Skip to main content

Advertisement

Log in

High energy density dielectrics in lead-free Bi0.5Na0.5TiO3–NaNbO3–Ba(Zr0.2Ti0.8)O3 ternary system with wide operating temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The 0.6Bi0.5Na0.5TiO3–(0.4 − x)NaNbO3–xBa(Zr0.2Ti0.8)O3 (BNT–NN–BZT) ceramics were developed for application as high energy density capacitor by conventional solid-state reaction method, and their structure, dielectric and ferroelectric properties were investigated in detail. When BZT was introduced into the system, the crystal structure changed from tetragonal to pseudocubic. Temperature dependent dielectric permittivity showed a broad maximum in these pseudocubic ceramics, exhibitting distinct relaxor feature. The relaxor behavior was evaluated by modified Curie–Weiss and confirmed to be enhanced with increasing BZT content. Benefited from the relaxor feature, its dielectric constant and dielectric temperature stability were largely improved. The remanent polarization (Pr) and coercive electric field (Ec) decreased with high BZT content and the maximum polarization (Pm) improved as shown in ferroelectric hysteresis loops (P–E loops). The energy storage property was also improved with increasing BZT, the optimized energy storage property was obtained in x = 0.20 sample with W = 1.69 J/cm3 at 17.5 kV/mm, which was superior to many other ferroelectric relaxors, indicating that BNT–NN–BZT ceramics were promising candidates for temperature stable energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Randall C A, Ogihara H, Kim J R, et al, IEEE pulsed power conference, 346–351 (2009)

  2. S. Kwon, W. Hackenberger, E. Alberta, E. Furman, M. Lanagan, IEEE Electr. Insul. Mag. 27, 43–55 (2011)

    Article  Google Scholar 

  3. P. Hagler, P. Henson, R.W. Johnson, IEEE Trans. Ind. Electron. 58, 2673–2682 (2011)

    Article  Google Scholar 

  4. Z. Hu, B. Ma, S. Liu, M. Narayanan, U. Balachandran, Ceram Int. 40, 557–562 (2014)

    Article  Google Scholar 

  5. X. Wang, L. Zhang, X. Hao, S. An, B. Song, J. Mater. Sci. Mater. Electron. 26, 9583–9590 (2015)

    Article  Google Scholar 

  6. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram Soc. 92, 110–118 (2009)

    Article  Google Scholar 

  7. D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, C. Randall et al., J. Am. Ceram Soc. 96, 2197–2202 (2013)

    Article  Google Scholar 

  8. A. Chauhan, S. Patel, R. Vaish, AIP Adv. 4, 087106 (2014)

    Article  Google Scholar 

  9. Q. Xu, T. Li, H. Hao, S. Zhang, Z. Wang et al., J. Eur. Ceram Soc. 35, 545–553 (2015)

    Article  Google Scholar 

  10. Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang et al., J. Am. Ceram Soc. 98, 3119–3126 (2015)

    Article  Google Scholar 

  11. B. Wang, L. Luo, X. Jiang, W. Li, H. Chen, J. Alloys Compd. 585, 14–18 (2014)

    Article  Google Scholar 

  12. T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg et al., J. Am. Ceram Soc. 96, 2699–2702 (2013)

    Article  Google Scholar 

  13. Y. Wang, Z. Lv, H. Xie, J. Cao, Ceram Int. 40, 4323–4326 (2014)

    Article  Google Scholar 

  14. J. Ye, Y. Liu, Y. Lu, J. Ding, C. Ma et al., J. Mater. Sci. Mater. Electron. 25, 4632–4637 (2014)

    Article  Google Scholar 

  15. V.V. Shvartsman, D.C. Lupascu, D.J. Green, J. Am. Ceram Soc. 95, 1–26 (2012)

    Article  Google Scholar 

  16. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe et al., J. Appl. Phys. 110, 074106 (2011)

    Article  Google Scholar 

  17. B. Parija, T. Badapanda, S.K. Rout, L.S. Cavalcante, S. Panigrahi et al., Ceram Int. 39, 4877–4886 (2013)

    Article  Google Scholar 

  18. C. Peng, J.-F. Li, W. Gong, Mater. Lett. 59, 1576–1580 (2005)

    Article  Google Scholar 

  19. X. Zhou, C. Yuan, Q. Li et al., J. Mater. Sci: Mater. Electron. (2015). doi:10.1007/s10854-015-4247-x

    Google Scholar 

  20. X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling et al., J. Appl. Phys. 106, 044107 (2009)

    Article  Google Scholar 

  21. J.B. Lim, S. Zhang, N. Kim, T.R. Shrout, J. Am. Ceram Soc. 92, 679–682 (2009)

    Article  Google Scholar 

  22. R.D. Shannon, Acta Crystallogr. B 25, 925–945 (1969)

    Article  Google Scholar 

  23. B. Niu, W. Ma, Q. Li, T. Chen, Z. Huan et al., J. Mater. Sci. Mater. Electron. 26, 916–920 (2015)

    Article  Google Scholar 

  24. Y. Cui, X. Fu, K. Yan, J. Inorg. Organomet. Polym Mater. 22, 82–85 (2012)

    Article  Google Scholar 

  25. C. Ma, X. Tan, E. Dul’kin, M. Roth, J. Appl. Phys. 108, 104105 (2010)

    Article  Google Scholar 

  26. L. Cui, Y.-D. Hou, S. Wang, C. Wang, M.-K. Zhu, J. Appl. Phys. 107, 054105 (2010)

    Article  Google Scholar 

  27. H.Y. Ma, X.M. Chen, J. Wang, K.T. Huo, H.L. Lian et al., Ceram Int. 39, 3721–3729 (2013)

    Article  Google Scholar 

  28. X. Huang, H. Hao, S. Zhang, H. Liu, W. Zhang et al., J. Am. Ceram Soc. 97, 1797–1801 (2014)

    Article  Google Scholar 

  29. B.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Ceram Int. 39, 5695–5704 (2013)

    Article  Google Scholar 

  30. S. Zheng, E. Odendo, L. Liu, D. Shi, Y. Huang et al., J. Appl. Phys. 113, 094102 (2013)

    Article  Google Scholar 

  31. C. Yuan, L. Meng, Y. Liu, C. Zhou, G. Chen et al., J. Mater. Sci. Mater. Electron. 26, 8793–8797 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (No. 51372191), the National Key Basic Research Program of China (973 Program) (No. 2015CB654601), International Science and Technology Cooperation Program of China (2011DFA52680) and the Fundamental Research Funds for the Central Universities (WUT:152401002 and 152410002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanxing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Xu, Q., Liu, H. et al. High energy density dielectrics in lead-free Bi0.5Na0.5TiO3–NaNbO3–Ba(Zr0.2Ti0.8)O3 ternary system with wide operating temperature. J Mater Sci: Mater Electron 27, 6526–6534 (2016). https://doi.org/10.1007/s10854-016-4596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4596-0

Keywords

Navigation