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Abstract We study a general class of infimal convolution
type regularisation functionals suitable for applications in
image processing. These functionals incorporate a combina-
tion of the total variation seminorm and Lp norms. A unified
well-posedness analysis is presented and a detailed study of
the one-dimensionalmodel is performed, by computing exact
solutions for the corresponding denoising problem and the
case p = 2. Furthermore, the dependency of the regulari-
sation properties of this infimal convolution approach to the
choice of p is studied. It turns out that in the case p = 2 this
regulariser is equivalent to the Huber-type variant of total
variation regularisation. We provide numerical examples for
image decomposition as well as for image denoising. We
show that our model is capable of eliminating the staircasing
effect, a well-known disadvantage of total variation regular-
isation. Moreover as p increases we obtain almost piecewise
affine reconstructions, leading also to a better preservation
of hat-like structures.
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1 Introduction

In this paper, we introduce a family of novel TV–Lp infi-
mal convolution type functionals with applications in image
processing:

TVLp
α,β(u) := inf

w∈Lp(�)
α‖Du − w‖M + β‖w‖Lp(�),

α, β > 0 and p > 1. (1.1)

Here ‖ · ‖M denotes the Radon norm of a measure. The
functional (1.1) is suitable to be used as a regulariser in the
context of variational non-smooth regularisation in imaging
applications.We study the properties of (1.1), its regularising
mechanism for different values of p and apply it successfully
to image denoising.

1.1 Context

After the introduction of the total variation (TV) for image
reconstruction purposes [38], the use of non-smooth reg-
ularisers has become increasingly popular during the last
decades (cf. [7]). They are typically used in the context of
variational regularisation, where the reconstructed image is
obtained as a solution of a minimisation problem of the type:

min
u

1

s
‖ f − Tu‖sLs (�) + �(u). (1.2)

The regulariser is denoted here by �. We assume that the
data f , defined on an open, bounded and connected domain
� ⊂ R

2, have been corrupted through a bounded, linear
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operator T and additive (random) noise. Different values of
s can be considered for the first term of (1.2), the fidelity
term. For example, models incorporating an L2 fidelity term
(resp. L1) have been shown to be efficient for the restoration
of images corrupted by Gaussian noise (resp. impulse noise).
Of course, other types of noise can also be considered and in
those cases the form of the fidelity term is adjusted accord-
ingly. Typically, one or more parameters within � balance
the strength of regularisation against the fidelity term in the
minimisation (1.2).

The advantage of using non-smooth regularisers is that
the regularised images have sharp edges (discontinuities).
For instance, it is a well-known fact that TV regularisation
promotes piecewise constant reconstructions, thus preserv-
ing discontinuities. However, this also leads to blocky-like
artefacts in the reconstructed image, an effect known as stair-
casing. Recall at this point that for two-dimensional images
u ∈ L1(�), the definition of the total variation functional
reads

TV(u) := sup

{∫
�

u divφ dx : φ ∈ C∞
c (�,R2), ‖φ‖∞ ≤ 1

}
.

(1.3)

The total variation uses only first-order derivative informa-
tion in the regularisation process. This can be seen from the
fact that for TV(u) < ∞ the distributional derivative Du
is a finite Radon measure and TV(u) = ‖Du‖M. More-
over if u ∈ W1,1(�) then TV(u) = ∫

�
|∇u| dx , i.e. the

total variation is the L1 norm of the gradient of u. Higher-
order extensions of the total variation functional are widely
explored in the literature e.g. [4,5,9,11,12,27,29,30,34].
The incorporation of second-order derivatives is shown to
reduce or even eliminate the staircasing effect. The most
successful regulariser of this kind is the second-order total
generalised variation (TGV) introduced by Bredies et al. [5].
Its definition reads

TGV2
α,β(u) := min

w∈BD(�)
α‖Du − w‖M+β‖Ew‖M. (1.4)

Here α, β are positive parameters and BD(�) is the space of
functions of bounded deformation, i.e. the space of all L1(�)

functionsw, whose symmetrised distributional derivativeEw

is a finite Radon measure. This is a less regular space than
the usual space of functions of bounded variation BV(�) for
which the full gradient Du is required to be a finite Radon
measure. Note that if the variable w in the definition (1.4) is
forced to be the gradient of another function then we obtain
the classical infimal convolution regulariser of Chambolle–
Lions [9]. In that sense TGV can be seen as a particular
instance of infimal convolution, optimally balancing first and
second-order information.

In the discrete formulation of TGV (as well as for TV)
the Radon norm is interpreted as an L1 norm. The motiva-
tion for the current and the follow-up paper [8] is to explore
the capabilities of Lp norms within first-order regularisa-
tion functionals designed for image processing purposes. The
use of Lp norms for p > 1 has been exploited in different
contexts—infinity and p-Laplacian (cf. e.g. [16] and [26]
respectively).

1.2 Our Contribution

Comparing the definition (1.1) with the definition of TGV
in (1.4), we see that the Radon norm of the symmetrised
gradient ofw has been substituted by the Lp norm ofw, thus
reducing the order of regularisation. Up to our knowledge,
this is the first paper that provides a thorough analysis of
TV–Lp infimal convolution models (1.1) in this generality.
We show that the minimisation in (1.1) is well-defined and
that TVLp

α,β(u) < ∞ if and only if TV(u) < ∞. Hence

TVLp
α,β regularised images belong to BV(�) as desired.

In order to get more insight in the regularising mechanism
of the TVLp

α,β functional we provide a detailed and rigorous
analysis of its one-dimensional version of the corresponding
L2 fidelity denoising problem

min
u∈BV(�)

1

2
‖ f − u‖2L2(�)

+ TVLp
α,β(u). (1.5)

For the denoising problem (1.5) with p = 2 we also compute
exact solutions for simple one-dimensional data. We show
that the obtained solutions are piecewise smooth, in contrast
to TV (piecewise constant) and TGV (piecewise affine) solu-
tions.Moreover, we show that for p = 2, the 2-homogeneous
analogue of the functional (1.1)

TVL2−hom
α,β (u) = min

w∈L2(�)
α‖Du − w‖M + β

2
‖w‖2L2(�)

,

(1.6)

is equivalent to a variant of Huber TV [24], with the func-
tional (1.6) having a close connection to (1.1) itself. Huber
total variation is a smooth approximation of total variation
and even though it has been widely used in the imaging and
inverse problems community, it has not been analysed ade-
quately. Hence, as a by-product of our analysis, we compute
exact solutions of the one-dimensional Huber TV denoising
problem. An analogous connection of the TVLp

α,β functional
with a generalised Huber TV regularisation is also estab-
lished for general p.

Weproceedwith exhaustive numerical experiments focus-
ing on (1.5). Our analysis is confirmed by the fact that the
analytical results coincide with the numerical ones. Further-
more, we observe that even though a first-order regularisation
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functional is used, we are capable of eliminating the stair-
casing effect, similar to Huber TV. By using the Bregman
iteration version of our method [32], we are also able to
enhance the contrast of the reconstructed images, obtain-
ing results very similar in quality to the TGV ones. We
observe numerically that high values of p promote almost
affine structures similar to second-order regularisation meth-
ods. We shed more light of this behaviour in the follow-up
paper [8] where we study in depth the case p = ∞. Let
us finally note that we also consider a modified version of
the functional (1.1) where w is restricted to be a gradient of
another function leading to the more classical infimal con-
volution setting. Even though, this modified model is not so
successful in staircasing reduction, it is effective in decom-
posing an image into piecewise constant and smooth parts.

1.3 Organisation of the Paper

After the introductionweproceedwith the introductionof our
model in Sect. 2. We prove the well-posedness of (1.1), we
provide an equivalent definition and we prove its Lipschitz
equivalence with the TV seminorm. We finish this section
with a well-posedness result of the corresponding TVLp

α,β

regularisation problem using standard tools.
In Sect. 3 we establish a link between the TVLp

α,β func-
tional and its p-homogeneous analogue (using the p-th power
of ‖ · ‖Lp(�)). The p-homogeneous functional (for p = 2) is
further shown to be equivalent to Huber total variation, while
analogous results are obtained for p �= 2.

We study the corresponding one-dimensional model in
Sect. 4 focusing on the L2 fidelity denoising case. More
specifically, after deriving the optimality conditions using
Fenchel–Rockafellar duality in Sect. 4.1, we explore the
structure of solutions in Sect. 4.2. In Sect. 4.3 we compute
exact solutions for the case p = 2, considering a simple step
function as data.

In Sect. 5 we present a variant of our model suitable for
image decomposition purposes, i.e. geometric decomposi-
tion into piecewise constant and smooth structures.

Section 6 focuses on numerical experiments. Confirma-
tion of the obtained one-dimensional analytical results is
done in Sect. 6.2, while two-dimensional denoising exper-
iments are performed in Sect. 6.3 using the split Bregman
method. There, we show that our approach can lead to elimi-
nation of the staircasing effect andwe also show that by using
a Bregmanised version we can also enhance the contrast,
achieving results very close to TGV, a method considered
state of the art in the context of variational regularisation.
We finish the section with some image decomposition exam-
ples and we summarise our results in Sect. 7.

In the appendix, we remind the reader of some basic facts
from the theory of Radon measures and BV functions.

2 Basic Properties of the TVL p
α,β

Functional

In this section, we introduce the TVLp
α,β functional (1.1)

as well as some of its main properties. For α, β > 0 and
1 < p ≤ ∞, we define TVLp

α,β : L1(�) → R (where

R := R ∪ {+∞}) as follows:

TVLp
α,β(u) := min

w∈Lp(�)
α ‖Du − w‖M + β ‖w‖Lp(�) .

While in the present paper we mainly focus on the finite
p case, the results of this section are stated and proved for
p = ∞ as well, since the proofs are similar.

The next proposition asserts that the minimisation in (1.1)
is indeed well-defined. We omit the proof, which is based
on standard coercivity and weak lower semicontinuity tech-
niques:

Proposition 2.1 Let u ∈ BV(�) with 1 < p ≤ ∞ and
α, β > 0. Then theminimum in thedefinition (1.1) is attained.

Another useful formulation of the definition (1.1) is the
dual formulation:

TVLp
α,β(u) = sup

{∫
�

u divφ dx : φ ∈ C1
c (�),

‖φ‖∞ ≤ α, ‖φ‖Lq (�) ≤ β

}
, (2.1)

where q denotes here the conjugate exponent of p, see
(8.4). The following proposition shows that the two expres-
sions coincide indeed. Recall first that for a functional
F : X → R the effective domain is defined as domF =
{x ∈ X : F(x) < ∞}, while the indicator and characteristic
functions of A ⊆ X are defined as

IA(x) =
{
0, if x ∈ A,

∞, if x /∈ A,
and XA(x) =

{
1, if x ∈ A,

0, if x /∈ A,

respectively. As usual, we denote by 〈·, ·〉 the duality product
of X and its dual X∗. Finally, recall that the convex conjugate
F∗ : X∗ → R of F is defined as F∗(x∗) = sup

x∈X
〈x∗, x〉 −

F(x).

Proposition 2.2 Let u ∈ BV(�) and 1 < p ≤ ∞ then

min
w∈Lp(�)

α ‖Du − w‖M + β ‖w‖Lp(�)

= sup

{∫
�

u divφ dx : φ ∈ C1
c (�),

‖φ‖∞ ≤ α, ‖φ‖Lq (�) ≤ β

}
.
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Proof First notice that in (2.1), we can replace C1
c (�) by

C1
0(�), since C1

c (�) = C1
0(�) with the closure taken with

respect to the C1 norm, i.e. ‖φ‖ = max
{‖φ‖∞ , ‖∇φ‖∞

}
.

