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Abstract Using the Kullback–Leibler divergence we pro-
vide a simple statistical measure which uses only the covari-
ance matrix of a given set to verify whether the set is an
ellipsoid. Similar measure is provided for verification of
circles and balls. The new measure is easily computable,
intuitive, and can be applied to higher dimensional data.
Experiments have been performed to illustrate that the new
measure behaves in natural way.
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1 Introduction

Human image analysis still poses huge challenges for a
scientist. Automatic computer object recognition and inter-
pretation of an image is crucial in building excellent image
analysis software, especially for extracting higher-level
information.

Real-life applications forced to develop the idea to
describe the object characteristics by using a set of numbers,
thus enabling a spectrum of numerical quantifications. Many
shapedescriptorswere created andused [1,12]. Someof them
have generic purpose, such as the Fourier descriptors [3] or
moment invariants [10,15]. On the other hand, for the spe-
cific purpose of classification, several shape descriptors are
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useful for describing and differentiating a variety of objects:
convexity [23], rectangularity [24], linearity [27], symmetry
[29], etc. Note that, due to the diversity of shapes, descriptors
have applications in various areas such as computer science,
medicine, biology, and robotics.

Recently, there havebeen several applications that concen-
trate on finding and classifying circular and elliptical objects
in images. They range from identifying traffic light and sign
[4], to face detection [16]. In this paper we define a newmea-
sure for two important descriptors: circularity and ellipticity
in arbitrary dimensions. Future applications might include,
for example, the identification of sick individual cells based
on their boundaries in medical imaging—compare Fig. 1.
Our motivation, from the theoretical point of view, can be
illustrated by the following problem.

Problem 1 If the actual area occupied by an object can be
estimated using the well-known area formula πr1r2, it has a
good chance of being an ellipse, or, if πr2—a circle. Obvi-
ously, the questions how to estimate the major and minor
ellipse radii r1, r2 (or r ), or how to formalize “good chance”
still need to be answered.

To develop the solution which will solve the presented
problem, we consider closely the existing ones, namely the
methods which verify whether the set is an ellipsoid, and
which differentiate the shapes between ellipses and circles.
The work presented in this article aims to partially general-
ize the methods presented by Žunić et al. in work [31], Žunić
and Žunić in [30], and Rosin in [24] which describe circu-
larity and ellipticity measures. The reason to choose these
methods is their performance superiority in the case of shape
boundary defects compared to the other standard methods,
namely, the behavior of thesemeasures (i.e., numerical shape
characteristics) can be relatively easily understood and their
behavior can be reasonably predicted. The aforementioned
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Fig. 1 Sickle cell anemia [20]. Individuals with sickle cell anemia
have crescent-shaped red blood cells. Diseases such as this one cause
a decreased ability in oxygen delivery throughout the body. The new
ellipticity measure (presented in this paper) differentiates well the cell
with anemia (E2(A) = 0.902) from the normal cells (E2(B) = 0.999,
E2(C) = 0.999, E2(D) = 0.993, E2(E) = 0.999)

articles describe explicit formula which use the first two Hu
moments invariants to evaluate howmuch a planar shape dif-
fers from a circle or an ellipse. Detailed information of those
measures—of circularity CH and ellipticity EH and EI—are
presented in Sect. 2 of this article.

Our aim is to deal with the problem of ellipsoids and
balls recognition in the general case of RN . The main idea
of our approach uses the information theory concept called
Kullback–Leibler divergence and can be reduced to verifying
whether the value of

λN (S)
/√

det(�S) (1)

is maximal for S ⊂ R
N , where �S denotes the covariance

matrix1 of S and λN the N -dimensional volume2 (Lebesgue
measure) of S.

The main result of this work presented in Theorem 2 gives
an estimation of (1) in the case of circles and ellipses. This
allows to derive the condition to test if a given set is elliptical-
like EN or circular-like CN . Hence, they can be used as a

1 If set S is discrete, namely S = {xi }N
i=1, then the covariance matrix

equals �S = 1
N

∑N
i=1(xi − μ)(xi − μ)T , where μ = 1

N

∑N
i=1 xi is a

mean of set S. In the general case by the covariance matrix of a set, we
understand the covariance of the uniform normalized density on S.
2 If a set S is a discrete subset of ZN , then in practical considerations
we view S a discrete representation of the set S1 = S + [−1/2, 1/2]N .
Thus, the value λ(S1) equals card(S) and the covariance matrix �S1
equals �S + 1

12 I .

measure of ellipticity and circularity. Our measures were
tested on several examples from [30,31]. Experiments verify
many advantages of our approach, e.g., behavior consistent
with the human intuition and its invariance in similarity trans-
formation. Moreover, our measures can be applied to higher
dimensional data (see Figs. 9, 10, 11).

This paper is organized as follows. In the next section the
foundations for the state of art are introduced. In Sect. 3 we
briefly describe the main result of this work with the sketch
of the proof. In Sect. 4 we set up notation and terminology
for the Kullback–Leibler divergence and cross-entropy. In
Sect. 5 we provide the formula for circularity and ellipticity
measurement. Comments and conclusions can be found in
the last section.

2 State of the Art

In this section several most standard measures of circular-
ity and ellipticity are mentioned. Those methods range over
(0, 1] and give the measurement equal to 1 if and only if the
measured shape is a circle or an ellipse.

Let us consider an arbitrary set S ⊂ R
2.

