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Abstract
Putting individual constants and quantifiers into the same syntactic category within
first-order language promises to have far-reaching consequences: a syntax of this
kind can reveal the potential of any such language, allowing us to realize that a vast
class of noun phrases, including non-denoting terms, can be accommodated in the
new syntax as expressions suited to being subjects of sentences. In the light of this, a
formal system that is an extension of classical first-order logic is developed here, and is
equippedwith an appropriate semantics. An ontological interpretation of the new logic
is then also provided, with several categories of object and notions of existence being
distinguished. Last but not least, a modal version of the logic, with some interesting
formal features, is proposed.

Keywords Individual constants · (generalized) quantifiers · General objects ·
Particular objects · Existence · Modal logic · De re – de dicto.

1 Grammatical Versus Logical Treatments of Names and Quantifiers

Traditionally, grammarians have treated proper names, and quantifier expressions such
as something, everything, somebody, everybody, some dog and every dog, as expres-
sions of the same category: namely, that of noun-phrases. (Some call it the category
of determiner-phrases). The reason is simple: both names and quantifiers can occupy
subject positions in simple subject-predicate sentences. Nevertheless, intuitively, there
is something about this approach that seems bound to catch our attention. To be sure,
the two sentences Tom is lazy and Somebody is lazy have the same surface structure,
which is that of subject-predicate; however, logicianswould insist on a different logical
structure for each of them, these being Pa and ∃x Px , respectively. The motivation for
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jpasnicz@bacon.umcs.lublin.pl

1 Department of Logic and Cognitive Science, Institute of Philosophy, Maria Curie-Skłodowska
University, Lublin, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10849-023-09395-0&domain=pdf
http://orcid.org/0000-0002-1778-7167


474 J. Paśniczek

distinguishing the two logical forms is clear: names are scope-independent, whereas
quantifiers are not, names are categorematic whereas quantifiers are syncategorematic
expressions.1

Let us consider the following sentences:

(1a) Tom is not lazy (Ia) Somebody is not lazy

(1b) It is not the case that Tom is lazy (Ib) It is not the case that somebody is
lazy

(2a) Tom is lazy and crazy (IIa) Somebody is lazy and crazy

(2b) Tom is lazy and Tom is crazy (IIb) Somebody is lazy and somebody
is crazy

(3a) Tom loves Mary (IIIa) Everybody loves somebody

(3b) Mary is loved by Tom (IIIb) Somebody is loved by
everybody

(4a) Tom loves himself (IVa) Somebody loves himself

(4b) Tom loves Tom (IVb) Somebody loves somebody

Note, first, that sentences in the same lines have the same grammatical structure.
Subject-places and object-places in sentences in the left column are occupied by proper
names, but in the right column by quantifier expressions. Apparently, the pairs of
sentences (1a) and (1b), (2a) and (2b), (3a) and (3b), and (4a) and (4b) have the same
truth values – and therefore, unsurprisingly, their logical structure is rendered by the
same formulas, these being¬Pa, Pa ∧ Qa, Rab, andRaa, respectively. On the other
hand, the sentences in the pairs (Ia) and (Ib), (IIa) and (IIb), (IIIa) and (IIIb), and (IVa)
and (IVb) may differ in their truth values, and consequently in their meaning.2 Logic
cannot ignore such differences, and must be capable of explaining them syntactically.
This is why the logical forms of pairs of sentences on the right-hand side are distinct:
∃x¬Px and ¬∃x Px , ∃x(Px ∧ Qx) and ∃x Px ∧ ∃x Qx , ∀x∃y Rxy and ∃x∀y Ryx ,
and ∃x Rxx and ∃x∃y Rxy.

Hence, it is clear why sentences containing quantifier expressions should require a
more complicated syntactical representation than names. It was Frege who introduced
the language of predicate calculus and the precise notion of a quantifier, this being
undoubtedly one of the greatest achievements in the realm of logical theory.3 The
consequence of the Fregean revolution was that names and quantifiers are assigned to
two different categories or types of expression. Montague proposed a type-theoretical

1 For definition of categorematic-syncategorematic see for exampleWikipedia: “In logic and linguistics, an
expression is syncategorematic if it lacks a denotation but can nonetheless affect the denotation of a larger
expression which contains it. Syncategorematic expressions are contrasted with categorematic expressions,
which have their own denotations”.
2 Strikingly, (IIIa) is ambiguous, but one of its meanings does not coincide with the meaning of (IIIb).
3 The invention of classical quantifiers is sometimes also attributed to Peano and Russell.
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approach to natural language based on λ-calculus, in which names and quantifiers are
of the same type. This approach is pretty technical, making use as it does of strong
formal tools—basically, higher-order logic. Some even claim that it is necessary to
use such tools.4 However, we would like to explore the idea of bracketing together
names and quantifiers in classical first-order logic broadly conceived.