We define

X = C1
0(�),

F1 : X → R, with F1(φ) = I{‖·‖Lq (�)≤β
}(φ),

F2 : X → R, with F2(φ) = I{‖·‖∞≤α}(φ) −
∫

�

u divφ dx .

Then, we can rewrite (2.1) as

TVLp
α,β(u) = − inf

φ∈X
‖φ‖∞≤α

‖φ‖Lq (�)≤β

{
−
∫

�

u divφ dx

}

= − inf
φ∈X {F1(φ) + F2(φ)} .

We can establish the following relation

inf
φ∈X {F1(φ) + F2(φ)} + min

w∈X∗
{
F∗
1 (w) + F∗

2 (w)
} = 0,

i.e. the absence of duality gap between the primal and the
dual problems [15, Chapter III], provided that the set
⋃
λ≥0

λ (domF2 − domF1) ,

is a closed vector space [2]. This is indeed true since on one
hand we have⋃
λ≥0

λ (domF2 − domF1) ⊂ X,

and on the other hand, for every φ ∈ X , we can write φ =
λ(λ−1φ − 0) with

∥∥λ−1φ
∥∥∞ ≤ α and 0 ∈ domF1. Since

u ∈ BV(�), then TVLp
α,β is finite, see also Proposition 2.4.

Hence, F∗
1 (w) < ∞, F∗

2 (w) < ∞ and

F∗
1 (−w) = sup

φ∈C1
0 (�)

‖φ‖Lq (�)≤β

〈w,φ〉

= sup
φ∈Lq (�)

‖φ‖Lq (�)≤β

〈w,φ〉 = β ‖w‖Lp(�) ,

where we have used the fact that, with a density argument,
the function w : C1

0 → R can be extended in the whole
Lq(�) as a bounded, linear functional and using the Riesz
representation theorem, we deduce that it is actually an Lp

function. Similarly, we have

F∗
2 (w) = sup

φ∈C1
0 (�)

‖φ‖∞≤α

〈w,φ〉 + 〈u, divφ〉 = α ‖Du − w‖M .

Thus the desired equality is proven.

Remark 2.3 Note that using the dual formulation of TVLp
α,β

one can easily derive that the functional is lower semicon-
tinuous with respect to the strong L1 topology since it is a
pointwise supremum of continuous functions.

The following lemma shows that the TVLp
α,β functional

is Lipschitz equivalent to the total variation.

Proposition 2.4 Let u ∈ L1(�) and 1 < p ≤ ∞. Then
TVLp

α,β(u) < ∞ if and only if u ∈ BV(�). Moreover there

exist constants C1 = α and C2 = (CC̃)−1, where C =
max
(
1, |�| 1q ) and C̃ = max

( 1
α
, 1

β

)
such that

C2 ‖Du‖M ≤ TVLp
α,β(u) ≤ C1 ‖Du‖M , for all u ∈ BV(�).

(2.2)

Finally in the special case where

β

α
≥ |�| 1q , (2.3)

then

TVLp
α,β(u) = α ‖Du‖M , for all u ∈ BV(�). (2.4)

Proof Let u ∈ BV(�). Using the definition (1.1) we have
that

TVLp
α,β(u) ≤ α ‖Du − w‖M + β ‖w‖Lp(�) ,

for every w ∈ Lp(�). Setting w = 0 and C1 = α, we obtain

TVLp
α,β(u) ≤ C1 ‖Du‖M . (2.5)

For the other direction, for any w ∈ Lp(�) ⊂ L1(�), by the
triangle inequality we get

‖Du‖M ≤ ‖Du − w‖M + ‖w‖L1(�)

≤ ‖Du − w‖M + |�| 1q ‖w‖Lp(�)

≤ C(‖Du − w‖M + ‖w‖Lp(�)), (2.6)

with C = max
(
1, |�| 1q ). By setting C2 as in the statement

of the lemma we obtain

C2 ‖Du‖M ≤ α ‖Du − w‖M + β ‖w‖Lp(�) ,

which, by minimising over w, yields the left-hand side
inequality in (2.2).

Finally, observe simply that if (2.3) holds then from (2.6)
we get
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α ‖Du‖M ≤ α ‖Du − w‖M + β ‖w‖Lp(�)

and thus minimising again over w and combining (2.5) we
get (2.4).

Notice that when (2.3) holds then the above proposition
implies that w = 0 is an admissible solution to the definition
of TVLp

α,β(u), i.e.

0 ∈ argmin
w∈Lp(�)

α‖Du − w‖M + β‖w‖Lp(�),

for all u ∈ BV(�).

However, in general we cannot prove that this solution is
unique.

Having shown the basic properties of the TVLp
α,β func-

tional, we can use it as a regulariser for variational imaging
problems of the type

min
u∈Ls (�)∩BV(�)

1

s
‖ f − Tu‖sLs (�) + TVLp

α,β(u), s ≥ 1,

(2.7)

where T : Ls(�) → Ls(�) is a bounded, linear operator
and f ∈ Ls(�). We conclude our analysis with existence
and uniqueness results for the minimisation problem (2.7).

Theorem 2.5 Let 1 < p ≤ ∞ and f ∈ Ls(�). If T (X�) �=
0 then there exists a solution u ∈ Ls(�) ∩ BV(�) for the
problem (2.7). If s > 1 and T is injective then the solution is
unique.

Proof The proof is a straightforward application of the direct
method of calculus of variations. We simply take advan-
tage of the inequality (2.2) and the compactness theorem
in BV(�), see Appendix, along with the lower semiconti-
nuity property of TVLp

α,β . We also refer the reader to the
corresponding proofs in [34,39]. ��

Sincewe aremainly interested in studying the regularising
properties of TVLp

α,β , in what follows we focus on the case
where s = 2 and T is the identity function (denoising task)
where rigorous analysis can be carried out. From now on,
we also focus on the case where p is finite, as the case p =
∞ is studied in the follow-up paper [8]. We thus define the
following problem

min
u∈BV(�)

1

2
‖ f − u‖2L2(�)

+ TVLp
α,β(u),

or equivalently

min
u∈BV(�)
w∈Lp(�)

1

2
‖ f − u‖2L2(�)

+ α‖Du − w‖M + β‖w‖Lp(�).

(P)

3 The p-Homogeneous Analogue and Relation to
Huber TV

Before we proceed to a detailed analysis of the one-
dimensional version of (P), in this section we consider its
p-homogeneous analogue

min
u∈BV(�)
w∈Lp(�)

1

2
‖ f − u‖2L2(�)

+ α ‖Du − w‖M + β

p
‖w‖p

Lp(�), 1 < p < ∞.

(Pp−hom)

We show in Proposition 3.2 that there is a strong connection
between the models (P) and (Pp−hom). The reason for the
introduction of (Pp−hom) is that, in certain cases, it is tech-
nically easier to derive exact solutions for (Pp−hom) rather
than for (P) straightforwardly, see Sect. 4.3. Moreover, we
can guarantee the uniqueness of the optimalw∗ in (Pp−hom),
since

w∗ = argmin
w∈Lp(�)

α ‖Du − w‖M + β

p
‖w‖p

Lp(�) ,

and thus w∗ is unique as a minimiser of a strictly convex
functional. The next proposition states that, unless f is a
constant function then the optimal w∗ in (Pp−hom) cannot
be zero but nonetheless converges to zero as β → ∞. In
essence, this means that one cannot obtain TV type solutions
with the p-homogeneous model.

Proposition 3.1 Let 1 < p < ∞, f ∈ L2(�) and let
(w∗, u∗) be an optimal solution pair of the p-homogeneous
problem (Pp−hom). Then w∗ = 0 if and only if f is a con-
stant function. For general data f , we have that w∗ → 0 in
Lp(�) when β → ∞.

Proof It follows immediately that if f is constant then (0, f )
is the optimal pair for (Pp−hom). Suppose that (w∗, u∗) solve
(Pp−hom). Notice that in this case we also have

u∗ = argmin
u∈BV(�)

1

2
‖ f − u‖2L2(�)

+ α‖Du − w∗‖M. (3.1)

Suppose now that w∗ = 0. Then (3.1) becomes

u∗ = argmin
u∈BV(�)

1

2
‖ f − u‖2L2(�)

+ α‖Du‖M. (3.2)

Furthermore, since (0, u∗) solve (Pp−hom), then for every
u ∈ C∞

c (�) and ε > 0, the pair (ε∇u, u∗+εu) is suboptimal
for (Pp−hom), i.e.

1

2
‖ f − u∗‖2L2(�)

+ α‖Du∗‖M ≤ 1

2
‖( f − u∗) − εu‖2L2(�)

+ α‖D(u∗ + εu) − ε∇u‖M + β

p
‖ε∇u‖p

Lp(�),
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from which we take

1

2
‖ f − u∗‖2L2(�)

≤ 1

2
‖( f − u∗) − εu‖2L2(�)

+ β

p
‖ε∇u‖p

Lp(�) ⇔

0 ≤ ε2

2
‖u‖2L2(�)

− ε

∫
�

( f − u∗)u dx

+ βε p

p
‖∇u‖p

Lp(�).

By dividing the last inequality by ε and taking the limit ε →
0 we have that

∫
�
( f − u∗)u dx ≤ 0. By considering the

analogous perturbations u∗ − εu , we obtain similarly that∫
�
( f − u∗)u dx ≥ 0 and thus

∫
�

( f − u∗)u dx = 0, ∀u ∈ C∞
c (�).

Hence u∗ = f and by taking the optimality condition of (3.2)
we get that 0 ∈ ∂ ‖D(·)‖M ( f ), which implies that Df = 0,
i.e. f is a constant function.

For the last part of the proposition, (supposing f �= 0),
simply observe that for every u ∈ BV(�) and w ∈ Lp(�)

we have that

1

2
‖ f − u∗‖2L2(�)

+ α‖Du∗ − w∗‖M + β

p
‖w∗‖p

Lp(�)

≤ 1

2
‖ f − u‖2L2(�)

+ α‖Du − w‖M + β

p
‖w‖p

Lp(�),

and by setting u = w = 0, we obtain

1

p
‖w∗‖p

Lp(�) ≤ 1

2β
‖ f ‖2L2(�)

,

and thus ‖w∗‖p
Lp(�) → 0 when β → ∞. ��

Wefurther establish a connectionbetween the1-homogen-
eous (P) and the p-homogeneous model (Pp−hom):

Proposition 3.2 Let 1 < p < ∞ and f ∈ L2(�) not a
constant. A pair (w∗, u∗) is a solution of (Pp−hom) with
parameters (α, βp−hom) if and only if it is also a solu-
tion of (P) with parameters (α, β1−hom) where β1−hom =
βp−hom‖w∗‖p−1

Lp(�).

Proof Since f is not a constant by the previous proposition
we have that w∗ �= 0. Note that for an arbitrary function
u ∈ BV(�):

w∗ ∈ argmin
w∈Lp(�)

α ‖Du − w‖M + βp−hom

p
‖w‖p

Lp(�) ⇔

0 ∈ α∂ ‖Du − ·‖M (w∗) + βp−hom |w∗|p−2w∗ ⇔
0 ∈ α∂ ‖Du − ·‖M (w∗) + β1−hom

‖w∗‖p−1
Lp(�)

|w∗|p−2w∗ ⇔

w∗ ∈ argmin
w∈Lp(�)

α ‖Du − w‖M + β1−hom ‖w‖Lp(�) .