2.1 Circularity Measure

Form the historical point of view, the first circularitymeasure
was introduced in [6] an later in the digital plane in [13]. It
is given by

Cst (S) = 4π · λ2(S)

(perimeter_of_S)2
,

where λ2(S) is the area of the set S (compare with [26]).
Geometrical moments can also be used in the circularity

measure. Example of such approach can be found in [31].
Circularity can be measured by the quantity

CH (S) = (μ0,0(S))2

2π(μ2,0(S) + μ0,2(S))
,

where the centralized (p, q)-moment μp,q(S) of a planar set
S is

μp,q(S) =
∫ ∫

S

(
x − μx (S)

)p(
y − μy(S)

)q

dxdy

for (μx (S), μy(S)) – the centroid of S [15].
Other examples of methods for measuring the circularity

can be found in [7,13,14,22].
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2.2 Ellipticity Measure

The first approach is based on moment invariants. Since any
ellipse can be obtained by applying an affine transform to a
circle, we use the simplest affinemoment invariant [9] (based
on the central moments μp,q ) of the circle to characterize
ellipses

I1(S) = μ2,0(S)μ0,2(S) − μ2
1,1(S)

μ4
0,0(S)

,

where the centralized (p, q)-moment of a planar set S is
given by μp,q(S). To discriminate the shape and measure of
ellipticity, we use

EI (S) =
{
16π2 I1(S), if I1(S) ≤ 1

16π2 ,
1

16π2 I1(S)
, otherwise,

(compare with [24]).
The second approach is based on the first twoHu invariant

moments [10,15]. The ellipticity measure of a given shape S
can be computed by the formula [30]:

EH (S) =
(
2π2

(
I1(S) ·

√
4I2(S) + 1/π2 − 2I2(S)

))−1

,

where

– I1(S) = m2,0(S) + m0,2(S),
– I2(S) = (m2,0(S) − m0,2(S))2 + 4(m1,1(S))2,

for the geometric moments of a given shape defined by

m p,q(S) =
∫ ∫

S
x p yqdxdy.

Other examples of methods for measuring the ellipticity
can be found in [8,21,22,25,26].

3 Main Theorem

In this section we present the main result of this paper that a
set S is an ellipsoid if the uniform probability density on it
has minimal Kullback–Leibler divergence—a fundamental
equation of information theory that quantifies the proxim-
ity of two probability distributions (a brief summary and
the proof is presented in further part of this work). Using
Kullback–Leibler divergence we show that it is enough to
know three moments of the object (in R

2) to check if the
given set is an ellipse.

This condition for an arbitrary set S ⊂ R
N reduces to

verifying whether the value of

λN (S)/
√
det(�S)

is maximal, where �S denotes the covariance of the uniform
probability measure on S, and equals3

((N + 2)π)N/2

Γ (N/2 + 1)
=: eN .

For N = 1 (line) and N = 2 (the situation on the plane),
eN simplifies to e1 = 2

√
3 and e2 = 4π , while for N = 3

(situation in three dimensional space) we get e3 = 20
√
5π
3 .

We obtain also analogous estimations for circles and balls
in R

N . Given a symmetric positive matrix �, we recall that
the Mahalanobis distance [18] is given by

‖x − y‖� := (x − y)T �−1(x − y).

Thus, our main result (compare with Corollaries 1 and 2)
may be stated as follows:

Theorem 1 Let S ⊂ R
N with mean mS and covariance �S

be given.

– Then

EN (S) := Γ (N/2 + 1)

((N + 2)π)N/2 · λN (S)√
det(�S)

≤ 1,

where the equality holds if S is an ellipse. If this is the
case, then S = B�S (mS,

√
N + 2).

– Then

CN (S) := Γ (N/2 + 1)

((N + 2)π/N )N/2 · λN (S)

(tr(�S))N/2 ≤ 1,

where the equality holds if S is a circle. If this is the case

then S = B(mS,

√
N+2

N tr(�S)).

We postpone the proof till Sect. 5. However, the basic idea
consists of the following steps:

– we first observe that we can restrict to the case when the
mean of S is centered at zero and the covariance equals
to identity;

– next we fit to the data optimal uniform density on a ball
B(0, R) with R such that the volume of S equals to vol-
ume of B(0, R);

3 By Γ (x), for x > 0, we denote the Gamma function which is an
extension of the factorial function.
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Fig. 2 Ellipse vs.
circle—comparison of the
measure values to test if the
object is elliptical-like (E2) or
circle-like (C2) (higher value
means that the indicated shape
kind describes the object better)

(a)
E2 = 1.0000
C2 = 1.0000

(b)
E2 = 1.0000
C2 = 0.7998

(c)
E2 = 0.6009
C2 = 0.4807

(d)
E2 = 0.9549
C2 = 0.5437

(e)
E2 = 0.9549
C2 = 0.9549

(f)
E2 = 0.7621
C2 = 0.7594

(g)
E2 = 0.9549
C2 = 0.0477

(h)
E2 = 0.2207
C2 = 0.1951

(i)
E2 = 0.5996
C2 = 0.5996

(j)
E2 = 0.7506
C2 = 0.7256

– last we show that if S would contain elements outside
of B(0, R), then by “moving” those elements inside of
B(0, R), we would increase the value of the respective
Kullback–Leibler divergence.

For the convenience of the reader, we now discuss the
situation on the plane. We consider S ⊂ R

2 with mean mS

and covariance �S . Then

E2(S) := λ2(S)

4π
√
det(�S)

, (2)

C2(S) := λ2(S)

2π tr(�S)
. (3)

Figure 2 presents the example values of E2 and C2 for given
sets.

Under the above definition, parameter E2 is invariant to
affine transformations, while C2 is invariant to isometric
transformations (compare with Theorem 3).