We start by unifying names and quantifiers categorially. Since the latter expres-
sions involve more complicated sentence structure, all we should do is let individual
constants occupy the same position in sentences as quantifiers—and only this posi-
tion. Thus, instead of Pa, we will now have ax Px , and generally, for every
formula A(x), ax A(x) will be a formula as well. Such a notation may seem
awkward and can be replaced by the more familiar the λ-notation, this being
[λx A(x)]a. However the counterpart of λ-elimination principle does not hold for
our (quantificational) notation (i.e. ax A(x) is not equivalent to A(a/x)). Formu-
las (1a)-(4b) will now have the forms ax¬Px,¬ax Px, ax(Px ∧ Qx), ax Pa ∧
ax Qx, axby Rxy, byax Rxy, ax Rxx, and axay Rxy, respectively.

One may wonder why we are adopting more complicated formal representations of
sentences with singular names, instead of the traditional ones. Certainly, the use of a
simpler syntax can be viewed as a question of economy. But what is desirable from the
point of view of formal elegance and simplicity may not always be preferable when
the adequacy of the formal representation of natural-language sentential structures
is at stake. Moving individual constants to the quantificational position allows us to
express, and compare, formal properties of the two kinds of expression.5 From now
on, then, we will call individual constants or quantifiers collectively terms, and let t
represent any one of these. Furthermore, we will “officially” introduce a language M,
consisting of the same symbols as the language of classical first-order logic (without
function symbols). The grammar of M will be defined as follows: (1) the individual
constants a, b, a1, a2 . . . and the quantifiers ∀ and ∃ are terms; (2) all expressions of
the form Px1 . . . xn and x = y are formulas; (3) if A and B are formulas, then¬A and
(A ⊃ B) are formulas; (4) if A is a formula, and t is a term, then t x A is a formula.6

Now consider the following scope-involving properties of such terms:

P1 t x¬A ⊃ ¬t x A.
P2 ¬t x A ⊃ t x¬A.
P3 t x(A ∧ B) ⊃ t x A ∧ t x B.
P4 t x A ∧ t x B ⊃ t x(A ∧ B).
P5 t x A ∨ t x B ⊃ t x(A ∨ B).
P6 t x(A ∨ B) ⊃ t x A ∨ t x B.
P7 t x(A ⊃ B) ⊃ (t x A ⊃ t x B).
P8 (t x A ⊃ t x B) ⊃ t x(A ⊃ B).

4 See, for example (Akiba 2018).
5 The idea of treating names as scope dependent expressions and as quantifier-like expressions is not
new. In particular it can be found in: (Chin-Mu Yang 2007), (Evans 1982), (Fitting & Mendelsohn 1998),
(Hawthorne & Manley 2012), (Justice 2007), (Sainsbury 2005). However, these approaches have basically
different goals than our approach. So I am not going to discuss them here.
6 We can distinguish a category of ‘predicates’, i.e. expressions of the form x A where A is a formula. Than
instead of (4) we may adopt the condition: if t is a term and π is a prediacate, then tπ is a formula. Such a
condition would make explicit the fact that t x A is a subject-predicate formula.
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P9 t xsy A ⊃ sytx A.
P10 t xt y A ⊃ t x A(x/y), where A(x/y) is a formula obtained from A by freely

substituting every occurrence of y by x .
P11 t x A ⊃ t xt y A(y/x), where A(y/x) is a formula obtained from A by freely

substituting every or some occurrence of x by y.
P12 t x(A ⊃ B) ≡ (A ⊃ t x B), where x is not free in A.
P13 t x(A ⊃ B) ≡ (¬t x¬A ⊃ B), where x is not free in B.
P14 t x A ≡ A, where x is not free in A.
P15 t x A ≡ t y A∗, where A∗ differs from A in that x is free in A in just those places

where y is free in A∗.