This means that w∗ is an admissible solution for both prob-
lems (P) and (Pp−hom), with the corresponding set of
parameters (α, β1−hom) and (α, βp−hom), respectively. The
fact that the same holds for u∗ as well, comes from the fact
that in both problems we have

u∗ ∈ argmin
u∈BV(�)

1

2
‖ f − u‖2L2(�)

+ α‖Du − w∗‖M.

Finally, it turns out that for p = 2, problem (Pp−hom) is
essentially equivalent to thewidely usedHuber total variation
regularisation, [24]. In fact we can show that for 1 < p < ∞
(Pp−hom) is equivalent to a generalised Huber total varia-
tion regularisation, see also [23]. This is proved in the next
proposition.

Proposition 3.3 Let 1 < p < ∞ and consider the func-
tional TVLp−hom

α,β : BV(�) → R with

TVLp−hom
α,β (u) = min

w∈Lp(�)
α‖Du − w‖M + β

p
‖w‖p

Lp(�).

(3.3)

Then

TVLp−hom
α,β (u) =

∫
�

ϕp(∇u) dx + α|Dsu|(�),

where ϕp : Rd → R with

ϕp(x) =

⎧⎪⎨
⎪⎩

α|x | −
(
1 − 1

p

)
α

λ
1

p−1
, |x | ≥ 1

λ
1

p−1
,

β
p |x |p, |x | ≤ 1

λ
1

p−1
,

where λ := β

α
,

and Dsu denotes the singular part of the measure Du, cf.
Appendix.

Proof We have

TVLp−hom
α,β (u) = min

w∈Lp(�)
α‖Du − w‖M + β

p
‖w‖p

Lp(�)

= α|Dsu|(�) + α min
w∈Lp(�)

∫
�

|∇u − w|

+ β

pα
|w|p dx .

Thus we can focus on the minimisation problem
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min
w∈Lp(�)

∫
�

|∇u − w| + β

pα
|w|p dx . (3.4)

Baring in mind that (as it can easily checked) for c ∈ R
d and

λ > 0,

argmin
y∈Rd

|c − y| + λ

p
|y|p =

⎧⎪⎨
⎪⎩

1

λ
1

p−1

c
|c| if |c| ≥ 1

λ
1

p−1
,

c if |c| < 1

λ
1

p−1
,

and

min
y∈Rd

|c − y| + λ

p
|y|p =

⎧⎪⎨
⎪⎩

|c| −
(
1 − 1

p

)
1

λ
1

p−1
if |c| ≥ 1

λ
1

p−1
,

λ
p |c|p if |c| < 1

λ
1

p−1
,

it is straightforwardly verified setting λ = β/α that the func-
tion

w∗ = λ
− 1

p−1
∇u

|∇u|X
{
|∇u|≥λ

− 1
p−1

} + ∇uX{
|∇u|<λ

− 1
p−1

},

belongs to L∞(�) ⊂ Lp(�) and solves (3.4) with optimal
value equal to 1

α

∫
�

ϕp(∇u) dx . ��
Note that in the special case p = 2we recover the classical

Huber total variation regularisation since

ϕ2(x) =
{

α|x | − α2

2β |x | ≥ α
β
,

β
2 |x |2, |x | ≤ α

β
,

i.e. in that case we have quadratic penalisation for small gra-
dients (p–power penalisation for the general 1 < p < ∞)
and linear penalisation for large gradients.

For the reader’s convenience, in Fig. 1 we have plotted
some of the functions ϕp in order to illustrate how their form

changes when their parameters vary. Note for instance in
Fig. 1a how φ2 is converging to an absolute type function
when β is getting large, i.e. approaching a total variation
regularisation. This can also be seen from Proposition 3.1
where the optimal variable w is converging to 0 when β →
∞. On the other hand when p is getting large, Fig. 1b, small
gradients are essentially not penalised at all, allowing the
gradient to be almost constant, equal to its maximum value,
leading to piecewise affine structures. We refer to some of
the numerical examples in Sect. 6.2 and also the second part
of this paper [8] where the case p = ∞ is examined in
detail.

4 The One-Dimensional Case

In order to get more insights into the structure of solutions of
the problem (P), in this sectionwe study its one-dimensional
version. As above, we focus on the finite p case, i.e. 1 <

p < ∞. The case p = ∞ leads to several additional com-
plications and will be subject of a forthcoming paper [8].
For this section � ⊂ R is an open and bounded interval,
i.e. � = (a, b). Our analysis follows closely the ones in [6]
and [33] where the one dimensional L1–TGV and L2–TGV
problems are studied, respectively.

4.1 Optimality Conditions

In this section, we derive the optimality conditions for the
one-dimensional problem (P). We initially start our analy-
sis by defining the predual problem (P∗), proving existence
and uniqueness for its solutions. We employ again the
Fenchel–Rockafellar duality theory in order to find a con-
nection between the solutions of the predual and primal
problems.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5
β=6

β=2

β=1

β=0.7

(a)
−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5
p=1.5

p=2

p=4

p=20

(b)

Fig. 1 Illustration of the forms of the Huber-type functions ϕp of
Proposition 3.3. Their linear and p–power parts are plotted with blue
and red colour, respectively. a Huber functions ϕ2 with fixed p = 2,

α = 1 and varying β. b Generalised Huber functions ϕp with fixed
α = 1, β = 2 and varying p (Color figure online)
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We define the predual problem (P∗) as

− inf

{∫
�

f φ′dx+ 1

2

∫
�

(φ′)2dx : φ ∈ H1
0(�), ‖φ‖Lq (�) ≤β, ‖φ‖∞ ≤ α

}
,

(P∗)

where as always q is the conjugate exponent of p. Existence
and uniqueness for the solutions of (P∗) can be verified by
standard arguments:

Proposition 4.1 For f ∈ L2(�), the predual problem (P∗)
admits a unique solution in H1

0(�).

The next proposition justifies the term predual for the
problem (P∗).

Proposition 4.2 The dual problem of (P∗) is equivalent to
the problem (P) in the sense that (w, u) is a solution of the
dual of (P∗) if and only if (w, u) ∈ Lp(�) × BV(�) and
solves (P).

Proof Observe that we can alsowrite down the predual prob-
lem (P∗) using the following equivalent formulation:

− inf
(φ,ξ)∈X F1(φ, ξ) + F2(K (φ, ξ)), (4.1)

where X = H1
0(�) × H1

0(�), Y = H1
0(�) × L2(�) and

K : X → Y , K (φ, ξ) = (ξ − φ, ξ ′),
F1 : X → R, with F1(φ, ξ) = I{‖·‖Lq (�)≤β

}(φ)

+ I{‖·‖∞≤α}(ξ),

F2 : Y → R, with F2(φ,ψ) = I{0}(φ) +
∫

�

f ψ dx

+ 1

2

∫
�

ψ2dx .

(4.2)

We denote the infimum in (P∗) by inf P∗. Then, it is imme-
diate that

− inf P∗ = − inf
(φ,ξ)∈X F1(φ, ξ) + F2(K (φ, ξ)).

The dual problem of (4.1), see [15], is defined as

min
(w,u)∈Y ∗ F

∗
1 (−K (w, u)) + F∗

2 (w, u), (4.3)

where K  here denotes the adjoint of K . Let (σ, τ ) be ele-
ments of X∗ = H1

0(�)∗ ×H1
0(�)∗. The convex conjugate of

F1 can be written as

F∗
1 (σ, τ ) = sup

(φ,ξ)∈X
‖φ‖Lq (�)≤β‖ξ‖∞≤α

〈σ, φ〉 + 〈τ, ξ 〉

= β sup
φ∈H1

0(�)

‖φ‖Lq (�)≤1

〈σ, φ〉 + α sup
ξ∈H1

0(�)

‖ξ‖∞≤1

〈τ, ξ 〉 . (4.4)

By standard density arguments and using the Riesz represen-
tation theorem we have

F∗
1 (σ, τ ) = β sup

φ∈C∞
c (�)

‖φ‖Lq (�)≤1

〈σ, φ〉 + α sup
ξ∈C∞

c (�)
‖ξ‖∞≤1

〈τ, ξ 〉

= β ‖σ‖Lp(�) + α ‖τ‖M . (4.5)

Moreover, we have

〈−K (w, u), (φ, ξ)
〉

= −〈(w, u), K (φ, ξ)〉 = − 〈(w, u), (ξ − φ, ξ ′)
〉

= −〈w, ξ 〉 + 〈w,φ〉 − 〈u, ξ ′〉 = 〈Du − w, ξ 〉+〈w,φ〉 .

Since F∗
1 (−K (w, u)) < ∞, F∗

2 (w, u) < ∞, we obtain that

F∗
1 (−K (w, u)) = β ‖w‖Lp(�) + α ‖Du − w‖M , (4.6)

and

F∗
2 (w, u) = sup

(φ,ψ)∈Y
φ=0

〈w,φ〉+〈u, ψ〉−〈 f, ψ〉 − 1

2

∫
�

ψ2dx

= sup
ψ∈L2(�)

〈u − f, ψ〉 − 1

2

∫
�

ψ2dx

:=
(
1

2
‖·‖2L2(�)

)∗
(u − f ) = 1

2
‖u − f ‖2L2(�)

.

(4.7)

��
We next verify that we have no duality gap between the

two minimisation problems (P) and (P∗). The proof of the
following proposition follows the proof of the corresponding
proposition in [6]. We slightly modify it for our case.

Proposition 4.3 Let F1, F2, K , X,Y be defined as in (4.2).
Then

⋃
λ≥0

λ(domF2 − K (domF1)) = Y (4.8)

and hence it is a closed vector space. Thus [2]

min
(φ,ξ)∈X F1(φ, ξ) + F2(K (φ, ξ))

+ min
(w,u)∈Y ∗ F

∗
1 (−K (w, u)) + F∗

2 (w, u) = 0. (4.9)

Proof Let (v, ψ) ∈ Y and define ψ0(x) = c1, where

c1 = 1

|�|
∫

�

ψ(x) dx . (4.10)

Now let ξ(x) = ∫ xa (ψ0 − ψ)(y) dy. Since by construction,
ξ ′ = ψ0 − ψ ∈ L2(�) with ξ(a) = ξ(b) = 0, we have that
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ξ ∈ H1
0(�). Furthermore, let φ = −v + ξ ∈ H1

0(�) and
(φ, ξ) ∈ X with

(v, ψ) = (ξ − φ,ψ0 − ξ ′) = (0, ψ0) − (ξ − φ, ξ ′)
= (0, ψ0) − K (φ, ξ).

Choosing appropriately λ > 0 such that
∥∥λ−1φ
∥∥
Lq (�)

≤ β,∥∥λ−1ξ
∥∥∞ ≤ α, we can write

(v, ψ) = λ
(
(0, λ−1ψ0) − K (λ−1φ, λ−1ξ)

)
,

with domF2 = {0} × L2(�) and domF1 = {(φ, ξ) :
‖φ‖Lq (�) ≤ β, ‖ξ‖∞ ≤ α}. Since (v, ψ) ∈ Y were cho-
sen arbitrarily, (4.8) holds. ��

Since there is no duality gap, we can find a relationship
between the solutions of (P∗) and (P) via the following
optimality conditions.

