain were used due to interference by 1H-1H NOEs 
on 1H CEST measurements (Bouvignies and Kay 2012). By 
using a large molar excess of the ligand over the paramag-
netically tagged protein (1:0.025), the 19F signal was only 
slightly reduced in intensity, despite the severe line broad-
ening effect. Such a sample could then be measured by 19F 
CEST. In brief, this involves a swept saturation frequency 
( �sat ) in the 19F dimension, with dips in intensity compared to 
a reference spectrum highlighting the shifts of both the high-
populated unbound state and the low-populated bound state 
at given saturation frequencies (Fig. 7). Shifts of up to 2 ppm 
were detected in this way; these were then compared with 
back-calculated PCS of the bound-state ligand from ligand 
poses that were calculated using HADDOCK (Schmitz and 
Bonvin 2011). Alternatively Xplor-NIH (Schwieters et al. 
2003) with PARA-restraints (Banci et al. 2004) may be used. 
Whilst two of the clusters were indistinguishable from one 

another when only one fluorine atom was present, validation 
with a difluorine analogue was able to determine the best 
cluster. This method is also viable in a situation with a ligand 
that is not in intermediate exchange but has low solubility 
as the bound state can be determined, even when it is very 
weakly populated.

If ligand 19F atoms are unavailable, relaxation dispersion 
has been demonstrated as an alternative method to find the 
bound PCS of compounds in intermediate exchange—PCS-
RD (Fig. 7) (Xu et al. 2018a). By implementing the “perfect 
echo” element (Aguilar et al. 2012) in a relaxation dispersion 
(CPMG) experiment to prevent the evolution of homonu-
clear scalar couplings, the 1H PCS of the sparsely populated 
state could be determined. In the same manner as above, this 
allowed filtering of docked poses (in this case by AutoDock 
(Morris et al. 2009; Trott and Olson 2010)) by the quality of 
the fit of back-calculated PCS values to the observed experi-
mental values. In this case, only four PCS values were used, 
leading to four possible clusters after analysis, potentially 
due to too few data points.

Degeneracy of the tensor and solutions

A key challenge when using PCS restraints is the degeneracy 
of the magnetic susceptibility anisotropy tensor, which leads 
to multiple solutions, as well as the intrinsic triangulation 
problem (Fig. 5) (Bertini et al. 2016). In some cases, struc-
tural knowledge of the system can eliminate the degeneracy, 
for example in the case of steric clashes, locations away 
from the protein surface or chemically unfeasible interac-
tions. Saio et al. determined their final structure possibilities 
by first determining the best 20 structures based on ‘PCS 
energy’, before reducing these to ten using more traditional 
binding energy calculations, thereby removing implausible 
results that could come as a result of degenerate positions 
(Saio et al. 2011).

However, to directly calculate one single position, rather 
than eliminating artificially the false results, multiple data 
sets with different tensors must be used, either using mul-
tiple tag positions (Zimmermann et al. 2019) or tags with 
orthogonal tensors, for example chiral compounds (Lee et al. 
2016) or otherwise sufficiently different chelation. Zimmer-
man et al. showed that the degree of orthogonality of the 
tensors affected the accuracy of the positioning of the atom, 
in their case using 19F-PCS data. Using four tensors gave 
very good agreement with crystallographic structure deter-
mination. An angle score was calculated using the intersec-
tion of the normal vectors to the tensor isosurfaces (surfaces 
along which the observed shift is equal for any point) at the 
intersection point. This gave a readout of orthogonality that 
could then be used to directly compare data calculated with 
a variety of sets of three tensors. The authors found that 
for three iso-surfaces with an angle score below 30°, the 
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calculated position closely matches the four-tensor calcula-
tion, but with an angle score above 40°, this could lead to a 
deviation of up to 10 Å.

