Skip to main content
Log in

Electrografting of a biodegradable layer as a primer adhesion coating onto a metallic stent: in vitro and in vivo evaluations

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Drug-eluting stents have been developed to reduce the risk of restenosis after angioplasty. To facilitate the adhesion of a poly(lactic acid) (PLA) overlayer loaded with rapamycin (20 wt%), a biodegradable macromonomer based on poly(lactic acid) (HEMA-PLA) was grafted onto the metallic stent by electrografting in a one-step reaction involving the immobilization of aryl diazonium onto the metal followed by an in situ surface electro-polymerization. The HEMA-PLA coating was chemically characterized. Mechanical performance during stent expansion was tested. Morphology examinations showed a strong adhesion of PLA topcoat in the presence of the electrografted layer. Biocompatibility and degradation of the coating were studied in vitro and in vivo in rabbit iliac arteries. These 28 days implantations resulted in a minimal inflammatory process with a partial degradation of the coating. These results suggest that this kind of anchoring of a biodegradable layer shows great potential for drug-eluting stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Takahashi H, Letourneur D, Grainger DW. Delivery of large biopharmaceuticals from cardiovascular stents: a review. Biomacromolecules. 2007;8:3281–93. doi:10.1021/bm700540p.

    Article  CAS  Google Scholar 

  2. Han Y, Jing Q, Xu B, Yang L, Liu H, Shang X, Jiang T, Li Z, Zhang H, Li H, Qiu J, Liu Y, Li Y, Chen X, Gao R. For the CREATE (multi-center registry of excel biodegradable polymer drug-eluting stents) investigators. Safety and efficacy of biodegradable polymer-coated sirolimus-eluting stents in “Real-World” practice. JACC Cardiovasc Interv. 2009;2:303–9. doi:10.1016/j.jcin.2008.12.013.

    Article  Google Scholar 

  3. Marx SO, Marks AR. Bench to bedside editorial: the development of rapamycin and its application to stent restenosis. Circulation. 2001;104:852–5. doi:10.1161/01.CIR.104.8.852.

    Article  CAS  Google Scholar 

  4. Kastrati A, Mehili J, Pache J, Kaiser C, Valgimigli M, Kelbaek H, Menichelli M, Sabaté M, Suttorp MJ, Baumgart D, Seyfarth M, Pfisterer ME, Albert Schömig A. Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents. New Engl J Med. 2007;356:1030. doi:10.1056/NEJMoa067484.

    Article  CAS  Google Scholar 

  5. Ranade SV, Miller KM, Richard RE, Chan AK, Allen MJ, Helmus MN. Physical characterization of controlled release of paclitaxel from the TAXUS™Express2™drug-eluting stent. J Biomed Mat Res Part A. 2004;71A:625–34. doi:10.1002/jbm.a.30188.

    Article  CAS  Google Scholar 

  6. Han Y, Wang S, Jing Q, Li Y, Liu H, Ma Y, Wang Z, Wang D, Luan B, Wang G, Chen T. Comparison of long-term efficacy of the paclitaxel-eluting stent versus the bare-metal stent for treatment of unprotected left main coronary artery disease. Am J Cardiol. 2009;103:194–8. doi:10.1016/j.amjcard.2008.08.058.

    Article  CAS  Google Scholar 

  7. Stefanadis C, Toutouzas K. Paclitaxel versus sirolimus: the battle is still ongoing. J Am Coll Cardiol. 2009;53:665–6. doi:10.1016/j.jacc.2008.10.048.

    Article  Google Scholar 

  8. Venkatraman S, Boey FJ. Release profiles in drug-eluting stents: issues and uncertainties. J Control Release. 2007;120:149–60. doi:10.1016/j.jconrel.2007.04.022.

    Article  CAS  Google Scholar 

  9. De Scheerder K, Wilczek KL, Verbeken EV, Vandorpe J, Lan PN, Schacht E, De Geest H, Piessens J. Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries. Arteriosclerosis. 1995;114:105–14. doi:10.1016/0021-9150(94)05472-U.

    Article  Google Scholar 

  10. Rechavia E, Litvack F, Fishbien MC, Nakamura M, Eigler N. Biocompatibility of polyurethane coated stents: tissue and vascular aspects. Cathet Cardiovasc Diagn. 1998;45:202–7. doi:10.1002/(SICI)1097-0304(199810)45:2<202:AID-CCD20>3.0.CO;2-L.

    Article  CAS  Google Scholar 

  11. Vert M, Feijen J, Albertsson AC, Scott G, Chiellini E. Biodegradable polymers and plastics. Cambridge: Royal Society of Chemistry; 1992.

    Google Scholar 

  12. Cho HH, Han DW, Matsumura K, Tsutsumi S, Hyon SH. The behavior of vascular smooth muscle cells and platelets onto epigallocatechin gallate-releasing poly(l-lactide-co-epsilon-caprolactone) as stent-coating materials. Biomaterials. 2008;29:884–93. doi:10.1016/j.biomaterials.2007.10.052.