Theorem 4.4 (Optimality conditions) Let 1 < p ≤ ∞ and
f ∈ L2(�). A pair (w, u) ∈ Lp(�) × BV(�) is a solution
of (P) if and only if there exists a function φ ∈ H1

0(�) such
that

φ′ = u − f,

φ ∈ αSgn(Du − w),
(4.11)

and
⎧⎨
⎩

φ ∈ {φ̃ ∈ Lq(�) : ‖φ̃‖Lq (�) ≤ β} if w = 0,

φ = β
|w|p−2w

‖w‖(p−1)
Lp (�)

if w �= 0. (4.12)

Proof Since there is no duality gap, the optimality conditions
read [15, Prop. 4.1(III)]:

(φ, ξ) ∈ ∂F∗
1 (−K (w, u)), (4.13)

K (φ, ξ) ∈ ∂F∗
2 (w, u), (4.14)

for every (φ, ξ) and (w, u) that solve (P∗) and (P), respec-
tively. Hence, for every (σ, τ ) ∈ X∗, we have the following:

F∗
1 (σ, τ ) ≥ F∗

1 (−K (w, u)) + 〈(σ, τ ) + K (w, u), (φ, ξ)
〉 ⇔

α ‖τ‖M + β ‖σ‖Lp(�) ≥ α ‖Du − w‖M + β ‖w‖Lp(�)

+ 〈(σ, τ ) − (w, Du − w), (φ, ξ)〉 ⇔
α ‖τ‖M + β ‖σ‖Lp(�) ≥ α ‖Du − w‖M + β ‖w‖Lp(�)

+ 〈(σ − w), φ〉 + 〈τ − (Du − w), ξ〉 ⇔{
α ‖τ‖M ≥ α ‖Du − w‖M + 〈τ − (Du − w), ξ〉 , ∀τ ∈ H1

0(�)∗,

β ‖σ‖Lp(�) ≥ β ‖w‖Lp(�) + 〈σ − w,φ〉 , ∀σ ∈ H1
0(�)∗,

⇔
{

α ‖τ‖M ≥ α ‖Du − w‖M + 〈τ − (Du − w), ξ〉 , ∀τ ∈ M(�),

β ‖σ‖Lp(�) ≥ β ‖w‖Lp(�) + 〈σ − w,φ〉 , ∀σ ∈ Lp(�),
⇔

{
ξ ∈ α∂ ‖·‖M (Du − w),

φ ∈ β∂ ‖·‖Lp(�) (w).
(4.15)

Since ξ ∈ H1
0(�) ⊂ C0(�) in one dimension, we can make

use of the fact that

∂‖ · ‖M(Du − w) ∩ C0(�) = Sgn(Du − w) ∩ C0(�),

see (8.1), and write the expressions in (4.15) as

ξ ∈ αSgn(Du − w), (4.16)

and

⎧⎨
⎩

φ ∈ {φ̃ ∈ Lq(�) : ‖φ̃‖Lq (�) ≤ β} if w = 0,

φ = β
|w|p−2w

‖w‖(p−1)
Lp (�)

if w �= 0. (4.17)

Indeed, the Lp norm is an one-homogeneous functional and
thus its subdifferential reads

∂ ‖·‖Lp(�) (w) = {z ∈ Lp(�)∗ : 〈z, w〉 = ‖w‖Lp(�) , 〈z, σ 〉
≤ ‖σ‖Lp(�) , ∀σ ∈ Lp(�)

}
.

Note that for w = 0, the above expression reduces to
‖σ‖Lp(�) ≥ 〈z, σ 〉 for all σ ∈ Lp(�), which is valid for any
z ∈ Lq(�) with ‖z‖Lq (�) ≤ 1, i.e. the unit ball of Lq(�). If
w �= 0 then the subdifferential is simply the Gâteaux deriva-

tive of the Lp norm, i.e. ∂ ‖·‖Lp(�) (w) = |w|p−2w

‖w‖p−1
Lp (�)

. Finally,

from (4.14) we have for every (ŵ, û) ∈ Y ∗

F∗
2 (ŵ, û) ≥ F∗

2 (w, u) + 〈K (φ, ξ), ((ŵ, û) − (w, u)
〉 ⇔

1

2

∫
�

( f −û)2 dx ≥ 1

2

∫
�

( f − u)2 dx+〈(ξ−φ, ξ ′), (ŵ−w, û−u)
〉 ⇔

1

2

∫
�

( f − û)2 dx ≥ 1

2

∫
�

( f −u)2 dx+〈(ξ−φ, ŵ−w
〉+〈ξ ′, û−u

〉 ⇔
{〈

ξ − φ, ŵ − w
〉 ≤ 0, ∀ŵ ∈ H1

0(�)∗,
1
2

∫
�
( f − u)2dx+〈ξ ′, û−u

〉 ≤ 1
2

∫
�
( f −û)2dx , ∀û ∈ L2(�)∗

⇔
{

ξ = φ,

ξ ′ ∈ ∂
(
1
2 ‖ f − ·‖2L2(�)

)
(u) = u − f.

Combining all the above results, we obtain the optimality
conditions (4.11) and (4.12).

Remark 4.5 We observe that if w = 0 then the conditions
(4.11) coincide with the optimality conditions for the L2–TV
minimisation problem (ROF) with parameter α, i.e.

min
u∈BV(�)

1

2
‖ f − u‖2L2(�)

+ α ‖Du‖M , (4.18)

see also [37]. On the other hand when w �= 0, the additional
condition (4.12) depends on the value of p and as we will
see later it allows a certain degree of smoothness in the final
solution u.
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4.2 Structure of the Solutions

The optimality conditions (4.11) and (4.12) can help us
explore the structure of the solutions for the problem (P) and
how this structure is determined by the regularising parame-
ters α, β and the value of p.

We initially discuss the cases where the solution u of (P)

is a solution of a corresponding ROF minimisation problem
i.e. w = 0. Note that the following proposition holds for
p = ∞ as well.

Proposition 4.6 (ROF solutions) Let q be the conjugate
exponent of p ∈ (1,∞] as defined in (8.4). If

β

α
≥ |�| 1q ,

then (0, u) is a solution pair for (P) where u solves the ROF
minimisation problem (4.18).

Proof The proof follows immediately from Proposition 2.4.

Proposition 4.6 is valid for any dimension d ≥ 1. It pro-
vides a rough threshold for obtaining ROF type solutions
in terms of the regularising parameters α, β and the image
domain �. However, the condition is not sharp in general
since as we will see in the following sections we can obtain
a sharper estimate for specific data f .

The followingproposition in the spirit of [6,33] givesmore
insight into the structure of solutions of (P).

Proposition 4.7 Let f ∈ BV(�) and suppose that (w, u) ∈
Lp(�) ×BV(�) is a solution pair for (P) with p ∈ (1,∞].
Suppose that u > f (or u < f ) on an open interval I ⊂ �

then (Du − w)�I = 0, i.e. u′ = w on I and |Dsu|(I ) = 0.

The above proposition is formulated rigorously via the
use of good representatives of BV functions, see [1], but
for the sake of simplicity we rather not get into the details
here. Insteadwe refer the reader to [6,33] where the analogue
propositions are shown for theTGV regularised solutions and
whose proofs are similar to the one of Proposition 4.7.

We now examine the case where the solution is constant
in �, which in fact coincides with the mean value f̃ of the
data f :

f̃ := argmin
u constant

1

2
‖ f − u‖2L2(�)

= 1

|�|
∫

�

f dx . (4.19)

Proposition 4.8 (Mean value solution) If the following con-
ditions hold

α ≥ ‖ f − f̃ ‖L1(�),

β ≥ |�| 1q ‖ f − f̃ ‖L1(�),
(4.20)

then the solution of (P) is constant and equal to f̃ .

Proof Clearly, if u is a constant solution of (P), then Du = 0
and from inequality (2.2) we get TVLp

α,β(u) = 0. Hence, we

have u = f̃ .
In general, in order to have u = f̃ , from the optimality

conditions (4.11) and (4.12), it suffices to find a function
φ ∈ H1

0(�) such that

φ′ = f − f̃ , ‖φ‖∞ ≤ α, ‖φ‖Lq (�) ≤ β.

Letting φ(x) = ∫ xa ( f (s)− f̃ ) ds, then obviously φ ∈ H1
0(�)

since φ(a) = φ(b) = 0 and

|φ(x)| ≤
∫ x

a
| f (s) − f̃ | ds ≤ ‖ f − f̃ ‖L1(�) < ∞.

Therefore, ‖φ‖∞ ≤ ‖ f − f̃ ‖L1(�). Also, since L∞(�) ⊂
Lq(�) we obtain

‖φ‖Lq (�) ≤ |�| 1q ‖φ‖∞ ≤ |�| 1q ‖ f − f̃ ‖L1(�).

Hence, it suffices to choose α and β as in (4.20).

In Fig. 2, we summarise our results so far. There, we have
partitioned the set {α > 0, β > 0} into different areas that
correspond to different types of solutions of the problem (P).
The red area, arising from thresholds (4.20) corresponds to
the choices of α and β that produce constant solutions while
the blue area corresponds toROF type solutions, according to
threshold (2.3). Therefore, we can determine the area where
the non-trivial solutions are obtained, i.e. w �= 0, see purple
region. Note that since the conditions (2.3) and (4.20) are not
sharp, the blue/red and the purple areas are potentially larger
or smaller, respectively than it is shown in Fig. 2.

ROF u = f̃

|Ω|
1
q ||f − f̃ ||L1(Ω)

β = α|Ω|
1
q TVLp

w = 0

β

α||f − f̃ ||L1(Ω)

Fig. 2 Characterisation of solutions of (P) for anydata f : Theblue/red
areas correspond to the ROF type solutions (w = 0) and the purple area
corresponds to the TVLp solutions (w �= 0) for 1 < p < ∞. We
note that the blue/red and purple areas are potentially larger or smaller,
respectively as the conditions we have derived are not sharp (Color
figure online)
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Propositions 4.6 and 4.8 tell us how the solutions u behave
when β/α or one of the parameters α and β is large. The
other limiting case is also of interest, i.e. when the parameters
are small. The analogous questions have been examined in
[35] for the TGV case in arbitrary dimension. There it is
shown that whenever β → 0 while keeping α fixed or α →
0 while keeping β fixed, the corresponding TGV solutions
converge to the data f strongly in L2. The same result holds
for the TVLp regularisation. The proof from [35] can be
straightforwardly adapted to our case.

The following proposition revealsmore information about
the structure of solutions in the case w �= 0.

Proposition 4.9 (TVLp solutions) Let f ∈ BV(�) and
suppose that (w, u) ∈ Lp(�) × BV(�) is a solution pair
for (P) with p ∈ (1,∞) and w �= 0. Suppose that u > f
(or u < f ) on an open interval I ⊂ � then the solution u of
(P) is obtained by

−C(|u′(x)|p−2u′(x))′ + u(x) = f (x), ∀x ∈ I

where C = β

‖w‖p−1
Lp(�)

. (4.21)

Proof Since 1 < p < ∞, w �= 0 using Proposition 4.7 and
the second optimality condition of (4.12), we have that

φ = β
|u′|p−2u′

‖w‖p−1
Lp(�)

.

Hence, using (4.11) we obtain (4.21) where C = β

‖w‖p−1
Lp (�)

.��

Let us make a few remarks regarding equation (4.21)
which is in fact the p-Laplace equation. One cannot write
down a priori the boundary conditions associated with this
equation on an interval I where u > f (or u < f ) as it
depends on the data and the type of solution we are looking
for. For instance see (4.31) for the kind of boundary con-
ditions that might arise when we are seeking a particular
exact solution. A general statement about the solvability of
the equation cannot be made either. If the equation coupled
with the boundary conditions (that arise when looking for a
specific solution u) has a solution then indeed u can possibly
solve the minimisation problem. On the other hand, if the
p-Laplace equation does not have a solution then the func-
tion u that imposed the corresponding boundary conditions
cannot be a minimiser. For more details on the p-Laplace
equation and its solvability we refer the reader to [28] and
the references therein.