Remark 1 If S is an ellipse, then one can easily verify that
4π

√
det(�S) equals its area. Thus, we see that (2) is a real-

ization of the idea given in Problem 1.
Analogously, if S is a circle, then its area equals 2π tr(�S),

and consequently (3) gives a formalization of an analogue of
Problem 1 for circles.

Directly from Theorem 1 (namely, Eqs. (2) and (3)), we
can compare the newmeasures with the measures recalled in
state of the art of this article (Sect. 2).

Observation 1 For an arbitrary set S ⊂ R
2:

– C2(S) = CH (S);
– E2(S) ≤ a ⇒ EI (S) ≤ a2 for a ∈ (0, 1].

Proof Recall now that the covariancematrix of the S is given
by [10]

�S = 1

μ0,0(S)

(
μ2,0(S) μ1,1(S)

μ1,1(S) μ0,2(S)

)

Thus, by definition of CH (S)

C2(S) = λ2(S)

2π tr(�S)

= μ0,0(S)

2π 1
μ0,0(S)

(μ2,0(S) + μ0,2(S))

= μ2
0,0(S)

2π(μ2,0(S) + μ0,2(S))

= CH (S)

which completes the proof of the first equality.
For the second property, we have

E2(S) = μ0,0

4π
√

(μ2,0(S)μ0,2(S) − μ2
1,1(S))/μ2

0,0(S)

=
(

1

16π2 · μ4
0,0(S)

μ2,0(S)μ0,2(S) − μ2
1,1(S)

)−1/2

=
(
16π2 I1(S)

)1/2

.

Consequently, by Theorem 2 we obtain

(
16π2 I1(S)

)1/2

≤
1 which implies that I1(S) ≤ 1

16π2 for an arbitrary set S ⊂
R
2. Hence, E2(S) = (EI (S))1/2 which completes the proof.

�	
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Fig. 3 Discretization of the set
{(x, y) ∈ R

2 : x2 + y2 ≤ 1}.
The gray squares have a side
length of δ. Additionally the
measures of circularity C2 and
Cst are presented—it is easy to
notice that they depend on
discretization but C2 converges
to 1 with δ → 0

(a) δ = 1/1,
C2 = 0.682093,
Cst = 0.490874

(b) δ = 1/2,
C2 = 0.871164,
Cst = 0.567232

(c) δ = 1/3,
C2 = 0.946639,
Cst = 0.584455

Consequently, the authors’ approach for the two-dimensi-
onal data leads to the same conclusions as indexes EI [24]
and CH [31].

At the end of this section we discuss how the above mea-
sures can be adapted for discrete (finite) sets. In general in
our opinion, it is a nontrivial problem; luckily we can eas-
ily deal with the case when S is a discrete subset of δ · ZN

(δ > 0). Then instead of S we consider the set

S̃ := S + δ · [− 1
2 ,

1
2 ]N .

Then, as one can easily check

λN (S̃) = δN · card(S) and �S̃ = �S + δN+2

12
I, (4)

where by�S on the RHS we understand the standard covari-
ance of the discrete set. Examples of discretization for a few
δ values are presented in the Fig. 3.

The discrete case appears to be important also in our
numerical experiments, where we approximate the “exact”
shape S ⊂ R

N by its discrete approximation given by

Sδ := {x ∈ δZN : x ∈ S} with δ → 0.

Observe that for compact sets with nonzero Lebesgue mea-
sure all the moments of Sδ converge, with δ → 0, to the
respective moments of S. Consequently, the same holds for
constants EN and CN .

Surprisingly this is not the case for Cst , where even for the
case of unit circle

Cst (B(0, 1)δ) �→ Cst (B(0, 1)) as δ → 0,

which follows from the fact that the length of the boundary
of the discrete approximation of the set4 usually does not

4 We measure the boundary length as a sum of distance of consecutive
middle points of the squares which form the boundary of the set, see
Fig. 3.

converge to the exact length of the boundary—it occurs that
in the optimal value is obtained for octagon instead of a circle.
This follows from the fact that when we measure the length
of the discretization Sδ of the set S, by following the discrete
boundary we can move only in the directions which have
the angle which is the multiplicity of π/4. Thus although
Cst (B(0, 1)) = 1,

Cst (B(0, 1)δ) ≤ Cst (octagon) = 1

8

(
1 + √

2
)

π ≈ 0.948059.

Remark 2 The Cst uses one of the most popular and standard
approach to circularity measure which is derived from the
relation between the shape of the area and the length of its
perimeter. As one can show, which can be observed also in
above examples, thismeasure stabilizes on the octagonwhere
it achieves the highest value. This is caused by that fact that
in the calculation of the boundary of given discrete shape we
can “move” only according to lines which form the angle
which is a multiplicity of π/4 with the axis, see Fig. 3c for
illustration.

Since this measure was for a long time successfully
applied for circle discovery on images, we conclude that
from the practical point of view, octagon presents a sufficient
numerical approximation of the circle in most commonly
encountered application.

4 Kullback–Leibler Divergence and Cross-Entropy

4.1 Basic Definitions on Kullback–Leibler Divergence

We now remind the reader of the concept of differential
entropywhich is the entropy of a continuous random variable
[5].

Definition 1 The differential entropy h( f ) of a continuous
random variable with a density function f : RN → R+ is
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defined as

h( f ) = −
∫

RN
f (x) ln f (x)dx .