PCS reliability and effect of tag mobility

When using paramagnetic methods, there are limitations 
that should be considered. The effect of tag mobility on the 
tensor and PCS back-calculations has been modeled (Shish-
marev and Otting 2013) using a spherical protein model 
attached by a single tether with various motional relation-
ships to the paramagnetic center. It was shown that a back-
calculated effective tensor describes the shifts seen on pro-
tein atoms well, even with the model representing the largest 
tag flexibility. The authors also showed that while the PCS 
predictions for atoms within the protein sphere were consist-
ent with calculated values, predictions for atoms above the 
surface of the protein model (i.e. outside of the modeled 
sphere) were worse, indicating that for protein–protein and 
inter-domain structure determination, the predictions are less 
accurate. This could have consequences, for example, when 
studying peptide-protein interactions or for larger ligands 
that do not sit deep in binding pockets, but should not affect 
ligands seen in deep pockets, which therefore would lie 
within a spherical protein model (Shishmarev and Otting 
2013). The amplitude of motion of the tag and the length of 
the tether were found to be key parameters. The amplitude 
of motion is, however, difficult to quantify with a simple 
experimental setup as the authors show that comparison of 
the calculated tensors fitted with RDC and PCS values is not 
a good measure.

Tag tensor prediction

Determination of the position of the paramagnetic center is 
important for the precision and accuracy of paramagnetic 
restraints. For two-armed tags, the position of the metal is 
much more restrained than that in single armed tags and the 
mobility of the tensor is highly restricted. Where no isomeri-
zation of the tag can occur, this can lead to a tensor magni-
tude and position that, with a given metal, is highly consist-
ent between the free tag and when it is applied to different 
proteins (Keizers et al. 2008; Xu et al. 2009; Lee et al. 2017). 
These can then be used directly in calculations without back-
calculating the tensor or its position, with the advantage that 
full protein assignments are not required. Guan et al. showed 
that with CLaNP-5, the ligand position calculated with the 
predicted tensor was in good agreement with the position 
calculated with NOEs (Guan et al. 2013). Whilst the calcu-
lation using the predicted tensor gave a slightly worse fit to 
the NOE-calculated result than that calculated with a newly 
defined tensor, the data were sufficient for analysis of pos-
sible binding modes and determination of the binding site of 

the ligand once unrealistic degenerate models were removed. 
However it should be considered that not all double-arm 
lanthanide tags are rigid and some also undergo isomeriza-
tion, which would prohibit such a method from being used 
in these cases (Hass et al. 2010). The binding location of the 
tag can also cause further flexibility and increase the error 
in the calculations.

Conclusions and perspectives

In recent years various applications of paramagnetic NMR 
in drug discovery have been reported. PRE-based screen-
ing allows more sensitive detection of weak binding with 
reduced protein concentration, while PCS restraints have 
been used in multiple applications to allow localization 
of ligands in different exchange regimes. This appears 
especially useful in early stages of drug discovery involv-
ing weakly binding fragments, which are often difficult to 
crystallize. Paramagnetic restraints can be used for struc-
ture calculations of protein–ligand complexes, using e.g. 
Xplor-NIH or HADDOCK, or to filter docking poses derived 
from computational analyses (Fig. 8). Given the challenge 
of obtaining sufficient restraints for accurate structure cal-
culations, filtering of docking poses is often preferred and 
more time-efficient. Applications of ligand placement have 
primarily used PCS restraints due to the ease of tensor deter-
mination from 2D correlation spectra of the protein target. 
However, it can be challenging to extract Δ�PCS if accurate 
information on the binding affinity (Kd) is unavailable, or 
if the binding kinetics is in intermediate to slow exchange 
where ligand signals are challenging to detect. Methods to 
overcome these difficulties have been proposed, but likely 
remain beyond the scope of many projects. PRE restraints 
are less powerful for structural analysis of protein–ligand 
complexes since they only provide distance and no orienta-
tion restraints, and the accuracy of the distance information 
depends on the ability to extract Rpara

2,bound
 as well as tag flex-

ibility. Nevertheless, in applications where rapid filtering of 
possible ligand binding poses is required, PREs may provide 
a time-efficient approach to score and enhance further devel-
opment of ligands. In conclusion, paramagnetic restraints 
can complement standard methods of structure-based drug 
design, with opportunities for more sensitive screening, fil-
tering of computational docking poses, and where required, 
calculation of ligand–protein structures. Further develop-
ments of paramagnetic approaches will conceivably enhance 
NMR-based drug discovery.
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