4.3 Exact Solutions of (P) for a Step Function

In what follows we compute explicit solutions of the TVLp

denoising model (P) for the case p = 2 for a simple data

function.We define the step function in� = (−L , L), L > 0
as

f (x) =
{
0 if x ∈ (−L , 0],
h if x ∈ (0, L).

(4.22)

We first investigate conditions under which we obtain ROF
type solutions, that is w = 0.

4.3.1 ROF Type Solutions

We note that in this case we can derive conditions for every
1 < p ≤ ∞. We are initially interested in solutions that
respect the discontinuity at x = 0 and are piecewise constant.
From the optimality conditions (4.11)–(4.12), it suffices to
find a function φ ∈ H1

0(�) which, apart from φ(−L) =
φ(L) = 0, it also satisfies

‖φ‖∞ ≤ α, φ(0) = α, (4.23)

and it is piecewise affine. It is easy to see that by setting
φ(x) = α

L (L − |x |), the conditions (4.23) are satisfied and
the solution u is piecewise constant. The first condition of

(4.12) implies that ‖φ‖Lq (�) ≤ β ⇔ β
α

≥ ( 2L
q+1 )

1
q and

provides a necessary and sufficient condition that needs to
be fulfilled in order for u to be piecewise constant, that is to
say

u(x) =
{

α
L if x ∈ (−L , 0],
h − α

L if x ∈ (0, L)
⇔ β

α
≥
(

2L

q+1

) 1
q

.

(4.24)

A special case of the ROF type solution is when u is constant,
i.e. when u = f̃ , the mean value of f . We define φ(x) =
h
2 (L − |x |) and in that case we have that ‖φ‖∞ ≤ α ⇔ α ≥
hL
2 and ‖φ‖Lq (�) ≤ β ⇔ β ≥ h

2 ( 2L
q+1

q+1 )
1
q . This implies that

u = f̃ = h

2
⇔ α ≥ hL

2
and β ≥ h

2

(
2Lq+1

q + 1

) 1
q

.

(4.25)

Using now (4.24)–(4.25) we can draw the exact regions in
the quadrant of {α > 0, β > 0} that correspond to these two
types of solutions, see the left graph in Fig. 4 for the special
case p = 2. Notice that in these regions w = 0.

4.3.2 TVL2 Type Solutions

For simplicity reasons, we examine here only the case p = 2
with w �= 0 in �. However, we refer the reader to Sect. 6.2
where we compute numerically solutions for p �= 2. Using
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Proposition 4.9, we observe that the solution is given by the
following second-order differential equation:

−Cu′′(x) − u(x) = f (x), subject to C = β

‖w‖L2(�)

.

(4.26)

Even though we can tell that the solution of (4.26) has an
exponential form, the fact that the constraint on C depends
on the solution w, creates a difficult computation in order to
recover u analytically. In order to overcome this obstacle, we
consider the one-dimensional version of the 2-homogeneous
analogue of (P) that was introduced in Sect. 3:

min
u∈BV(�)

w∈L2(�)

1

2
‖ f − u‖2L2(�)

+ α ‖Du − w‖M + β2−hom

2
‖w‖2L2(�)

.

(4.27)

One can derive the optimality conditions for (4.27) similarly
to Sect. 4.1. A pair (w, u) is a solution of (4.27) if and only
if there exists a function φ ∈ H1

0(�) such that

φ′ = u − f,

φ ∈ αSgn(Du − w),

φ = β2−homw.

(4.28)

In view of Proposition 3.2, in order to recover analytically
the solutions of (P) for p = 2 and determine exactly the
purple region in Fig. 2, it suffices to solve the equivalent
model (4.27) in which w �= 0 holds always. We may restrict
our computations only on (−L , 0] ⊂ � and due to symmetry
the solution in (0, L) is given by u(x) = h − u(−x). The
optimality condition (4.28) results to

−u′′(x) + ku(x) = 0, where k2 = 1

β
and x ∈ (−L , 0].

(4.29)

Then, we get u(x) = c1ekx + c2e−kx with φ(x) = c1
k e

kx −
c2
k e

−kx + c3 for all x ∈ (−L , 0]. Firstly, we examine solu-
tions that are continuous which due to symmetrymust satisfy
u(0) = h

2 . Since φ ∈ H1
0(−L , L), we have φ(−L) = 0 and

also u′(−L) = 0. Finally, we require that φ(0) < α. After
some computations, we conclude that

u(x) =
{
c1ekx + c2e−kx if x ∈ (−L , 0],
h − c1e−kx − c2ekx if x ∈ (0, L)

⇔ tanh(kL)

k
<

2α

h
,

(4.30)

where c1 = c2e2kL , c2 = h
2(e2kL+1)

and k = 1√
β
.

On the other hand, in order to get solutions that preserve
the discontinuity at x = 0, we require the following:

β2−hom

hL
2 hL α

−L 0 L

h

0

0

h

−L 0 Lg(β) = 2α
h β ∼ hL3

3(hL−2α)

Fig. 3 Characterisation of solutions of (4.27) for data f being a step
function. The green region corresponds to solutions that preserve the
discontinuity at x = 0, (4.32), while the blue region corresponds to
continuous solutions, (4.30), both having an exponential form (Color
figure online)

φ(−L) = 0, u′(−L) = 0,

u(0) <
h

2
, φ(0) = α.

(4.31)

Then we get

u(x) =
{
c1ekx + c2e−kx if x ∈ (−L , 0],
h − c1e−kx − c2ekx if x ∈ (0, L)

⇔ tanh(kL)

k
>

2α

h
,

(4.32)

where c1 = c2e2kL , c2 = αk
e2kL−1

and k = 1√
β
. Notice that

the conditions for α and β in (4.30) and (4.32) are supple-
mentary and thus only these type of solutions can occur, see
the quadrant of {α > 0, β > 0} as it presented in Fig. 3.
Letting g(β) = √

β tanh ( L√
β
), if g(β) < 2α

h then the solu-
tion is of the form (4.30), see the blue region in Fig. 3. On
the other hand in the complementary green region we obtain
the solution (4.32). For extreme cases where β → ∞, i.e.
k → 0 we obtain tanh(kL)

k → L , which means that there
is an asymptote of g at α = hL

2 . Although, we know the
form of the inverse function of the hyperbolic tangent, we
cannot compute analytically the inverse f −1. However, we
can obtain an approximation using a Taylor expansion which
leads to

√
β tanh

(
L√
β

)
= L − L3

3β
+ O
(

1

β2

)
= 2α

h
⇔

β = hL3

3(hL − 2α)
, (4.33)

where α > 0 and α �= hL
2 .
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Finally, we would like to describe the solution on the lim-
iting case β → ∞. Letting β → ∞ in (4.30), we have
that c1, c2 → h

2 and u(x) → h
2 for every x ∈ �, which in

fact is the mean value solution of (P). For the discontinuous
solutions, we have that c1, c2 → α

2L and

u(x) →
{

α
L if x ∈ (−L , 0],
h − α

L if x ∈ (0, L),

i.e. the limiting solution is (4.24). We also get that

w(x) = kc2

{
e2kL+kx − e−kx if x ∈ (−L , 0],
e2kL−kx − ekx if x ∈ (0, L], (4.34)

with ‖w‖L2(�) = c2k
√
2ekL(sinh(2kL) − 2kL)

1
2 and c2

is given either from (4.30) or (4.32). Then, in both cases
we have w → 0 as k → 0. Observe that the product of
β2−hom ‖w‖L2(�) is bounded as β2−hom → ∞ for both types
of solutions and in fact corresponds to the bounds found in
(4.24) and (4.25). Indeed, since

(sinh(2kL) − 2kL)
1
2

k
3
2

→ 2

√
L3

3
, as k → 0,

if α > hL
2 then

β2−hom ‖w‖L2(�) → h

2

√
2L3

3
, as β2−hom → ∞,

while if α ≤ hL
2

β2−hom ‖w‖L2(�) → α

√
2L

3
, as β2−hom → ∞.

The last result is yet another verification of Proposition
3.2 and it shows that there is an one to one correspondence
between β2−hom ‖w‖L2(�) and β1−hom . The solutions that
belong to the purple region of Fig. 4 are the same to the
solutions that are shown in Fig. 3.

In the next propositionwe summarise the type of solutions
for (P) for the step function:

Proposition 4.10 There are four different types of solutions
for the problem (P) with p = 2 taking the step function
(4.22) as data:

(1) A piecewise constant solution given in (4.24) (blue
region in Fig. 4).

(2) A constant solution, equal to the mean value of the data,
given in (4.25) (brown region in Fig. 4).

(3) A continuous exponential solution given in (4.30) (light-
blue region in Fig. 4).

ROFI ROFII

hL
2

hL
2

TVL2
I TVL2

II

β2−homβ1−hom

h
2

2L3

3

2L
3 α

α

β1−hom ↔ β2−hom||w||L2(Ω)

Fig. 4 Characterisation of solutions of (P) for p = 2 for data f being
a step function. The type of solutions in the purple region of the left
graph are exactly the solutions obtained for the 2-homogeneous prob-
lem (4.27), on the right graph (Color figure online)

(4) A discontinuous piecewise exponential solution given in
(4.32) (green region in Fig. 4).

Furthermore, there is an one to one correspondence between
the purple and the green/light blue regions in Fig. 4.

5 An Image Decomposition Approach

In this section,we present another formulation of the problem
(P), where we decompose an image into a BV part (piece-
wise constant) and a part that belongs to W 1,p(�) (smooth).
Let 1 < p ≤ ∞ and � ⊂ R

d and consider the following
minimisation problem:

min
u∈BV(�)

v∈W1,p(�)

L(u, v) := 1

2
‖ f − u − v‖2L2(�)

+ α ‖Du‖M

+β ‖∇v‖Lp(�) . (5.1)

In this way, we can decompose our image into two compo-
nents of different structure. The second term captures the
piecewise constant structures in the image, whereas the third
term captures the smoothness that depends on the value of p.
In the one-dimensional setting, we can prove that the prob-
lems (P) and (5.1) are equivalent.

Proposition 5.1 Let � = (a, b) ⊂ R and 1 < p ≤ ∞.
Then a pair (v∗, u∗) ∈ W1,p(�) × BV(�) is a solution of
(5.1) if and only if (∇v∗, u∗ + v∗) ∈ Lp(�) × BV(�) is a
solution of (P).
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Proof Let u = u + v then, we have the following

(v∗, u∗) ∈ argmin
u∈BV(�)

v∈W1,p(�)

1

2
‖ f − u − v‖2L2(�)

+ α ‖Du‖M + β ‖∇v‖Lp(�) ⇔
(v∗, u∗) ∈ argmin

u∈BV(�)

v∈W1,p(�)

1

2
‖ f − u − v‖2L2(�)

+ α sup
φ∈C∞

c (�)
‖φ‖∞≤1

{〈
u, φ′〉}

+ β ‖∇v‖Lp(�) ⇔
(v∗, u∗) ∈ argmin

u∈BV(�)

v∈W1,p(�)

1

2
‖ f − u‖2L2(�)

+ α sup
φ∈C∞

c (�)
‖φ‖∞≤1

{〈
u, φ′〉 + 〈∇v, φ〉}

+ β ‖∇v‖Lp(�)

(w∗, u∗) ∈ argmin
u∈BV(�)
w=∇v

v∈W1,p(�)

1

2
‖ f − u‖2L2(�)

+ α ‖Du − w‖M

+ β ‖w‖Lp(�) .