Differential entropy is also related to the shortest descrip-
tion length, and is similar in many ways to the well-known
entropy of a discrete random variable. Since it extends the
idea of Shannon entropy, a measure of the expected value
of the information in the message, to continuous probability
distributions. The value of differential entropy depends only
on the probability density of the random variable [5]. In this
paper we shall abbreviate differential entropy as entropy.

Lets now calculate differential entropy for simplest
density—uniform density.

Example 1 (Uniformdistribution)Consider the randomvari-
able distributed uniformly on the set S ⊂ R

N , so that its
density uS is 1/λN (S) on S and 0 elsewhere. Then its differ-
ential entropy is

h(uS) = −
∫

S

1

λN (S)
ln

1

λN (S)
dx = ln λN (S).

Since our aim is to study mainly uniform densities, for
a measurable S ⊂ R

N with finite and nonzero measure to
shorten notation, we will use the symbol uS in the place of
the uniform probability density

uS := 1

λN (S)
1S

on S, where

1S(x) :=
{
1, if x ∈ S,

0, if x /∈ S.

As a consequence, we will write μS and �S to denote the
mean and covariance of uS .

Remark 3 In general case one could consider various den-
sities, not just the uniform one. However in practical appli-
cations, Gaussian densities are typically considered, as they
are easy to work with. In many practical cases, the methods
developed under the assumption that data have normal distri-
bution work quite well even when the density is not normal.
Furthermore, the central limit theorem provides a theoreti-
cal basis for why it has such a wide applicability. Therefore,
this density approximates many natural phenomena so well,
and it has developed into a standard of reference for many
probability problems. As an excellent example we can refer
the reader to [11] where Gaussian distributions were used for
modeling contours and have been applied for shape retrieval.

Since in this paper we focus on circular and elliptical
shapes, to detect them we could theoretically use densities
which have ellipses or circles as level sets.Wehave decided to
use Gaussian ones, while for themwe have accurate, explicit,
and numerically efficient formulas for the estimation of their
parameters.

The differential entropy of Gaussian density is considered
in following example.

Example 2 (Gaussian distribution [28]) For the multivariate
Gaussian distribution, the entropy goes as the log determinant
of the covariance; specifically, the differential entropy of a
N -dimensional random variable with the density function

Nμ,�(x) := 1
√

(2π)N det(�)
exp

(− 1
2‖x − μ‖2�

)

is given by the formula

h(Nμ,�) = −
∫

RN
Nμ,�(x) lnNμ,�(x)dx

= N

2
ln(2πe) + 1

2
ln(det(�)).

We can now proceed to Kullback–Leibler divergence
which is the “cost” associated with selecting a distribution q
from distribution family Q to approximate the true distribu-
tion p [5].

Definition 2 The Kullback–Leibler divergence (or relative
entropy) DK L(p‖q) between two densities p and q is defined
by

DK L(p‖q) :=
∫

RN
ln(p(x)/q(x)) · p(x) dx .

For a family of densitiesQ, the Kullback–Leibler divergence
is given by

DK L(p‖Q) := inf
q∈Q

DK L(p‖q).

DK L is nonnegative in p andq, zero if the distributionsmatch
exactly and can potentially equal infinity. However, since the
Kullback–Leibler divergence is a nonsymmetric information
theoretical measure of distance of densities p from q, namely
DK L(p‖q) �= DK L(q‖p), it is not strictly a distance metric.
However, there are some natural modifications which deal
with this problem, e.g., [2,17].

By introducing next definition—cross-entropy, we can
simplify the DK L(p‖q) for arbitrary densities p and q.

Definition 3 The cross-entropy H×(p‖q)of twocontinuous
probability densities p and q is defined as

H×(p‖q) = −
∫

RN
p(x) ln q(x)dx .
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It is worth specifying that cross-entropy is a variant of the
entropy definition that allows us to compare two probability
distributions for the same random variable. We treat the first
argument as the “target” probability distribution and the sec-
ond as the estimated one for which we are trying to evaluate
how well it “fits” the target.

In the case when p has finite entropy, by Definition 3 we
can use the following equation

DK L(p‖q) = −
∫

RN
p(x) ln q(x)dx +

∫

RN
p(x) ln p(x)dx

= H×(p‖q) − h(p).

Thus, DK L(p‖q) is the measure of the additional cost
to pay for the model mismatch—the difference between the
descriptions of the random variables by q and by p.

4.2 Kullback–Leibler Divergence Between Uniform and
Gaussian Densities

We proceed to comparison of uniform and normal distribu-
tions by relative entropy.

Let G denote the set of all Gaussian densities. One can
easily verify that for arbitrary density f andGaussian density
g ∈ G, we have

H×( f ‖g) = H×(G[ f ]‖g),

where G[ f ] denotes Gaussian density with the same mean
and covariance as f . This means that the Kullback–Leibler
divergence DK L( f ‖G) is realized for g = G[ f ].

We will now show the formula for the Kullback–Leibler
divergence of uniform densities.

Observation 2 For a given uniform density uS on the set
S ∈ R

N and the Gaussian densities, we have

DK L(uS‖G) = N

2
ln(2πe) + 1

2
ln(det(�S)) − ln(λN (S)).

Proof Clearly DK L(uS‖G) = H×(uS‖G) − h(uS) = H×
(G[uS]‖G)−ln(λN (S)) = H×(G[uS]‖G[uS])−ln(λN (S)) =
h(G[uS]) − ln(λN (S)) = N

2 ln(2πe) + 1
2 ln(det(�S)) −

ln(λN (S)). �	
A crucial role in our investigation will be played by the

following constant

dN := DK L(uBN (0,1)‖G),

where BN (0, 1) denotes the unit ball in R
N and G denotes

the set of all Gaussian densities. From the scientific point
of view, it describes how good the compression of uniform
density on the unit ball by Gaussians is compared to the

optimal compression. Since dN plays the basic role in our
considerations, let us calculate it in the following series of
examples.

