Skip to main content
Log in

Enhancement in the thermoelectric properties of Cu3SbSe4 by Sn doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The solid-state reaction technique was employed to fabricate Sn doped Cu3SbSe4 samples. The effect of doping on structural and thermoelectric properties of Cu3SbSe4 samples is represented in the present communication. The powder X-ray diffraction pattern of all the samples show that they have tetragonal structure (space group \(I\bar{4}2m\)). It is observed that doping Sn at Sb site acts as acceptor dopant which enhances hole concentration. The temperature dependent electrical resistivity (ρ(T)) is observed to decrease with increase in Sn concentration up to x = 0.03, thereafter ρ(T) increases with the increase in x concentration. To explore the conduction mechanism, we have employed small poloron hopping (SPH) model to the ρ(T) data and the results indicate that SPH is operative in the high temperature regime for all samples. The data of Seebeck coefficient (S(T)) confirms that holes are the majority charge carriers for pristine as well as doped samples. The analysis of S(T) data reveals that all the samples have a narrow band gap. The contribution from electron thermal conductivity is found to be less than 1%, thus the total conductivity is mainly because of phonon thermal conductivity. The highest value of dimensionless figure of merit (ZT = 0.127) was achieved at 374 K for the sample Cu3Sb0.99Sn0.01Se3 which is slightly higher than that of the pristine sample (ZT = 0.115). The highest value of compatibility factor (0.98 V−1) was observed for the sample Cu3Sb0.98Sn0.02Se3 at 374 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Bachmann, M. Czerner, C. Heiliger, Ineffectiveness of energy filtering at grain boundaries for thermoelectric materials. Phys. Rev. B 86, 11 (2012)

    Google Scholar 

  2. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012)

    Article  Google Scholar 

  3. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008)

    Article  Google Scholar 

  4. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  5. X. Zheng, C. Liu, Y. Yan, Q. Wang, A review of thermoelectrics research: recent developments and potentials for sustainable and renewable energy applications. Renev. Sust. Energy. Rev. 32, 486 (2014)

    Article  Google Scholar 

  6. C. Vineis, A. Shakouri, A. Majumdar, M. Kanatzidis, Nanostructured Thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970 (2010)

    Article  Google Scholar 

  7. A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials. Ann. Rev. Mater. Res. 41, 399 (2011)

    Article  Google Scholar 

  8. A. Minnich, M. Dresselhaus, Z. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466 (2009)

    Article  Google Scholar 

  9. R. Liu, L. Xi, H. Liu, X. Shi, W. Zhang, L. Chen, Ternary compound CuInTe2: energy & environmental science a promising thermoelectric material with diamond-like structure. Chem. Commun. 48, 3818 (2012)

    Article  Google Scholar 

  10. J. Cui, Y. Li, Z. Du, Q. Meng, H. Zhou, Promising defect thermoelectric semiconductors Cu1−xGaSbxTe2(x = 0–0.1) with the chalcopyrite structure. J. Mater. Chem. A 1, 677 (2013)

    Article  Google Scholar 

  11. J. Zhang, X. Qin, D. Li, H. Xin, C. Song, L. Li, X. Zhu, Z. Wang, G. Guo, L. Wang, Enhanced thermoelectric performance of CuGaTe2 based composites incorporated with nanophase Cu2Se. J. Mater. Chem. A 2, 2891 (2014)

    Article  Google Scholar 

  12. E.J. Skoug, J.D. Cain, P. Majsztrik, M. Kirkham, E. Lara-Curzio, D.T. Morelli, Doping effects on the thermoelectric properties of Cu3SbSe4. Sci. Adv. Mater. 3, 602 (2011)

    Article  Google Scholar 

  13. C. Yang, F. Huang, L. Wu, K. Xu, New stannite-like p-type thermoelectric material Cu3SbSe4. J. Phys. D Appl. Phys. 44, 295404 (2011)

    Article  Google Scholar 

  14. C. Goodman, The prediction of semiconducting properties in inorganic compounds. J. Phys. Chem. Solids 6, 305 (1958)

    Article  Google Scholar 

  15. T.-R. Wei, H. Wang, Z.M. Gibbs, C.-F. Wu, G.J. Snyder, J.-F. Li, Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap. J. Mater. Chem. A 2, 13527 (2014)

    Article  Google Scholar 

  16. L.-P. Hu, T.-J. Zhu, Y.-G. Wang, H.-H. Xie, Z.-J. Xu, X.-B. Zhao, Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 6, 88 (2014)

    Article  Google Scholar 

  17. Q. Jiang, H. Yan, J. Khaliq, H. Ning, S. Grasso, K. Simpson, M.J. Reece, Q. Jiang, Large ZT enhancement in hot forged nanostructured p-type Bi0.5Sb1.5Te3 bulk alloys. J. Mater. Chem. A 2, 5785 (2014)

