Skip to main content

Advertisement

Log in

Facile synthesis of graphene@NiMoO4 nanosheet arrays on Ni foam for a high-performance asymmetric supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Honeycomb-like NiMoO4 with nanosheet arrays is grown on reduced graphene oxide, which is supported on Ni foam having successfully fabricated by a simple hydrothermal treatment followed by a calcined process. In the as-synthesized Ni foam@reduced graphene oxide@NiMoO4, Ni foam served as “skeleton” to support reduced graphene oxide and reduced graphene oxide directly grown on Ni foam served as the “skin” to provide high passway of electrons and ions, which simultaneously accommodated the volume change during the process of charge–discharge and NiMoO4 acted as active substance to provide high areal capacitance. It shows a high areal capacitance of 2165.9 mF cm−2 at a current density of 1 mA cm−2 and long cycle stability with 93.8% capacitance retained over 1000 charge–discharge cycles. Moreover, an asymmetric supercapacitor has been constructed by using Ni foam@reduced graphene oxide and Ni foam@reduced graphene oxide@NiMoO4 as negative and positive electrodes. The energy density of this asymmetric supercapacitor is 0.579 mWh cm−2, and it retains 93.1% capacitance over charge–discharge 5000 cycles. Therefore, it reveals great promise for practical applications in energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yu L, Guan B, Xia W, Lou XW (2015) Formation of yolk-shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5:1500981

    Article  Google Scholar 

  2. Chen S, Zhu JW, Wu XD, Han QF, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Article  Google Scholar 

  3. Cai D, Wang D, Liu B, Wang Y, Liu Y, Wang L, Li H, Huang H, Li Q, Wang T (2013) Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl Mater Interfaces 5:12905–12910

    Article  Google Scholar 

  4. Peng SJ, Li LL, Wu HB, Madhavi S, Lou XW (2015) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5:1401172

    Article  Google Scholar 

  5. Wang XH, Wu XX, Xu BG, Hua T (2016) Coralloid and hierarchical Co3O4 nanostructures used as supercapacitors with good cycling stability. J Solid State Electr 20:1303–1309

    Article  Google Scholar 

  6. Yang PH, Chen YL, Yu X, Kiang PF, Wang K, Cai X, Mai WJ (2014) Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high-performance supercapacitors. Nano Energy 10:108–116

    Article  Google Scholar 

  7. Chen HC, Jiang JJ, Zhang L, Xia DD, Zhao YD, Guo DQ, Wan HZ (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

    Article  Google Scholar 

  8. Wang J, Zhang X, Wei QL, Lv HM, Tian YL, Tong ZQ, Mai LQ (2016) 3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy 19:222–233

    Article  Google Scholar 

  9. Qu LB, Zhao YL, Khan AM, Han CH, Hercule KM, Yan MY, Mai LQ (2015) Interwoven three-dimensional architecture of cobalt oxide nanobrush-graphene@NixCo2x(OH)6x for high-performance supercapacitors. Nano Lett 15:2037–2044

    Article  Google Scholar 

  10. Li ZY, Akhtar MS, Yang OB (2015) Supercapacitors with ultrahigh energy density based on mesoporous carbon nanofibers: enhanced double-layer electrochemical properties. J Alloy Compd 653:212–218

    Article  Google Scholar 

  11. Li SS, Cheng PP, Luo JX, Zhou D, Xu WM, Li JW, Li RC, Yuan DS (2017) High-performance flexible asymmetric supercapacitor based on CoAl-LDH and rGO electrodes. Nano Micro Lett 9:31

    Article  Google Scholar 

  12. Chen S, Yang G, Jia Y, Zhen H (2017) Three-dimensional NiCo2O4@NiWO4 core–shell nanowire arrays for high performance supercapacitors. J Mater Chem A 5:1028–1034

    Article  Google Scholar 

  13. Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces 6:19318–19326

    Article  Google Scholar 

  14. Ghosh D, Das CK (2015) Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor. ACS Appl Mater Interfaces 7:1122–1131

    Article  Google Scholar 

  15. Xiong X, Ding D, Chen D, Waller G, Bu Y, Wang Z, Liu M (2015) Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11:154–161

    Article  Google Scholar 

  16. Qorbani M, Chou TC, Lee YH et al (2017) Multi-porous Co3O4 nanoflakes@ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. J Mater Chem A 5:12569–12577

    Article  Google Scholar 

  17. Xiong X, Waller G, Ding D, Chen D, Rainwater B, Zhao B, Wang Z, Liu M (2015) Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16:71–80

    Article  Google Scholar 

  18. Pang H, Zhang YZ, Run Z, Lai WY, Huang W (2015) Amorphous nickel pyrophosphate microstructures for high-performance flexible solid-state electrochemical energy storage devices. Nano Energy 17:339–347

    Article  Google Scholar 

  19. Yang XW, Lin ZX, Zheng JX, Huang YJ, Chen B, Mai YY, Feng XL (2016) Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale 8:8650–8657

    Article  Google Scholar 

  20. Wu HB, Pang H, Lou XW (2013) Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy Environ Sci 6:3619–3626

    Article  Google Scholar 

  21. Deng F, Yu L, Cheng G, Lin T, Sun M, Ye F, Li Y (2014) Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors. J Power Sources 251:202–207

    Article  Google Scholar 

  22. Guo D, Luo Y, Yu X, Li Q, Wang T (2014) High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8:174–182

    Article  Google Scholar 

  23. Ouyang Y, Feng Y, Zhang H, Liu L, Wang Y (2015) Designing sandwiched and crystallized NiMn2O4/C arrays for enhanced sustainable electrochemical energy storage. ACS Sustain Chem Eng 5:196–205