Example 3 Consider a uniform probability density on the
unit ball BN (0, 1) in R

N . Clearly mBN (0,1) = 0. Its covari-
ance matrix �BN (0,1) = [si j ] shall be computed. Obviously,
si j = 0 if i �= j . Consider the case i = j . Since sii =

1
λN (BN (0,1))

∫

BN (0,1)
x2i dx , the constant s = sii is well defined

and does not depend on the choice of i , and

Ns = s11 + · · · + sN N = 1

λN (BN (0, 1))

∫

BN (0,1)
‖x‖2dx

= 1

λN (BN (0, 1))

∫ 1

0
r2 · r N−1λN−1(∂BN (0, 1))dr

= 1

N + 2

λN−1(∂BN (0, 1))

λN (BN (0, 1))
.

Since

λN (BN (0, 1)) =
∫ 1

0
1 · r N−1λN−1(∂BN (0, 1))dr

= 1

N
λN−1(∂BN (0, 1)),

we obtain �BN (0,1) = 1
N+2 I, where I denotes the identity

matrix. As a direct consequence, we derive�B(0,
√

N+2) = I.

Example 4 From Example 3 we have �BN (0,1) = 1
N+2 I,

which implies that

H×(uBN (0,1)‖G) = N

2
ln

(
2πe

N + 2

)
.

Comparing this with h(uBN (0,1)) = ln(λN (BN (0, 1))) =
N
2 ln π − lnΓ ( N

2 + 1), we obtain

dN = N

2
ln

(
e

N/2 + 1

)
+ ln(Γ (N/2 + 1)). (5)

Consequently,

d1 = 1

2
(1 + ln(π/6)) ≈ 0.18,

d2 = 1 − ln(2) ≈ 0.31,

d3 = 1

2
(3 + ln

9

250
+ ln π) ≈ 0.41.

Having used the Stirling formula Γ (k + 1) ≈ √
2πk(k/e)k ,

we obtain

dN ≈ ln

(√
π N

e

)

for large N .
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5 Optimal Estimations and Main Results

5.1 Basis for the Simple Case

We shall now show that dN gives a lower bound on the com-
pression of the uniform densities, namely, we will calculate
the mismatch of the optimal model given by the uniform
density of S ⊂ R

N and the approximation given by normal
densities G, measured by the Kullback–Leibler divergence
(see Definition 3).

Proposition 1 Let S ⊂ R
N be such that μS = 0 and �S = I.

Then

DK L(uS‖g) ≥ dN for g ∈ G

with the equality holding if S = B(0,
√

N + 2) and g =
N (0, I).

Proof By the observation from the previous section, we
know that DK L(uS‖G) is realized for N (0, I):

DK L(uS‖G) = H×(uS‖N (0, I)) − h(S).

This means that if g ∈ G is arbitrary, then DK L(uS‖g) ≥
DK L(uS‖N (0, I)) with the equality holding if g = N (0, I).
Consequently, we may reduce to the case g = N (0, I).

Clearly, if S is a ball centered at zero such that �S = I,
then by the Example 3, we obtain S = B(0,

√
N + 2).

Consider now the case when S is not a ball centered at
zero (modulo a set of zero measure) and let B(0, r) denote a
ball centered at zero with the same Lebesgue measure as S.
We will show that

dN ≤ DK L(B(0, r)‖g) = H×(B(0, r)‖g) − h(B(0, r))

= H×(B(0, r)‖N (0, I)) − ln(λN (B(0, r)))

< H×(uS‖N (0, I)) − ln(λN (S)) = DK L(uS‖G),

which will complete the proof. Since by the assumptions
λN (B(0, r)) = λN (S), it is sufficient to show that

H×(uB(0,r)‖N (0, I)) < H×(uS‖N (0, I)). (6)

Since

H×(uS‖N (0, I))

= 1

λN (S)

∫

S

[‖x‖2
2

− N

2
ln(

√
2π)

]
dx

= 1

λN (BN (0, r))

∫

S

‖x‖2
2

dx − N

2
ln(

√
2π),

and

H×(uB(0,r)‖N (0, I))

= 1

λN (BN (0, r))

∫

B(0,r)

‖x‖2
2

dx − N

2
ln(

√
2π)

to verify (6) it is sufficient to show that the following inequal-
ity is true

∫

BN (0,r)

‖x‖2dx <

∫

S
‖x‖2dx . (7)

Let C = B(0, r)\S, D = S\B(0, r). Clearly from the
assumptions both C and D have nonzero measures.

Since

λN (C) + λN (B(0, r) ∩ S) = λN (B(0, r))

= λN (S)

= λN (D) + λ(B(0, r) ∩ S),

hence, measures of C and D are equal. To prove (7) it
is sufficient to observe that since C ⊂ B(0, r) and D ⊂
R

N \B(0, r), we have

∫

C
‖x‖2dx <

∫

C
r2dx =

∫

D
r2dx <

∫

D
‖x‖2dx,

and therefore
∫

B(0,r)

‖x‖2dx =
∫

B(0,r)∩S
‖x‖2dx +

∫

C
‖x‖2dx

<

∫

B(0,r)∩S
‖x‖2dx +

∫

D
‖x‖2dx

=
∫

S
‖x‖2dx .

