Skip to main content
Log in

Influence of functionalized graphene on the electrical, mechanical, and thermal properties of solderable isotropic conductive adhesives

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene nanosheets have attracted considerable attention as ideal reinforcing filler materials for polymer composites due to their superior physical properties. In this paper, to investigate the influence of functionalized graphene on the electrical, mechanical, and thermal properties of solderable isotropic conductive adhesives (SICAs) with low-melting-point alloy, three types of SICAs [without and with graphene oxide (GO) and amine-modified GO (GO-NH2)] were prepared. All SICA assemblies without and with different functionalized graphene sheets showed excellent electrical and mechanical properties due to the formation of uniform and stable metallurgical conduction paths. The epoxy composite with GO sheets showed superior thermal conductivity to the epoxy composite with GO-NH2 sheets. Our results demonstrated that graphene sheets within SICAs do not affect the electrical and mechanical properties of SICA joints, and that GO sheets are more suitable for enhancing the thermal conductivities of polymer composites than GO-NH2 sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.K. Kim, F.G. Shi, Microelectron. J. 32, 315–321 (2011)

    Article  Google Scholar 

  2. M.J. Yim, K.W. Paik, Int. J. Adhes. Adhes. 26, 304–313 (2006)

    Article  Google Scholar 

  3. D. Wojciechowski, J. Vanfleteren, E. Reese, H.W. Hagedorn, Microelectron. Reliab. 40, 1215–1226 (2000)

    Article  Google Scholar 

  4. H.W. Cui, D.S. Li, Q. Fan, H.X. Lai, Int. J. Adhes. Adhes. 44, 232–236 (2013)

    Article  Google Scholar 

  5. S. Xu, D.A. Dillarda, J.G. Dillard, Int. J. Adhes. Adhes. 23, 235–250 (2003)

    Article  Google Scholar 

  6. B.S. Yim, J.M. Kim, S.H. Jeon, S.H. Lee, J. Kim, J.G. Han, M. Cho, Mater. Trans. 50, 2649–2655 (2009)

    Article  Google Scholar 

  7. B.S. Yim, Y. Kwon, S.H. Oh, J. Kim, Y.E. Shin, S.H. Lee, J.M. Kim, Microelectron. Reliab. 52, 1165–1173 (2012)

    Article  Google Scholar 

  8. O. Valentino, M. Sarnoa, N.G. Rainone, M.R. Nobile, P. Ciambelli, H.C. Neitzert, G.P. Simon, Phys. E 40, 2440–2445 (2008)

    Article  Google Scholar 

  9. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.H. Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’homme, L.C. Brinson, Nat. Nanotechnol. 3, 327–331 (2008)

    Article  Google Scholar 

  10. M.E. Achaby, A. Qaiss, Mater. Des. 44, 81–89 (2013)

    Article  Google Scholar 

  11. Y. Liu, B. Xie, Z. Zhang, Q. Zheng, Z. Xu, J. Mech. Phys. Solids 60, 591–605 (2012)

    Article  Google Scholar 

  12. S. Basua, P. Bhattacharyya, Sens. Actuator B-Chem. 173, 1–21 (2012)

    Article  Google Scholar 

  13. P. Kun, O. Tapaszto, F. Weber, C. Balazsi, Ceram. Int. 38, 211–216 (2012)

    Article  Google Scholar 

  14. S. Biswas, H. Fukushima, L.T. Drzal, Compos. Pt. A Appl. Sci. Manuf. 42, 371–375 (2011)

    Article  Google Scholar 

  15. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  16. Z. Zhang, L.L. Ye, A. Kukovecz, Z. Konya, J. Bielecki, J. Liu, ECS Trans. 44, 1011–1017 (2012)

    Article  Google Scholar 

  17. Y. Geng, S.J. Wang, J.K. Kim, J. Colloid Interface Sci. 336, 592–598 (2009)

    Article  Google Scholar 

  18. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  19. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Adv. Funct. Mater. 19, 2297–2302 (2009)

    Article  Google Scholar 

  20. A.M. Shanmugharaj, J.H. Yoon, W.J. Yang, S.H. Ryu, J. Colloid Interface Sci. 401, 148–154 (2013)

    Article  Google Scholar 

  21. Z. Lin, Y. Liu, C.P. Wong, Langmuir 26, 16110–16114 (2010)

    Article  Google Scholar 

  22. M. Zenkiewicz, J. Achievements Mater. Manuf. Eng. 24, 137–145 (2007)

    Google Scholar 

  23. F.M. Fowkes, J. Ind. Eng. Chem. 56, 40–52 (1964)

    Article  Google Scholar 

  24. F.M. Fowkes, J. Adhes. 4, 155–159 (1972)

    Article  Google Scholar 

  25. Y. Xu, D.D.L. Chung, C. Mroz, Compos. Pt. A Appl. Sci. Manuf. 32, 1749–1757 (2001)

    Article  Google Scholar 

  26. E. Pop, V. Varshney, A.K. Roy, MRS Bull. 37, 1273–1281 (2012)

    Article  Google Scholar 

  27. G.W. Lee, J.I. Lee, S.S. Lee, M. Park, J. Kim, J. Mater. Sci. 40, 1259–1263 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2014007164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yim, BS., Kim, K., Kim, J. et al. Influence of functionalized graphene on the electrical, mechanical, and thermal properties of solderable isotropic conductive adhesives. J Mater Sci: Mater Electron 27, 4516–4525 (2016). https://doi.org/10.1007/s10854-016-4326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4326-7

Keywords

Navigation