    Article  CAS  Google Scholar 

  13. Pan CJ, Tang JJ, Weng YJ, Wang J, Huang N. Preparation and characterization of rapamycin-loaded PLGA coating stent. J Mater Sci Mater Med. 2007;18:2193–8. doi:10.1002/jbm.a.31706.

    Article  CAS  Google Scholar 

  14. Kim TG, Lee H, Jang Y, Park TG. Controlled release of paclitaxel from heparinized metal stent fabricated by layer-by-layer assembly of polylysine and hyaluronic acid-g-poly(lactic-co-glycolic acid) micelles encapsulating paclitaxel. Biomacromolecules. 2009;10:1532–9. doi:10.1021/bm900116r.

    Article  CAS  Google Scholar 

  15. Hanefeld P, Westerd U, Wombacher R, Kissel T, Schaper A, Wendorff JH, Greiner A. Coating of poly(p-xylylene) by PLA–PEO–PLA triblock copolymers with excellent polymer–polymer adhesion for stent applications. Biomacromolecules. 2006;7:2086–90. doi:10.1021/bm050642k.

    Article  CAS  Google Scholar 

  16. Huang Y, Venkatraman S, Boey FYC, Lahti EM, Umashankar PR, Mohanty M, Arumugam S, Khanolkar L, Vaishnav S. In vitro and in vivo performance of a dual drug-eluting stent (DDES). Biomaterials. 2010;15:4382–91. doi:10.1016/j.biomaterials.2010.01.147.

    Article  Google Scholar 

  17. Palacin S, Bureau C, Charlier J, Deniau G, Mouanda B, Viel P. Molecule-to-metal bonds: electrografting polymers on conducting surfaces. ChemPhysChem. 2004;5:1468–81. doi:10.1002/cphc.200301202.

    Article  CAS  Google Scholar 

  18. Lecayon G, Bouizem Y, Le Gressus C, Reynaud C, Boiziau C, Juret C. Grafting and growing mechanisms of polymerised organic films onto metallic surfaces. Chem Phys Lett. 1982;91:506–10. doi:10.1016/0009-2614(82)83100-X.

    Article  CAS  Google Scholar 

  19. Gabriel S, Jerôme R, Jerôme C. Cathodic electrografting of acrylics: from fundamentals to functional coatings. Progress in Polym Sci. 2010;34:113–40. doi:10.1016/j.progpolymsci.2009.11.003.

    Article  Google Scholar 

  20. Okner R, Oron M, Tal N, Nyska A, Kumar N, Mandler D, Domb AJ. Electrocoating of stainless steel coronary stents for extended release of paclitaxel. J Biomed Mat Res Part A. 2008;88A:427–36. doi:10.1002/jbm.a.31896.

    Article  Google Scholar 

  21. Ameur S, Bureau C, Charlier J, Palacin S. Immobilization of biomolecules on electrodes modified by electrografted films. J Phys chem B. 2004;108:13042–6. doi:10.1021/jp0482262.

    Article  CAS  Google Scholar 

  22. Vergnol G, Sow H, Renard E, Haroun F, Langlois V. Multilayer approach for tuning the drug delivery from coatings based on biodegradable poly(3-hydroxyalkanaoate)s. React Funct Polym. 2012;72:260–7. doi:10.1016/j.reactfunctpolym.2012.02.004.

    Article  CAS  Google Scholar 

  23. Farb A, Sangiorgi G, Carter AJ, Walley VM, Edwards WD, Schwartz RS, Virmani R. Pathology of acute and chronic coronary stenting in humans. Circulation. 1999;99:44–52. doi:10.1161/01.CIR.99.1.44.

    Article  CAS  Google Scholar 

  24. Suwaidi JA, Berger PB, Holmes DR. Coronary artery stents. JAMA. 2000;284:1828–36. doi:10.1001/jama.284.14.1828.

    Article  Google Scholar 

  25. Guérin P, Rondeau F, Grimandi G, Heymann MF, Heymann D, Pillet P, Al Habash O, Loirand G, Pacaud P, Crochet D. Neointimal hyperplasia after stenting in a human mammary artery organ culture. J Vasc Res. 2004;41:46–53. doi:10.1159/000076245.

    Article  Google Scholar 

  26. Bertrand OF, Sipehia R, Mongrain R, Rodes J, Tardif JC, Bilodeau L, Côté G, Bourassa MG. Biocompatibility aspects of new stent technology. J Am Coll Cardiol. 1998;32:562–71. doi:10.1016/S0735-1097(98)00289-7.

    Article  CAS  Google Scholar 

  27. Zhang K, Liu T, Li JA, Chen JY, Wang J, Huang N. Surface modification of implanted cardiovascular metal stents: from anti-thrombosis and anti-restenosis to endothelialization. J Biomed Mater Res A. 2013;. doi:10.1002/jbm.a.34714.