�	

5.2 Main Results: New Measures

We shall now broaden the previous theorem to a more gen-
eral case. This will provide the grounds for defining the new
measures.

Theorem 2 Let S ⊂ R
N with mean μS and covariance �S.

Then

DK L(uS‖g) ≥ dN for g ∈ G

with the equality holding if S = B�S (μS,
√

N + 2) and g =
N (μS, �S).

Proof Without loss of generality, by applying translation if
necessary, we can reduce to the case when μS = 0. Next,
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by applying transformation x → (�S)
−1/2x , we reduce the

theorem to the case when �S = I. Proposition 1 completes
the proof. �	

It is worth observing that the above allows one to check
whether a given set is a ball or a ellipsoid with given radius
and covariance.

Corollary 1 Let S ⊂ R
N with mean μS and covariance �S.

Then

λN (S)/
√
det(�S) ≤ ((N + 2)π)N/2

Γ (N/2 + 1)
,

with the equality holding if S is an ellipsoid. In such case

S = B�S (μS,
√

N + 2).

Proof From Observation 2 and Example 4

DK L(uS‖G) = ln

(
(2πe)N/2 ·

√
det�S

λ(S)

)

≥ N

2
ln

(
e

N/2 + 1

)
+ ln(Γ (N/2 + 1)),

with the equality holding if S is an ellipsoid, after trivial
calculations, we obtain that for every S

Γ (N/2 + 1)λN (S)

((N + 2)π)N/2 · √
det(�S)

≤ 1

with the equality holding if S is an ellipsoid.

We denote for an arbitrary S ⊂ R
N :

EN (S) := Γ (N/2 + 1)

((N + 2)π)N/2 · λN (S)√
det(�S)

,

which is an ellipticity measure.
By considering the family of all spherical Gaussians G(·I),

that is the Gaussians with covariance proportional to identity,
we obtain the formula for N -balls identification.

Corollary 2 Let S ⊂ R
N with mean μS and covariance �S.

Then

λN (S)/(tr(�S))
N/2 ≤ ((N + 2)π/N )N/2

Γ (N/2 + 1)
,

with the equality holding if S is a ball. In such case

S = B
(

μS,

√
N + 2

N
tr(�S)

)
.

Proof By Observation 2 and Example 4

DK L(uS‖G(·I )) = ln

((
2πe

N

)N/2(
tr(�S)

)N/2 1

λ(S)

)

≥ N

2
ln

(
e

N/2 + 1

)
+ ln(Γ (N/2 + 1)),

with the equality holding if S is a ball, after trivial calcula-
tions, we obtain

Γ (N/2 + 1) · λN (S)

((N + 2)π/N )N/2 · (tr(�S))N/2 ≤ 1

with the equality holding if S is a ball.

We denote for an arbitrary S ⊂ R
N :

CN (S) := Γ (N/2 + 1)

((N + 2)π/N )N/2 · λN (S)

(tr(�S))N/2

which is a circularity measure.

Remark 4 Directly formCorollaries 1 and 2, we can summa-
rize that the investigated set S ⊂ R

N can be approximated
or replaced by the circle

B
(

μS,

√
N + 2

N
tr(�S)

)

or the ellipse

B�S (μS,
√

N + 2)

with accuracies described by CN and EN , respectively. This
highlights that the given theory can be used as a technique
for reducing the complexity of a given object (e.g., in the
motion tracking5)—see Fig. 4. Moreover, in the case of an
elliptical shape we can obtain the object orientation in space
by the �S matrix.

6 The new measure properties in simple
illustrations

The following theorem summaries the desirable properties
of EN and CN .

Theorem 3 The ellipticity measure EN (S) and circularity
measure CN (S) of given nonempty set S ⊂ R

N satisfies

5 According to the values ofCN andEN wecan decide if a given object is
more like circle (both measures gets a high values) or ellipse (ellipticity
measure has high value). By this knowledgewe can observe/investigate,
e.g., movement on the whole object by the simpler approach—circle or
ellipse, respectively (compare with Fig. 1).
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(a) (b) E2 = 0.7044 (c) C2 = 0.5183

Fig. 4 Approximation of the letter P by an ellipse (a) original object (b) and a circle (c) according to the Corollaries 1 and 2. Since the ellipticity
for the original shape is higher then circularity, the approximation by the ellipse is more accurate

(a) EN (S) ∈ (0, 1] for all sets S;
(b) CN (S) ∈ (0, 1] for all sets S;
(c) EN (S) = 1 ⇔ S is an ellipse;
(d) CN (S) = 1 ⇔ S is a N-ball(see footnote6);
(e) CN is invariant with respect to similarity and isometric

transformations;
(f) EN is invariant with respect to affine transformations.

Proof Items (a)–(d) follow directly form the Corollaries 1
and 2.

Items (e) and (f) follows from the properties of the covari-
ance matrix.

In the following part of this section the new circularity
measure properties are illustrated.

When we apply the measure to image data, we shall threat
a single pixel (point with coordinates (x, y) ∈ ([1, w] ∩
Z) × ([1, h] ∩Z), where w × h is the size of the image) like
a square. It allows to convert the discrete data of an image
to continuous, which is more natural and consistent with the
human perception of images. To calculate the measure of
such transformation, we use the formulas from the Eq. (4),
which is helpful for the calculation properties of an arbitrary
set, namely the covariance matrix. Moreover, it is convenient
to treat the discrete set as a set of hypercubes, then we can,
in a more natural way, introduce the continuous densities. In
the case of the image data we set δ = 1, which is because
the coordinates of each pixel are integers. In 3-dimensional
examples we use an arbitrary δ value.