    Article  Google Scholar 

  24. Xu X, Pei L, Yang Y, Shen J, Ye M (2016) Facile synthesis of NiWO4/reduced graphene oxide nanocomposite with excellent capacitive performance for supercapacitors. J Alloy Compd 654:23–31

    Article  Google Scholar 

  25. Yu ZY, Chen LF, Yu SH (2014) Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J Mater Chem A 2:10889–10894

    Article  Google Scholar 

  26. Pendashteh A, Rahmanifar MS, Kaner RB, Mousavi MF (2014) Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors. Chem Commun 50:1972–1975

    Article  Google Scholar 

  27. Liu B, Liu B, Wang Q, Wang X, Xiang Q, Chen D, Shen G (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10011–10017

    Article  Google Scholar 

  28. Veerasubramani GK, Krishnamoorthy K, Kim SJ (2016) Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J Power Sources 306:378–386

    Article  Google Scholar 

  29. Xiao K, Xia L, Liu G, Wang S, Ding LX, Wang H (2015) Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. J Mater Chem A 3:6128–6135

    Article  Google Scholar 

  30. Liu MC, Kang L, Kong LB, Lu C, Ma XJ, Li XM, Luo YC (2013) Facile synthesis of NiMoO4·xH2O nanorods as a positive electrode material for supercapacitors. RSC Adv 3:6472–6478

    Article  Google Scholar 

  31. Cai D, Liu B, Wang D, Liu Y, Wang L, Li H, Wang T (2014) Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors. Electrochim Acta 115:358–363

    Article  Google Scholar 

  32. Yin Z, Zhang S, Chen Y, Gao P, Zhu C, Yang P, Qi L (2015) Hierarchical nanosheet-based NiMoO4 nanotubes: synthesis and high supercapacitor performance. J Mater Chem A 3:739–745

    Article  Google Scholar 

  33. Yang J, Yu C, Fan X, Zhao C, Qiu JS (2015) Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv Funct Mater 25:2109–2116

    Article  Google Scholar 

  34. Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X (2014) One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 7:86–96

    Article  Google Scholar 

  35. Gong SL, Qing Cao, Jin L, Zhong CG, Zhang XH (2016) Electrodeposition of three-dimensional Ni(OH)2 nanoflakes on partially crystallized activated carbon for high-performance supercapacitors. J Solid State Electr 20:619–628

    Article  Google Scholar 

  36. Nguyen VH, Shim Shim JJ (2015) Three-dimensional nickel foam/graphene/NiCo2O4 as high-performance electrodes for supercapacitors. J Power Sources 273:110–117

    Article  Google Scholar 

  37. Wang PY, Wang QL, Zhang GH, Jiao HY, Deng XY, LiW Liu (2016) Promising activated carbons derived from cabbage leaves and their application in high-performance supercapacitors electrodes. J Solid State Electr 20:319–325

    Article  Google Scholar 

  38. Deng X, Li J, Zhu S, He F, He C, Liu E, Zhao N (2017) Metal-organic frameworks-derived honeycomb-like Co3O4/three-dimensional graphene networks/Ni foam hybrid as a binder-free electrode for supercapacitors. J Alloy Compd 693:16–24

    Article  Google Scholar 

  39. Patil UM, Sohn JS, Kulkarni SB, Lee SC, Park HG, Gurav KV, Kim JH, Jun SC (2014) Enhanced supercapacitive performance of chemically grown cobalt–nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl Mater Interfaces 6:2450–2458

    Article  Google Scholar 

  40. Han A, Jin S, Chen H, Ji H, Sun Z, Du P (2015) A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0-14. J Mater Chem A 3:1941–1946

    Article  Google Scholar 

  41. Deng J, Chen L, Sun Y, Ma M, Fu L (2015) Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon 92:177–184

    Article  Google Scholar 

  42. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  Google Scholar 

  43. Liu T, Chai H, Jia D, Su Y, Wang T, Zhou W (2015) Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochim Acta 180:998–1006

    Article  Google Scholar 

  44. Dong X, Guo Z, Song Y, Hou M, Wang J, Wang Y, Xia Y (2014) Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv Funct Mater 24:3405–3412

    Article  Google Scholar 

  45. Wang X, Xiao Y, Su D, Zhou L, Wu S, Han L, Fang S, Cao S (2016) High-quality porous cobalt monoxide nanowires@ultrathin manganese dioxide sheets core–shell nanowire arrays on Ni Foam for high-performance supercapacitor. Electrochim Acta 194:377–384

    Article  Google Scholar 

  46. Wan H, Liu J, Ruan Y, Lv L, Peng L, Ji X, Miao L, Jiang J (2015) Hierarchical configuration of NiCo2S4 nanotube@Ni–Mn layered double hydroxide arrays/three-dimensional graphene sponge as electrode materials for high-capacitance supercapacitors. ACS Appl Mater Interfaces 7:15840–15847

    Article  Google Scholar 

  47. Liu C, Li Z, Zhang Z (2014) Molybdenum oxide film with stable pseudocapacitive property for aqueous micro-scale electrochemical capacitor. Electrochim Acta 134:84–91

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support from the National Natural Science Foundation of China (21376105 and 21576113) and Foshan Innovative and Entepreneurial Research Team Program (No. 2014IT100062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingsheng Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Cheng, P., Luo, J. et al. Facile synthesis of graphene@NiMoO4 nanosheet arrays on Ni foam for a high-performance asymmetric supercapacitor. J Mater Sci 52, 13909–13919 (2017). https://doi.org/10.1007/s10853-017-1467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1467-x

Keywords

Navigation