However, the constraints w = ∇v, v ∈ W1,p(�) can simply
be substituted by w ∈ Lp(�) since

{
w ∈ Lp(�) : ∃v ∈ W1,p(�), w = ∇v

}
= Lp(�). (5.2)

Indeed, let w ∈ Lp(�) ⊂ L1(�) for p ∈ (1,∞) and define
v(x) = ∫ xa w(s) ds for x ∈ � ⊂ R. Clearly, v′ = w a.e. and
by Hölder’s inequality we have for every x ∈ (a, b)

|v(x)|p =
∣∣∣∣
∫ x

a
w(s) ds

∣∣∣∣
p

≤ (x − a)p−1

∫ x

a
|w(s)|p ds < C < ∞.

Thus v ∈ W1,p(�) for p ∈ (1,∞). If p = ∞, suppose again
w ∈ L∞(�) and let C > 0 be a constant such that |w(x)| ≤
C a.e. on �. In that case we have |v(x)| ≤ ∫ xa |w(s)| ds ≤
C |�| < ∞, i.e. v ∈ L∞(�) and hence v ∈ W1,∞(�) since
v′ = w. Therefore,

(w∗, u∗) ∈ argmin
u∈BV(�)
w∈Lp(�)

1

2
‖ f − u‖2L2(�)

+ α ‖Du − w‖M

+β ‖w‖Lp(�) ,

where u∗ = u∗ + v∗ and w∗ = ∇v∗.

Even though for d = 1 it is true that every Lp function can
be written as a gradient, this is not true in higher dimensions.
In fact, as we show in the following sections, this constraint
is quite restrictive and for example the staircasing effect can-
not be always eliminated in the denoising process, see for
instance Fig. 20.

The existence of minimisers of (5.1) is shown following
again the same techniques as in Theorem 2.5. Moreover, due

to the strict convexity of the fidelity term in (5.1), one can
prove that the sum u + v ∈ BV(�) is unique for a solution
(u, v) ∈ W1,p(�) × BV(�). This result reflects the unique-
ness for the problem (P) for u. However one cannot show
that the solutions (u, v) are unique in general. Yet, one can
say something more about this issue. if (u1, v1), (u2, v2) are
two minimisers of (5.1), then from the convexity of L(u, v)

we have for 0 ≤ λ ≤ 1

L(λ(u1, v1) + (1 − λ)(u2, v2)) ≤ λL(u1, v1)

+ (1 − λ)L(u2, v2).

Since (u1, v1), (u2, v2) are both minimisers, the above
inequality is in fact an equality. Since u1 +v1 = u2 +v2, we
obtain

α‖D (λu1 + (1−λ)u2) ‖M+β ‖∇(λv1 + (1 − λ)v2)‖Lp(�)

= α(λ‖Du1‖M + (1 − λ)‖Du2‖M) + β(λ ‖∇v1‖Lp(�)

+ (1 − λ) ‖∇v2‖Lp(�)). (5.3)

If we assume that

‖∇(λv1 + (1 − λ)v2)‖Lp(�) < λ ‖∇v1‖Lp(�)

+ (1 − λ) ‖∇v2‖Lp(�) ,

then we contradict the equality on (5.3). Hence, theMinkow-
ski inequality becomes an equality, i.e.

‖∇(λv1 + (1 − λ)v2)‖Lp(�) = λ ‖∇v1‖Lp(�)

+ (1 − λ) ‖∇v2‖Lp(�) ,

which is equivalent to the existence of μ ≥ 0 such that
∇v2 = μ∇v1. In other words, we have proved the follow-
ing proposition which was also shown in [25] in a similar
context:

Proposition 5.2 Let (u1, v1), (u2, v2) be two minimisers of
(5.1). Then

u1 + v1 = u2 + v2, and (5.4)

there exists a μ ≥ 0 such that ∇v2 = μ∇v1. (5.5)

6 Numerical Experiments

In this section we present our numerical simulations for the
problem (P). We begin with the one-dimensional case where
we verify numerically the analytical solutions obtained in
Sect. 4.3. Through examples we also investigate the type of
structures that are promoted for different values of p. Finally,
we proceed to the two-dimensional case where we focus on
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image denoising tasks and in particular on the elimination of
the staircasing effect.

We start by defining the discretised version of problem
(P)

min
u∈Rn×m

1

2
‖ f − u‖22 + TVLp

α,β(u). (6.1)

Here TVLp
α,β : Rn×m → R is defined as

TVLp
α,β(u) = argmin

w∈(Rn×m )2
α ‖∇u − w‖1 + β ‖w‖p , (6.2)

where for x ∈ R
n×m , we set ‖x‖p = (

∑n,m
i, j=1 |x(i, j)|p) 1

p

and for x = (x1, x2) ∈ (Rn×m)2 we define

‖x‖p =
⎛
⎝ n,m∑

i, j=1

(√
(x1(i, j))2 + (x2(i, j))2

)p⎞⎠
1
p

. (6.3)

We denote by ∇ = (∇1,∇2) the discretised gradient with
forward differences and zero Neumann boundary conditions
defined as

(∇1u)i, j =
{
u(i + 1, j) − u(i, j) if 1≤ i<n, 1≤ j ≤m,

0 if i = n, 1 ≤ j ≤ m,

(∇2u)i, j =
{
u(i, j + 1) − u(i, j) if 1≤ i ≤n, 1≤ j <m,

0 if 1 ≤ i ≤ n, j = m.

The discrete version of the divergence operator is defined
as the adjoint of discrete gradient. That is, for every w =
(w1, w2) ∈ (Rn×m)2 and u ∈ R

n×m , we have 〈−divw, u〉 =
〈w,∇u〉 with

(divw)i, j =

⎧⎪⎨
⎪⎩

w1(i, j) − w1(i, j − 1) if 1 < j < m, 1 ≤ i ≤ n,

w1(i, j) if j = 1, 1 ≤ i ≤ n,

−w1(i, j − 1) if j = m, 1 ≤ i ≤ n,

+

⎧⎪⎨
⎪⎩

w2(i, j) − w2(i − 1, j) if 1 < i < n, 1 ≤ j ≤ m,

w2(i, j) if i = 1, 1 ≤ j ≤ m,

−w2(i − 1, j) if i = m, 1 ≤ j ≤ m.

(6.4)

We solve the minimisation problem (6.1) in two ways.
The first one is by using the CVX optimisation package with
MOSEK solver (interior point methods) [19]. This method
is efficient for small–medium scale optimisation problems
and thus it is a suitable choice in order to replicate one-
dimensional solutions. On the other hand, we prefer to solve
large scale two-dimensional versions of (6.1) with the split
Bregman method [18] which has been widely used for the
fast solution of non-smooth minimisation problems.

6.1 Split Bregman for L2–TVLp

In this section we describe how we adapt the split Bregman
algorithm to our discrete model (6.1). We first transform the
unconstrained problem (6.1) into a constrained one by setting
z = ∇u − w:

min
u∈Rn×m

w∈(Rn×m )2

z∈(Rn×m)2

1

2
‖ f − u‖22 + α ‖z‖1 + β ‖w‖p ,

such that z = ∇u − w. (6.5)

Replacing the constraint, using a Lagrange multiplier λ, we
obtain the following unconstrained formulation:

min
u∈Rn×m

w∈(Rn×m )2

z∈(Rn×m)2

1

2
‖ f − u‖22+α ‖z‖1+β ‖w‖p+λ

2
‖z − ∇u+w‖22 .

(6.6)

The Bregman iteration [32], that corresponds to the min-
imisation (6.6) leads to the following two-step algorithm:

(uk+1, zk+1, wk+1) = argmin
u,z,w

1

2
‖ f −u‖22+α ‖z‖1+β ‖w‖p

+ λ

2

∥∥∥bk − z + ∇u − w

∥∥∥2
2
, (6.7)

bk+1 = bk + zk+1 − ∇uk+1 − wk+1. (6.8)

Since solving (6.7) at once is a difficult task, we employ
a splitting technique and minimise alternatingly for u, z and
w. This yields the split Bregman iteration for our method:

uk+1 = argmin
u∈Rn×m

1

2
‖ f − u‖22 + λ

2

∥∥∥bk + zk − ∇u + wk
∥∥∥2
2
,

(6.9)

zk+1 = argmin
z∈(Rn×m)2

α ‖z‖1 + λ

2

∥∥∥bk + z − ∇uk+1 + wk
∥∥∥2
2
,

(6.10)

wk+1= argmin
w∈(Rn×m )2

β ‖w‖p+ λ

2

∥∥∥bk + zk+1−∇uk+1+w

∥∥∥2
2
,

(6.11)

bk+1 = bk + zk+1 − ∇uk+1 − wk+1. (6.12)

Next, we discuss how we solve each of the subproblems
(6.9)–(6.11). The first-order optimality condition of (6.9)
results into the following linear system:

(I − λ�)︸ ︷︷ ︸
A

u = f − λdiv(bk + zk − wk)︸ ︷︷ ︸
c

. (6.13)
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Here A is a sparse, symmetric, positive definite and strictly
diagonal dominant matrix, thus we can easily solve (6.13)
with an iterative solver such as conjugate gradients or
Gauss–Seidel. However, due to the zero Neumann bound-
ary conditions, the matrix A can be efficiently diagonalised
by the two-dimensional discrete cosine transform,

A = Wᵀ
nmDWnm, (6.14)

where here Wnm is the discrete cosine matrix and D =
diag(μ1, · · · , μnm) is the diagonal matrix of the eigenval-
ues of A. In that case, A has a particular structure of a
block symmetric Toeplitz-plus-Hankel matrix with Toeplitz-
plus-Hankel blocks and one can obtain the solution of
(6.9) by three operations involving the two-dimensional
discrete cosine transform [20] as follows: Firstly, we cal-
culate the eigenvalues of A by multiplying (6.14) with
e1 = (1, 0, · · · , 0)ᵀ from both sides and using the fact that
Wᵀ

nmWnm = WnmW
ᵀ
nm = Inm , we get

Di,i = [Wnm Ae1]i
[Wnme1]i , i = 1, 2, · · · , nm. (6.15)

Then, the solution of (6.9) is computed exactly by

u = Wᵀ
nmD

−1Wnmc. (6.16)

The solution of the subproblem (6.10) is obtained in a closed
form via the following shrinkage operator:

zk+1
i = shrink α

λ
(bki − ∇i u

k+1 + wk
i︸ ︷︷ ︸

gi

)

:= max
(
‖g‖2 − α

λ

) gi
‖g‖2

. (6.17)

Finally, we discuss the solution of the subproblem (6.11). In
the spirit of [40], we solve (6.11) by a fixed-point iteration
scheme. Letting κ = β

λ
and η = −bk − zk+1 + ∇uk+1, the

first-order optimality condition of (6.11) becomes

κ
|w|p−2w

‖w‖p−1
p

+ w − η = 0. (6.18)

For given wk , we obtain wk+1 by the following fixed-point
iteration

wk+1
i =

ηi
∥∥wk
∥∥p−1
p

κ|wk |p−2 + ∥∥wk
∥∥p−1
p

, (6.19)

under the convention that 0/0 = 0. We can also consider
solving the p-homogenous analogue (Pp−hom), where for
certain values of p, e.g. p = 2, we can solve exactly the
corresponding version of (6.11), since in that case wk+1

i =

ηi
κ+1 . However, we have observed empirically that there is
no significant computational difference between these two
methods.