Clearly, individual constants, as scope-independent expressions, should have all the
syntactic properties listed above. It means that after replacing t or s by a and then every
formula ax A(x) by the classical formula A(a/x), P1–P15 turn out to be classicaly
valid (the replacement makes them tautologies). This amounts to the same thing as
the fact that the principle of λ-eliminability holds for names: [λx A(x)]a ≡ A(a/x).

Now let us say that quantifiers fulfill a formula of languageM if the formula becomes
valid in the sense of classical semantics (i.e. is a classical thesis) after replacing of s
and t by a classical quantifier. For instance, ∀ (but not ∃) fulfills P7 since ∀x(A ⊃ B) ⊃
(∀x A ⊃ ∀x B) is a classical thesis; ∃ fulfills (but not ∀) P11 since ∃x A ⊃ ∃x∃y A(y/x)

is a classical thesis. Quantifiers ∃ and ∀ in this order fufill P9 since ∃x∀y A ⊃ ∀y∃x A
is a classical thesis.

Both quantifiers fulfill P3, P5, P12, P13, P14, and P15. The universal quantifier
also fulfills P1, P4, P7, P9 (when s is ∀), and P10. Besides those mentioned above, the
existential quantifier fulfills P2, P6, P8, P9 (when t is ∃), and P11. Clearly, individual
constants will have all the syntactic properties possessed by either the universal or the
existential quantifier.

The syntactic properties listed above, which are distinct for individual constants
and for quantifiers, can be expressed explicitly using the following conditionals:

P*1 ¬t xC ∧ ∃xC ⊃ (t x¬A ⊃ ¬t x A).
P*2 t xC ∧ ¬∀xC ⊃ (¬t x A ⊃ t x¬A).
P*3 ¬t xC ∧ ∃xC ⊃ (t x A ∧ t x B ⊃ t x(A ∧ B)).
P*4 t xC ∧ ¬∀xC ⊃ (t x(A ∨ B) ⊃ t x A ∨ t x B).
P*5 ¬t xC ∧ ∃xC ⊃ (t x(A ⊃ B) ⊃ (t x A ⊃ t x B)).
P*6 t xC ∧ ¬∀xC ⊃ ((t x A ⊃ t x B) ⊃ t x(A ⊃ B)).
P*7 t xC ∧ ¬∀xC ⊃ (sxty A ⊃ t ysx A).
P*8 ¬sxC ∧ ∃xC ⊃ (sxty A ⊃ t ysx A).
P*9 ¬t xC ∧ ∃xC ⊃ (t xt y A ⊃ t x A(x/y)), where A(x/y) is a formula obtained

from A by freely substituting every occurrence of y by x .
P*10 t xC ∧ ¬∀xC ⊃ (t x A ⊃ t xt y A(y/x)), where A(y/x) is a formula obtained

from A by freely substituting every or some occurrence of x by y.

Here,¬t xC∧∃xC means that t is not the existential quantifier (i.e. it is an individual
constant or the universal quantifier), and t xC ∧¬∀xC means that t is not the universal
quantifier (i.e. it is an individual constant or the existential quantifier). It follows
from P*1-P*10 that if a term does not coincide with the universal or the existential
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quantifier then it is scope-independent. We can understand these terms as individual
constants. Such an approach suggests that if P*1–P*10 are stipulated then we need
not mention explicitly individual constants while assuming that terms are the basic
category of expressions of language M. Formally, the category will consist of term
variables (s, t, t1, t2, . . .) and two constant terms, namely: ∀, ∃.

Still proceeding in a systematic way, we can distinguish another group of logical
properties common to individual constants and quantifiers. To do so systematically,
we will develop an axiomatic system M.

2 SystemM

The system M consists of the following axioms and rules:

M1 Classical truth-functional tautologies.
M2 ∀x(A ⊃ B) ⊃ (t x A ⊃ t x B).
M3 A ⊃ ∀x A provided x is not free in A.
M4 ∀x A ⊃ A(y/x), where A(y/x) is a formula obtained from A by freely substi-

tuting every occurrence of x by y.
M5 t x A ⊃ t y A(y/x) provided y is not free in A.
M6 ¬∃x A ⊃ ∀x¬A.
MP if 	A ⊃ B and	A, then	B.
MG if 	A, then 	t x A and 	¬t x¬A.