6.1 Non-frontal View Image Correction

A basic limitation of many image processing algorithm is
that they require an “on-axis” image of investigated object.
Clearly in most “real-life” pictures we have only side-view
of the object. Figure 12 presents a basic concept how to
deal with such situation. Namely, we modify the picture by
respective affine transformation so that the elliptical object
becomes circle-shaped. To do so we fit an optimal ellipse
(denote it by C) to the object we assume to be circular,
in our case road sign (to obtain the shape of the road sign

6 With accuracy to the set of Lebesgue measure zero.

we first use the red filter, and next fill the inside). Then we
apply to the picture the affine operation which transforms
this ellipse into a circle, which is given by the following
formula

x → �
−1/2
C (x − μC ).

This procedure transforms the elliptical object almost into a
circle. For further example we refer the reader to [19].

6.2 Noise Resistance

6.2.1 Shape Boundary Noise

Figure 5 illustrates the robustness of E2. Presented shapes
have similar measured ellipticity even though the last shape
has a very high noise level. The noise is added to the shape
boundary; thus, the perimeter of the object is increased. This
experiment shows that the new measure can cope with such
a situation.

6.2.2 Salt and Pepper

In common applications the images which we are working
with contain same noise—random, unwanted signal. Fig-
ure 13 illustrates the reliability of C2 for salt and pepper noise,
forwhich a certain amount of the pixels in the image are either
black orwhite. The percentage level describes the probability

(a) 0.7545 (b) 0.7610

(c) 0 .7633 (d) 0.7489

Fig. 5 Measured ellipticity E2 of a shape with added noise [31]
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of occurrence of such kind of noise. The experiments shows
that the covariance matrix which is base component enforces
that C2 of plays well in such situations.

6.2.3 Missing Values Resistance

The C2 is capable of handling unknown or missing values.
Figure 14 presents the resistance of C2 for such kind of data.
The percentage describes the overall level of unknown data.
It is important to notice that the circularity value increases
with the increase amount of present data.

6.3 Circle Estimation

Figure 6 presents circularity measure C2 for regular poly-
gons from equilateral triangle to dodecagon. The aim of this
example is to find the good approximation for a circle. From
Theorem 3 we derive that E2 reaches 1 only for a perfect cir-
cle. Thus, we want to acquire a simple template which can
be treated as an approximation of a circle.

First of all, we can confirm that the circularity measure
behaves in a natural way—it increases with the number of
polygon sides.

Figure 6 shows that for a hexagon a value of 0.9924 is
reached, which gives a two decimal places accuracy. More-
over, if a higher precision is needed, a decagon provides an
accuracy of three decimal places.

6.4 E2 and C2 Behavior

Figure 7 presents images ranked with respect to C2. Differ-
ent rank is obtained by measures Cst and CH . This example
illustrates howshape changing could lead to differences in the
measured circularity. In this case the changes in themeasured
circularity C2 are in accordance with the natural perception
of how a circularity measure should behave.

Figure 8 presents the same experiment for E2.
We highlight that the values of Cst and CH were taken

from [31], while EH was taken from [30]. Moreover, the
values of C2 and CH are theoretically equal—compare with
Observation 1—the differences are caused by a numerical

Fig. 6 Circularity measure for
regular polygons from
equilateral triangle to
dodecagon. C2 of hexagon gives
a one decimal place accuracy,
while decagon gives an accuracy
of three decimal places. Images
in boxes represent the
approximation of circle with an
accuracy of two and three
decimal places with respect to
C2 measure

(a) 0.8270 (b) 0.9549 (c) 0.9833 (d) 0.9924 (e) 0.9960

(f) 0.9977 (g) 0.9986 (h) 0.9991 (i) 0.9994 (j) 0.9996

Fig. 7 Shapes are ranked with
respect to their measure C2
circularities [31]. Description
under the images also contains
Cst and CH

(a)
C2 = 0.8270
CH = 0.8265
Cst = 0.6046

(b)
C2 = 0.8142
CH = 0.8174
Cst = 0.2335

(c)
C2 = 0.7827
CH = 0.7851
Cst = 0.5772

(d)
C2 = 0.7765
CH = 0.7777
Cst = 0.2677

(e)
C2 = 0.7725
CH = 0.7789
Cst = 0.0651

(f)
C2 = 0.7462
CH = 0.7459
Cst = 0.2622

(g)
C2 = 0.7362
CH = 0.7387
Cst = 0.1651

(h)
C2 = 0.6964
CH = 0.6967
Cst = 0.1553

(i)
C2 = 0.6582
CH = 0.6600
Cst = 0.2506

(j)
C2 = 0.6196
CH = 0.6142
Cst = 0.1102
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Fig. 8 Shapes are ranked with
respect to their E2 ellipticity
measure [30]. Description under
the images also contains EH and
C2