Since we do not solve all the subproblems (6.9)–(6.11)
exactly in every iteration, we cannot guarantee convergence
for our version of the split Bregman iteration.Moreover, con-
vergence of the split Bregman algorithmwhenmore than two
splittings are performed have not been yet fully established,
even though this has been an active field of research lately see
for instance [13,17,31]. Let us note that the three subprob-
lems in the split Bregman algorithm can bemodified into two
subproblems (inexact linearised ADMM) with a small cost
in the speed of convergence, see for instance [14,21,22].
However in practice, the algorithm converges to the right
solutions. This claim is supported by the study presented in
Fig. 5 where the solutions of the split Bregman iteration are
compared to the corresponding solutions obtained with the
CVX package for which we have convergence guarantees.
There, we have solved the TVLp minimisations that corre-
spond to Figs. 13d–f and 14d, i.e. for p = 3

2 , 2, 3, 7 using
both split Bregman andCVX.We plot the relative differences
of the split Bregman iterates uk and the CVX solution uCVX
until they are sufficiently close to each other, i.e.

∥∥uk − uCVX
∥∥
2

‖uCVX‖2 < tol. (6.20)

In all the plots of Fig. 5, we observe that the split Breg-
man iterates in practice converge to the CVX solution. Their
relative difference becomes of the order 10−5 in around 100
iterations except for p = 7, Fig. 5d, where the error tolerance
is still reached but only after approximately 10000 iterations.

InTable 1,we compare the computational times of the split
Bregman algorithm until (6.20) is satisfied and the compu-
tational times of CVX for the same examples as in Fig. 5.
The implementations were done in MATLAB (2013) using
2.4 GHz Intel Core 2 Duo and 2 GB of memory. Notice that
unless p = 2, second line in Table 1, CVX needs more than
an hour to converge, in contrast to split Bregman where only
a few seconds are required for small values of p. Note that
the split Bregman algorithm is significantly slower for large
values of p, e.g. p = 7, see fourth line in Table 1, mainly
due to the fixed-point iteration in the subproblem (6.19). We
would like to point out that the computational speed can be
significantly reduced in the p = ∞ case, since the corre-
sponding subproblem is solved exactly, see [8,36] and in the
same time we can obtain similar results to the ones obtained
for high values of p.

6.2 One-Dimensional Results

In this section, we present some numerical results in dimen-
sion one, i.e. m = 1, u ∈ R

n×1 and w ∈ R
n×1. Initially, we
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Fig. 5 Plots of the relative differences between the split Bregman iter-
ates and the CVX solutions until (6.20) is true with tol = 10−5, for
the examples in Figs. 13d–f and 14d. In all cases the split Bregman
algorithm converges to the solutions given by CVX. a Relative residual
error between the split Bregman iterates and the CVX solution for the

example in Fig. 13d.bRelative residual error between the split Bregman
iterates and the CVX solution for the example in Fig. 13e. c Relative
residual error between the split Bregman iterates and the CVX solution
for the example in Fig. 13f. d Relative residual error between the split
Bregman iterates and the CVX solution for the example in Fig. 14d

Table 1 Computational times
of the split Bregman algorithm
until (6.20) is true with
tol = 10−5 and comparison to
the computational times of CVX
for the same examples as in Fig.
5

Split Bregman (s) Iterations Relative error CVX (s)

p = 1.5 3.58 147 8.72 × 10−6 3433

p = 2 1.99 111 9.31 × 10−6 193.14

p = 3 1.58 92 9.49 × 10−6 3418

p = 7 2266 39518 9.68 × 10−6 3532

compare our numerical solutions with the analytical ones,
obtained in Sect. 4.3 for the step function. We set p = 2,
h = 100, L = 1 and � = (−1, 1) which is discretised into
2000 points.We first examine the cases where ROF solutions
are obtained, i.e. the parameters α and β are selected accord-
ing to the conditions (4.24) and (4.25). We have done that
in Fig. 6 where we see that the analytical solutions coincide
with the numerical ones.

We proceed by computing the non-ROF solutions. The
numerical solutions are solved using the 2-homogeneous
analogue (4.27), since we have proved that the 1-homogene-
ous and p-homogeneous problems are equivalent modulo an
appropriate rescaling of the parameter β, see Proposition 3.2.
Indeed, as it is described in Fig. 4, in order to obtain solu-

tions from the purple region, it suffices to seek for solutions
of the 2-homogeneous (4.27). Recall also that these solu-
tions are exactly the solutions obtained solving a Huber TV
problem, see Proposition 3.3. The analytical solutions are
given in (4.30) and (4.32) and are compared to the numeri-
cal ones in Fig. 7, where we observe that they coincide. We
also verify the equivalence between the 1-homogeneous and
2-homogeneous problems where α is fixed and β is obtained
from Proposition 3.2, see Fig. 7c.

We continue our experiments for general values of p
focusing on the structure of the solutions as p increases.
In order to compare the solutions for different values p ∈
(1,∞), we fix the parameter α and choose appropriate
values of β. Since we are mainly interested in non-ROF
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Fig. 6 Step function: comparison between numerical solutions of (P)

and the corresponding analytical solutions obtained in Sect. 4.3. The
parameters α and β are chosen so that conditions (4.24) and (4.25)

are satisfied which result in ROF solutions. a Original data. b TVL2:
α = 15, β = 500. c TVL2: α = 60, β = 1300 (Color figure online)
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Fig. 7 Step function: comparison between numerical and analytical
solutions obtained in Sect. 4.3, by solving the 2-homogeneous problem
(4.27). The parameters α and β are chosen so that conditions (4.30)
and (4.32) are satisfied which result in non-ROF solutions. The last plot

shows the equivalence between the 1-homogeneous problem (P) and
2-homogeneous (4.27). a TVL2 : α = 20, β2−hom = 450. b TVL2 :
α = 60,β2−hom = 450. cEquivalenceof 1 and2-homogeneousmodels:
α = 15, β2−hom =450, β1−hom = β2−hom ‖w‖2 (Color figure online)
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Fig. 8 Step function: the types of solutions for the problem (P) for different values of p. aTVLp discontinuous solutions for p = { 43 , 3
2 , 2, 3, 4, 10}.

b TVLp continuous solutions for p = { 43 , 3
2 , 2, 3, 4, 10} (Color figure online)

solutions, we choose α and β so that they belong to the

purple region of Fig. 4, i.e. β < ( 2L
q+1 )

1
q α and β <

h
2 ( 2L

q+1

q+1 )
1
q . We set p = { 43 , 3

2 , 2, 3, 4, 10} and in order to
get solutions that preserve the discontinuity we set β =
{72, 140, 430, 1350, 2400, 6800} with fixed α = 20, see

Fig. 8a. In order to obtain continuous solutions,we setα = 60
and β = {50, 110, 430, 1700, 3000, 9500}, see Fig. 8b. We
observe that for p = 4

3 , the solution has a similar behaviour to
p = 2, but with a steeper gradient at the discontinuity point
and the solution becomes almost constant near the bound-
ary of �. On the other hand, as we increase p, the slope
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Fig. 9 Piecewise affine data: TVL15 solution with α = 1, β = 620
(Color figure online)

of the solution near the discontinuity point reduces and it
becomes almost linear with a relative small constant part
near the boundary.

The linear structure of the solutions that appears for large
p motivates us to examine the case of piecewise affine data
f defined as

f (x) =
{

λx if x ∈ (−L , 0],
λx + h if x ∈ (0, L], (6.21)

see Fig. 9. We set again � = (−1, 1) and λ = 1
10 . As

we observe, the reconstruction for p = 15 behaves almost
linearly everywhere in � except near the boundary. In the
follow-up paper [8], where the case p = ∞ is examined in
detail and exact solutions are computed for the data (6.21),
the occurrence of this linear structure is justified also analyt-
ically.

In the last part of this section, we present some numerical
examples of the image decomposition approach presented in
Sect. 5. We use as data a more complicated one-dimensional
noiseless signal with piecewise constant, affine and quadratic
components and solve the discretised version of (5.1) using
CVX. In Fig. 10, we verify numerically the equivalence
between (5.1) and (P) for p = 2, i.e. we show that
(∇v, u + v) corresponds to (w, u) where (v, u) and (w, u)

are the solutions of (5.1) and (P), respectively.We also com-
pare the decomposed parts u, v for p = 4

3 and p = 10. In
order to have a reasonable comparison on the correspond-
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Fig. 10 Numerical examples of the image decomposition approach (5.1) for p = 2. a Solution u + v of (5.1). b Decomposition into u, v parts.
c Equivalence of (P) and (5.1): u = u + v. d Equivalence of (P) and (5.1): w = ∇v (Color figure online)
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Fig. 11 Decomposition of the data in Fig. 10a into u, v parts for p = 4
3

and p = 10. The value p = 4
3 produces a v component with flat struc-

tures while p = 10 produces a component with almost affine structures.

In both cases we have ‖ f − u − v‖2 = 6.667. a Decomposition of the
data in Fig. 10a for p = 4

3 . b Decomposition of the data in Fig. 10a for
p = 10 (Color figure online)

Fig. 12 Square with piecewise affine structures and its noisy ver-
sion with σ = 0.01. a Square. b Noisy square: PSNR = 20.66 and
SSIM = 0.1791

ing solutions, the parameters α, β are selected such that the
residual ‖ f − u − v‖2 is the same for both values of p. As
we observe, the v decomposition with p = 4

3 exhibits some
flatness compared to p = 2, compare Figs. 10b and 11a.
On the other hand for p = 10, the v component consists
again of almost affine structures, Fig. 11b. Notice, that in
both cases the v components are continuous. This is expected
since in dimension one, we haveW1,p(�) ⊂ C(�) for every
1 < p < ∞.

6.3 Two-Dimensional Results

In this section we consider the two-dimensional case where
u ∈ R

n×m , w ∈ (Rn×m)2 with m > 1 and � is a rectangular
image domain. We focus on image denoising tasks and on
eliminating the staircasing effect for different values of p.

We start with the image in Fig. 12, i.e. a square with piece-
wise affine structures. The image size is 200 × 200 pixels at

a [0, 1] intensity range. The noisy image, Fig. 12b, is a cor-
rupted version of the original image, Fig. 12a, with Gaussian
noise of zero mean and standard deviation σ = 0.01.

In Fig. 13, we present the best reconstructions results in
terms of two quality measures, the classical Peak Signal
to Noise Ratio (PSNR) and the Structural Similarity Index
(SSIM), see [41] for the definition of the latter. In each case,
the values of α and β are selected appropriately for optimal
PSNR and SSIM. We use here the split Bregman algorithm
as this is described in Sect. 6.1. Our stopping criterion is the
relative residual error becoming less than 10−6, i.e.

∥∥uk+1 − uk
∥∥
2∥∥uk+1

∥∥
2

≤ 10−6. (6.22)

For computational efficiency, we set λ = 10α when 1 <

p < 4 and λ = 1000α when p ≥ 4 (empirical rule).
Observe that the best reconstructions in terms of the PSNR

have no visual difference for p = 3
2 , 2 and 3 and staircasing

is present, Fig. 13a–c. This is one more indication that the
PSNR—which is based on the squares of the pointwise differ-
ences between the ground truth and the reconstruction—does
not correspond to the optimal visual results. The best recon-
structions in terms of SSIM are visually better. They exhibit
significantly reduced staircasing for p = 3

2 and p = 3 and
is essentially absent in the case of p = 2, see Fig. 13d–f.