    Article  Google Scholar 

  18. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, S. Mildred Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008)

    Article  Google Scholar 

  19. L. Zhao, J. He, S. Hao, C. Wu, T. Hogan, C. Wolverton, V. Dravid, M. Kanatzidis, Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. J. Am. Chem. Soc. 134, 16327 (2012)

    Article  Google Scholar 

  20. A. Suzumura, M. Watanabe, N. Nagasako, R. Asahi, Improvement in thermoelectric properties of Se-free Cu3SbSe4 compound. J. Electron. Mater. 43, 2356 (2014)

    Article  Google Scholar 

  21. C.-H. Chang, C.-L. Chen, W.-T. Chiu, Y.-Y. Chen, Enhanced thermoelectric properties of Cu3SbSe4 by germanium doping. Mater. Lett. 186, 227–230 (2017)

    Article  Google Scholar 

  22. D. Zhang, J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo, Z. Zhou, Improvement of thermoelectric properties of Cu3SbSe4 compound by In doping. Mater. Des. 98, 150 (2016)

    Article  Google Scholar 

  23. X. Li, D. Li, H. Xin, J. Zhang, C. Song, X. Qin, Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures. J. Alloys Compd. 561, 105 (2013)

    Article  Google Scholar 

  24. Y. Li, X. Qin, D. Li, Y. Liu, J. Zhang, C. Song, H. Xin, Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4. RSC Adv. 5, 31399 (2015)

    Article  Google Scholar 

  25. K.S. Prasad, A. Rao, K. Tyagi, N. Singh Chauhan, B. Gahtori, S. Bathula, A. Dhar, Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering. Physica B 512, 39 (2017)

    Article  Google Scholar 

  26. K.S. Prasad, B. Ashok Rao, S. Gahtori, A. Bathula, A. Dhar, The low and high temperature thermoelectric properties of Sb doped Cu2SnSe3. Mater. Res. Bull. 83, 160 (2016)

    Article  Google Scholar 

  27. H. Goldsmid, J. Sharp, Estimation of the thermal band gap of a semiconductor from seebeck measurements. J. Electron. Mater. 28, 869 (1999)

    Article  Google Scholar 

  28. H. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, 2016)

    Book  Google Scholar 

  29. I. Ravich, B. Smirnov, Efimova, Semiconducting Lead Chalcogenides (Plenum Publishing Corporation, New York, 1970)

    Book  Google Scholar 

  30. H. Wang, Y. Pei, A. LaLonde, G. Snyder, Heavily doped p-Type PbSe with high thermoelectric performance: an alternative for PbTe. Adv. Mater. 23, 1366 (2011)

    Article  Google Scholar 

  31. R. Barnard, Thermoelectricity in Metals and Alloys (Taylor & Francis, London, 1972)

    Google Scholar 

  32. S. Cho, A. DiVenere, G. Wong, J. Ketterson, J. Meyer, Transport properties of Bi1−xSbx alloy thin films grown on CdTe (111)B. J. Appl. Phys. 85, 3655 (1999)

    Article  Google Scholar 

  33. S. Dutta, V. Shubha, T. Ramesh, F. D’Sa, Thermal and electronic properties of Bi1−xSbx alloys. J. Alloys Compd. 467, 305 (2009)

    Article  Google Scholar 

  34. Y.H. Bhaskar, W.M. Pai, C.L. Wu, C.J. Chang, Liu, Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe. Ceram. Int. 42, 1070 (2016)

    Article  Google Scholar 

  35. M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, M. Mohamad, A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sustain. Energy. Rev. 30, 337 (2014)

    Article  Google Scholar 

  36. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)

    Article  Google Scholar 

  37. P.H. Ngan, D.V. Christensen, G.J. Snyder, L.T. Hung, S. Linderoth, N. Van Nong, N. Pryds, Towards high efficiency segmented thermoelectric unicouples. Phys. Status Solidi A 211, 9 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The two authors (AR and SPK) acknowledge Council of Scientific and Industrial Research Grant (Sanction No.: 03(1409)/17/E MR-II) for the financial support required for this work. Authors are also thankful to Dr. P. D. Babu, UGC-DAE-CSR, Mumbai Centre for providing the necessary help in ρ(T), S(T) and κ(T) measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shyam Prasad, K., Rao, A. Enhancement in the thermoelectric properties of Cu3SbSe4 by Sn doping. J Mater Sci: Mater Electron 30, 16596–16605 (2019). https://doi.org/10.1007/s10854-019-02038-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02038-w

Navigation