(a)
E2 = 0.9811
EH = 0.9810
C2 = 0.9567

(b)
E2 = 0.8528
EH = 0.8514
C2 = 0.7836

(c)
E2 = 0.8278
EH = 0.8267
C2 = 0.8202

(d)
E2 = 0.7797
EH = 0.7785
C2 = 0.7764

(e)
E2 = 0.7219
EH = 0.7115
C2 = 0.6619

(f)
E2 = 0.6579
EH = 0.6517
C2 = 0.5647

(g)
E2 = 0.5152
EH = 0.5033
C2 = 0.5132

(h)
E2 = 0.4946
EH = 0.4881
C2 = 0.4732

(i)
E2 = 0.4498
EH = 0.4038
C2 = 0.4030

(j)
E2 = 0.3253
EH = 0.2802
C2 = 0.3050

(a) (b) δ = 1.00
E2 = 0.6667
C2 = 0.6667

(c) δ = 0.50
E2 = 0.9326
C2 = 0.9326

(d) δ = 0.25
E2 = 0.9906
C2 = 0.9906

(e) δ = 0.10
E2 = 0.9990
C2 = 0.9990

Fig. 9 Approximation of a set A = {(x, y, z) ∈ R
3 : x2 + y2 + z2 ≤ 1} by cubes with side δ. Circularity of set A increases with the approximation

accuracy

(a) (b) δ = 1.00
E2 = 0.8876
C2 = 0.3793

(c) δ = 0.50
E2 = 0.8416
C2 = 0.7157

(d) δ = 0.25
E2 = 0.9798
C2 = 0.8570

(e) δ = 0.10
E2 = 0.9986
C2 = 0.8536

Fig. 10 Approximation of a set B = {(x, y, z) ∈ R
3 : x2 + 3y2 + 2z2 ≤ 1} by cubes with side δ. Ellipticity of set B increases with the

approximation accuracy

error. On the other hand, E2 and EH are in general not equal—
see Fig. 8i.

6.5 3D Shapes

In this experiment, 3-dimensional sets are considered and
defined as follows

A = {(x, y, z) ∈ R
3 : x2 + y2 + z2 ≤ 1},

B = {(x, y, z) ∈ R
3 : x2 + 3y2 + 2z2 ≤ 1},

C = {(x, y, z) ∈ R
3 : 1 ≤ 1

2
x2 + y2 + z2 ≤ 2 and xyz ≥ 0}.

Figures 9a, 10a, and 11a illustrate the completed shapes of
sets A, B, and C .

The next step in this experiment is to approximate the
shape by fixed size cubes. Let S denote the considered object.
To obtain this approximation we proceed as follows:

– we choose δ > 0;
– by taking P = S ∩ (δZ)3 we obtain a discrete represen-
tation of our shape S;

– each point x ∈ P is replaced by the cube of side δ.
The center coordinates of such cube Qx is the same as
replaced point namely μ(Qx ) = x for same x ∈ P . We
put Q = ∪x∈P Qx ;
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(a) (b) δ = 1.00
E2 = 0.6101
C2 = 0.5917

(c) δ = 0.50
E2 = 0.2701
C2 = 0.2396

(d) δ = 0.25
E2 = 0.2355
C2 = 0.2155

(e) δ = 0.10
E2 = 0.2268
C2 = 0.2277

Fig. 11 Approximation of a set C = {(x, y, z) ∈ R
3 : 1 ≤ 1

2 x2 + y2 + z2 ≤ 2 and xyz ≥ 0} by cubes with side δ. The set C consists of 4 pieces
and is empty inside; thus, both ellipticity and circularity measures are low

Fig. 12 Road sign image
preprocessing. a Original road
sign image. The middle image is
a binarization of original image
(b) according to values of its red
channel. After the described
operations, the shape of the sign
was changed and is circle-like,
see (c)

(a) original image (b) red channel binarization (c) image after preprocessing

Fig. 13 The C2 measure in case
of images with salt and pepper
noise

(a) 10%
C2 = 0.934286

(b) 30%
C2 = 0.814666

(c) 50%
C2 = 0.692458

(d) 70%
C2 = 0.613423

Fig. 14 The C2 for the sets with
unknown and missing values

(a) 10%
C2 = 0.10221

(b) 30%
C2 = 0.29884

(c) 50%
C2 = 0.503926

(d) 70%
C2 = 0.69809

(e)
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– we calculate the circularity and the ellipticity for obtained
shape by equations from Corollaries 1 and 2 as follows:

E3(Q) = 3
√
5

100π
· cardP · δ3
√
det(�P + 1

12δ
5I)

,

C3(Q) = 9
√
15

500π
· cardP · δ3

tr(�P ) + 1
4δ

5
.

It is worth mentioning that the covariance matrix for each
cube Qx is equal to 1

12δ
5I.

Figures 9 and 10 present examples of a sphere and an
ellipsoid, respectively. The ellipticity and circularitymeasure
increases with the approximation accuracy. It can thus be
concluded that the behavior of the new measure is natural
even in higher dimensions.

Figure 11 presents the situation for a shape with a hole.
Both measures respond to this defect correctly and the cal-
culated value is low (Figs. 12, 13, 14).

7 Conclusions

The authors have placed their research efforts in the field
of pattern recognition to establish a new measure of cir-
cularity and ellipticity based on moments. The proposed
measure works in arbitrary dimensions, so we can test, e.g.,
for N-squares. The theoretical background and the proof that
the conditions are well defined are also presented in this
work.

This approach can be treated as a generalization of the
measures Cst and EI mentioned in Sect. 2. However, the
authors’ approach can be applied in arbitrary dimensions (see
Sect. 6).

The fact that circles and ellipses maximize the above
invariant has enabled the authors to introduce a new circular-
ity CN and ellipticity EN measure defined in Corollaries 1 and
2. It is shown that CN and EN range over the interval (0, 1]
and equal 1 if and only if the investigated set is, respectively,
circle or ellipse.

Experiments provided an illustration for the theoretical
observations and demonstrate the applicability of the new
ellipticity and circularity measures. The presented experi-
ments emphasize the advantages of the new measures:

– behavior consistent with the intuition;
– invariance for similarity transformations;
– applicability in higher dimensions;
– allows a simpler description of any given object;
– the calculation time is significantly reduced.
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