    Google Scholar 

  28. Papafaklis MI, Chatzizisis YS, Naka KK, Giannoglou GD, Machalis LK. Drug-eluting stent restenosis : effect of drug type, release kinetics, hemodynamics and coating strategy. Pharmacol Ther. 2012;134:43–53. doi:10.1016/j.pharmthera.2011.12.006.

    Article  CAS  Google Scholar 

  29. Mehilli J, Byrne RA, Wieczorek A, Iijima R, Schulz S, Bruskina O, Pache J, Wessely R, Schömig A, Kastrati A. Randomized trial of three rapamycin-eluting stents with different coating strategies for the reduction of coronary restenosis. Eur Heart J. 2008;29:1975–82. doi:10.1093/eurheartj/ehn304.

    Article  CAS  Google Scholar 

  30. Byrne RA, Kastrati A, Kufner S, Massberg S, Birkmeier KA, Laugwitz KL, Schulz S, Pache J, Fusaro M, Seyfarth M, Schömig A, Mehilli J. Randomized, non-inferiority trial of three limus agent-eluting stents with different polymer coatings: the intracoronary stenting and angiographic results: test efficacy of 3 limus-eluting stents (ISAR-TEST-4) trial. Eur Heart J. 2009;30:2441–9. doi:10.1093/eurheartj/ehn365.

    Article  Google Scholar 

  31. Grube E, Schofer J, Hauptmann KE, Nickenig G, Curzen N, Allocco DJ, Dawkins KD. A novel Paclitaxel-eluting stent with an ultrathin abluminal biodegradable polymer. JACC Cardiovasc Interv. 2010;3:431–8. doi:10.1016/j.jcin.2009.12.015.

    Article  Google Scholar 

  32. Mevellec V, Roussel S, Tessier L, Chancolon J, Mayne-L’Hermite M, Deniau G, Viel P, Palacin S. Grafting polymers on surfaces: a new powerful and versatile diazonium salt-based one-step process in aqueous media. Chem Mater. 2007;19:6323–30. doi:10.1021/cm07137li.

    Article  CAS  Google Scholar 

  33. Delamar M, Hitmi R, Pinson J, Saveant JM. Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J Am Chem Soc. 1992;114:5883–4. doi:10.1021/ja00040a074.

    Article  CAS  Google Scholar 

  34. Downard AJ. Potential-dependence of self-limited films formed by reduction of aryldiazonium salts at glassy carbon electrodes. Langmuir. 2000;16:9680–2. doi:10.1021/la000866i.

    Article  CAS  Google Scholar 

  35. Jérôme C, Aqil A, Voccia S, Labaye DE, Maquet V, Gautier S, Bertrand OF, Jérôme R. Surface modification of metallic cardiovascular stents by strongly adhering aliphatic polyester coatings. J Biomed Mater Res Part A. 2006;76:521–9. doi:10.1002/jbm.a.30256.

    Article  Google Scholar 

  36. Langlois V, Vallee Rehel K, Peron JJ, Le Borgne A, Walls M, Guerin Ph. Synthesis and hydrolytic degradation of graft copolymers containing poly(lactic acid) side chains - in vitro release studies of bioactive molecules. Polym Degrad Stabil. 2002;76:411. doi:10.1016/S0141-3910(02)00042-3.

    Article  CAS  Google Scholar 

  37. Vert M, Li SM, Spenlehauer G, Guérin P. Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater in Med. 1992;3:432–46.

    Article  CAS  Google Scholar 

  38. Mainil-Varlet P, Curtis R, Gogolewski S. Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides. J Biomed Mater Res. 1997;36:360–80. doi:10.1002/(SICI)1097-4636(19970905)36:3<360:AID-JBM11>3.0.CO;2-I.

    Article  CAS  Google Scholar 

  39. Mabilleau G, Moreau MF, Filmon R, Basle MF, Chappard D. Biodegradability of poly (2-hydroxyethyl methacrylate) in the presence of the J774.2 macrophage cell line. Biomaterials. 2004;25:5155–62. doi:10.1016/j.biomaterials.2003.12.026.

    Article  CAS  Google Scholar 

  40. Xi T, Gao R, Xu B, Chen L, Luo T, Liu J, Wei Y, Zhong S. In vitro and in vivo changes to PLGA/sirolimus coating on drug-eluting stents. Biomaterials. 2010;31:5151–8. doi:10.1016/j.biomaterials.2010.02.003.

    Article  CAS  Google Scholar 

  41. Bureau C, Haroun F, Henault E. ALCHIMER (FR). Drug-eluting stent with a biodegradable release layer attached with an electro-grafted primer coating. WO Patent. 2007. WO 2007/144383 (A1).

Download references

Acknowledgments

The authors wish to thank the French National Agency for Research (TechSan Program) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenaelle Vergnol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergnol, G., Renard, E., Haroun, F. et al. Electrografting of a biodegradable layer as a primer adhesion coating onto a metallic stent: in vitro and in vivo evaluations. J Mater Sci: Mater Med 24, 2729–2739 (2013). https://doi.org/10.1007/s10856-013-5015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5015-1

Keywords

Navigation