We can also get a total staircasing elimination by setting
higher values for the parameters α and β, as we show in
Fig. 14. There, one observes that on one hand as we increase
p, almost affine structures are promoted—see the middle
row profiles in Fig. 14—and on the other hand these choices
of α, β produce a serious loss of contrast that however can
be easily treated via the Bregman iteration that we briefly
discuss next.
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Fig. 13 Best reconstructions in terms of PSNR and SSIM for p = 3
2 ,

2, 3. a TVL
3
2 : α = 0.1, β = 2.5, PSNR = 33.63. b TVL2: α = 0.1,

β = 13.5, PSNR = 33.68. c TVL3: α = 0.1, β = 76, PSNR = 33.70.

d TVL
3
2 : α = 0.3, β = 7.7, SSIM=0.9669. e TVL2: α = 0.3,

β = 34, SSIM=0.9706. f TVL3: α = 0.3, β = 182, SSIM=0.9709
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Fig. 14 Staircasing elimination for p = 3
2 , 2, 3 and 7. High values of p promote almost affine structures. a TVL

3
2 : α = 1, β = 25, SSIM= 0.9391.

b TVL2: α = 1, β = 116, SSIM = 0.9433. c TVL3: α = 1, β = 438, SSIM = 0.9430. d TVL7: α = 2, β = 5000, SSIM = 0.9001
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Fig. 15 First rowBest reconstructions in terms of SSIM for TV, TVL2

and TGV. Second row Best reconstructions in terms of SSIM for the
Bregman iteration versions of TV, TVL2 and TGV. a TV: α = 0.2,
SSIM = 0.9387. b TVL2: α = 1, β = 116, SSIM = 0.9433. c TGV:

α = 0.12, β = 0.55, SSIM = 0.9861. d TV Bregman iteration: α = 1,
SSIM = 0.9401, 4th iteration. e TVL2 Bregman iteration: α = 2,
β = 220, SSIM = 0.9778, 4th iteration. f TGV Bregman iteration:
α = 2, β = 10, SSIM = 0.9889, 8th iteration

Contrast enhancement via Bregman iteration was intro-
duced in [32], see also [3] for an application to higher-order
models. It involves solving a modified version of the minimi-
sation problem. Setting u0 = f , one solves for k = 1, 2, . . .:

uk+1 = argmin
u∈Rn×m

w∈(Rn×m )2

1

2

∥∥∥ f +ṽk−u
∥∥∥2
2
+α ‖∇u−w‖1+β ‖w‖p,

ṽk+1 = ṽk + f − uk+1. (6.23)

Instead of solving (6.1) once for fixed α and β, we solve a
sequence of similar problems adding back a noisy residual in
each iteration. For stopping criteria regarding the Bregman
iteration we refer to [32].

In Fig. 15 we present our best Bregman iteration results
for p = 2 in terms of SSIM along with the correspond-
ing TV and TGV results for which the Bregman iteration
has also been employed for the sake of fair comparison. We
also show the best SSIM results where no Bregman iter-
ation is used. We solve the TGV minimisation using the
Chambolle–Pock primal-dual method [10]. We notice that
the Bregman iteration version of TVL2 leads to a significant
contrast improvement, compare for instance Fig. 15b, e. In

Fig. 16 Image with symmetric radial structures and its noisy version
with σ = 0.01. a Circle. b Noisy circle: SSIM = 0.2457

fact, it can achieve a reconstruction which is visually close to
the Bregman iteration version of TGV, compare Fig. 15e, f.

We continue our demonstration with a radially symmet-
ric image, see Fig. 16. As in the previous example, we can
achieve staircasing-free reconstructions using TVLp regu-
larisation for different values of p, see Fig. 17. In fact, as
we increase p, we obtain results that preserve the spike in
the centre of the circle, see the corresponding middle row
slice in Fig. 17d. This provides us with another motivation
to examine the p = ∞ case in [8]. The loss of contrast can
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Fig. 17 Better preservation of spike-like structures for large values of p. a TVL
3
2 : α = 0.8, β = 17, SSIM = 0.8909. b TVL2: α = 0.8, β = 79,

SSIM = 0.8998. c TVL3: α = 0.8, β = 405, SSIM = 0.9019. d TVL7: α = 0.8, β = 3700, SSIM = 0.9024

Fig. 18 Best reconstruction in terms of SSIM for the Bregman itera-
tion versions of TVL2, TVL4, TVL7 and TGV. a TVBregman iteration:
α = 2, SSIM= 0.8912, 6th iteration.bTVL2 Bregman iteration:α = 5,
β = 625, SSIM = 0.9718, 12th iteration. c TVL4 Bregman iteration:

α = 5, β = 8000, SSIM=0.9802, 13th iteration. d TVL7 Bregman
iteration: α = 3, β = 15000, SSIM = 0.9807, 9th iteration. e TGV
Bregman iteration: α = 2, β = 10, SSIM = 0.9913, 8th iteration

be again treated using the Bregman iteration (6.23). The best
results of the latter in terms of SSIM are presented in Fig. 18,
for p = 2, 4 and 7 and they are also compared to the cor-
responding Bregman iteration version of TGV. We observe

that we can obtain reconstructions that are visually close to
the TGV ones and in fact notice that for p = 7, the spike on
the centre of the circle is better reconstructed compared to
TGV, see also the surface plots in Fig. 19.
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Fig. 19 Surface plots of the images in Fig. 18. Notice how high values
of p can better preserve the sharp spike in the middle of the image.
a Original. b TVL2 Bregman iteration. c TVL7 Bregman iteration.
d TGV Bregman iteration. (e) Original: central part zoom. f TVL2

Bregman iteration: central part zoom. g TVL7 Bregman iteration: cen-
tral part zoom. h TGV Bregman iteration: central part zoom (Color
figure online)

Fig. 20 Comparison between the model (5.1) for p = 2 and TVL2:
Staircasing cannot be always eliminated by using the decomposition
approach (5.1). a Solution u + v of (5.1): p = 2, α = 0.8, β = 120,

SSIM = 0.9268. b TVL2: α = 1, β = 116, SSIM=0.9433. c Solution
u + v of (5.1): p = 2, α = 0.8, β = 70, SSIM = 0.8994. d TVL2:
α = 0.8, β = 79, SSIM=0.8998
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Fig. 21 Efficient geometric decomposition of the image in Fig. 20c into a piecewise constant and smooth component, u and v, respectively, by
solving (5.1). a Piecewise constant component u. b Smooth component v, c Middle row profiles (Color figure online)

We conclude with numerical results for the image decom-
position approach of Sect. 5 which we solve again using the
split Bregman algorithm. Recall that in dimension two, the

solutions of (5.1) are not necessarily the same with the ones
of (P). In fact, we observe that (5.1) cannot always elimi-
nate the staircasing, see for instance Figure 20. Even though,
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as we have already seen, we can eliminate the staircasing
both in the square and in the circle by applying TVLp regu-
larisation, Fig. 20b, d, we cannot obtain equally satisfactory
results by solving (5.1). While using the latter we can get rid
of the staircasing in the circle, Fig. 20c, this is not possible
for the square, Fig. 20a, where we observe—after extensive
experimentation—that no values ofα andβ lead to a staircas-
ing elimination. This is analogous to the difference between
TGV and the TV–TV2 infimal convolution of Chambolle–
Lions [9].

However, the strength of the formulation (5.1) lies on its
ability to efficiently decompose an image into piecewise con-
stant and smooth parts. We depict that in Fig. 21, where we
show the components u and v of the result in Fig. 20c.

7 Conclusion

We have introduced a novel first-order, one-homogeneous
TV–Lp infimal convolution type functional suitable for varia-
tional image regularisation. The TVLp functional constitutes
a very general class of regularisation functionals exhibiting
diverse smoothing properties for different choices of p. In
the case p = 2 the well-known Huber TV regulariser is
recovered.

We studied the corresponding one-dimensional denoising
problem focusing on the structure of its solutions. We com-
puted exact solutions of this problem for the case p = 2
for simple one-dimensional data. Hence, as an additional
novelty in our paper we presented exact solutions of the one-
dimensional Huber TV denoising problem.

Numerical experiments for several values of p indicate
that ourmodel leads to an eliminationof the staircasing effect.
We show that we can further enhance our results by increas-
ing the contrast via a Bregman iteration scheme and thus
obtaining results of similar quality to those of TGV. Further-
more, as p increases the structure of the solutions changes
from piecewise smooth to piecewise linear and the model, in
contrast to TGV, is capable of preserving sharp spikes in the
reconstruction. This observation motivates a more detailed
study of the TVLp functional for large p and in particular
for the case p = ∞.

This concludes the first part of the study of the TVLp

model for p < ∞. The second part [8], is devoted to the p =
∞ case. There we explore further, both in an analytical and
an experimental level, the capability of the TVL∞ model to
promote affine and spike-like structures in the reconstructed
image and we discuss several applications.
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Appendix: Radon Measures and Functions of
Bounded Variation

In what follows � ⊂ R
d is an open, bounded set with Lip-

schitz boundary whose Lebesgue measure is denoted by |�|.
We denote by M(�,Rd) (and M(�) if d=1) the space of
finite Radon measures on �. The total variation measure of
μ ∈ M(�,Rd) is denoted by |μ|, while we denote the polar
decomposition of μ by μ = sgn(μ)|μ|, where sgn(μ) = 1
|μ|-almost everywhere.

Recall that the Radon norm of aRd -valued distribution T
on � is defined as

‖T ‖M := sup
{
〈u, φ〉 : φ ∈ C∞

c (�,Rd), ‖φ‖∞ ≤ 1
}

.

It can be shown that ‖T ‖M < ∞ if and only if T can
be represented by a measure μ ∈ M(�,Rd) and in that
case ‖μ‖M = |μ|(�). Regarding the subdifferential of the
Radon norm we have that it can be characterised, at least for
C0 functions, as follows [6]

∂ ‖·‖M (μ) ∩ C0(�) = Sgn(μ) ∩ C0(�), (8.1)

where here Sgn(μ) denotes the set-valued sign

Sgn(μ) = {v ∈ L∞(�) ∩ L∞(�, |μ|) : ‖v‖∞ ≤ 1,

v = sgn(μ), |μ| − a.e.} . (8.2)

A function u ∈ L1(�) is a function of bounded variation
if its distributional derivative Du is representable by a finite
Radonmeasure.We denote by BV(�), the space of functions
of bounded variationwhich is a Banach space under the norm

‖u‖BV(�) := ‖u‖L1(�) + ‖Du‖M .

The term

‖Du‖M = sup

{∫
�

u divφ dx : φ ∈ C∞
c (�,Rd), ‖φ‖∞ ≤ 1

}
,
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is called the total variation of u, also commonly denoted
by TV(u). From the Radon–Nikodym theorem, the measure
μ can be decomposed into an absolutely continuous and a
singular part with respect to the Lebesgue measure Ld , that
is Du = Dau + Dsu. Here, Dau = ∇uLd , i.e. ∇u denotes
the Radon–Nikodym derivative of Dau with respect to Ld .
Note that we also have ‖Du‖M = ‖Dau‖M + ‖Dsu‖M.
When d = 1, ∇u is simply denoted by u′. Finally, we recall
that BV(�) ↪→ Lr (�) for 1 ≤ r ≤ d

d−1 (resp. 1 ≤ r < d
d−1

) with continuous embedding (resp. compact embedding) .
Recall also the following basic inequality regarding inclu-

sions of Lp spaces

‖h‖Lp1 (�) ≤ |�| 1
p1

− 1
p2 ‖h‖Lp2 (�) , 1 ≤ p1 < p2 ≤ ∞.

(8.3)

Unless otherwise stated q denotes the Hölder conjugate
of the exponent p, i.e.

q =
{

p
p−1 if p ∈ (1,∞),

1 if p = ∞.
(8.4)
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