Additionally, we enrich the M-system with identity:
M7 x = x .
M8 x = y ⊃ (A ⊃ A(y‖x)),

where A(y‖x) is the formula that results from freely substituting all or only
some free occurrences of x by y.
Let us mention some easily provable theses of M:

M9 A ⊃ ∃y A(y/x), where A(y/x) is a formula obtained from A by freely substi-
tuting every, or some, occurrence of x by y.

M10 ∀x A ⊃ t x A(a version of dictum de omni)
M11 t x A ⊃ ∃x A(a version of dictum de singulo, i.e. existential generalization)

Formulas P3, P5, P12, P13, P14, and P15 are theses of M, and besides those, none
of P*1–P*10 can be proved in M.7

Let us call P*1–P*10 collectively as P*. Now, we can take M + P* as a logic of
sentences in the language of this paper representing individual constants and quanti-
fiers. Notably, we introduce the category of terms in order to extract common syntactic
properties of individual constants and quantifiers, and properties that serve to differ-
entiate the two categories of expressions. Again, individual constants will be those
terms which are neither universal nor existential quantifiers according to P*1-P*10.

One can observe a form of duality. For any term t (individual constant or quantifier),
there will be a term t such that t x A ≡ ¬t x¬A. In particular, ∀ = ∃, ∃ = ∀, a =
7 However, P*1-P*10 are not mutually independent. In particular, P*1-P*6 follow from P*7-P*10 on the
ground ofM.
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¬a¬ = a. It can be easily proved that even system M alone is closed under dual
terms: whatever formula A(t) is a thesis, A

(
t
)
is also a thesis. If we assume at the start

that the set of terms is closed under the duality operation, then the system M becomes
simpler (in particular, MG reduces to: if 	A then 	t x A).8

3 Semantics for M+ P*

The semantics for M + P* closely resembles the semantics for classical first-order
logic construed along Tarskian lines. By a model, we mean a pair m = [D, I ], where
D is a non-empty set called the domain of interpretation, and I is a function defined
on predicate symbols and terms and called an interpretation:

(1) For any term t , I (t) = {{d}} for some d ∈ D or I (t) = {D} or I (t) = ℘(D)−{∅},
I (∀) = {D}, I (∃) = ℘(D) − {∅}.

(2) I (P) ⊆ Dn, for some n-argument predicate symbol P.

An assignment in D will be a function V which assigns to every variable an element
of D. Given V , by V [d/x] we mean the function which is just like V , except that
V [d/x](x) = d. The truth conditions for atomic formulas, for negation, and for
implication are the same as in the classical semantics.

(3) ‖Px1 . . . xn‖m
V = 1 iff [V (x1), . . . , V (xn)] ∈ V (P); ‖Px1 . . . xn‖m

V = 0 other-
wise

(4) ‖x = y‖m
V = 1 iff V (x) = V (y); ‖x = y‖m

V = 0 otherwise
(5) ‖¬A‖m

V = 1 − ‖A‖m
V

(6) ‖A ⊃ B‖m
V = max[1 − ‖A‖m

V , ‖B‖m
V ]

(7) ‖t x A‖m
V = 1 iff there exists X ∈ I (t) such that X ⊆ IV (x A) ={

d ∈ D : ‖A‖m
V [d/x}

}

In particular, the formula t x Px is true in m if and only if there exists an X ∈ I (t)
such that X ⊆ I (P).

It should be stressed that t x A is to be understood as the subject-predicate formula
expressing the basic predication ofM, i.e.M-predication. The truth value of the formula
is given by condition (7).

A formula is M-valid if and only if it is true in every model with respect to every
assignment.Note that interpretations of all terms are of the same type—they are subsets
of ℘(D). What is noteworthy is that this is the kind of interpretation that is specific to
generalized quantifiers.9

8 If t is a term and 	A, then 	t x A i.e. 	¬t x¬A. Also, P*2, P*4, P*6, P*8, and P*10 become the dual
formulas to P*1, P*3, P*5, P*7, and P*9 respectively.
9 This semantic idea is not entirely new. It goes back to medieval logic, when quantifier expressions were
treated as categorematic: i.e. as representing kinds of entities called ‘quantifier objects’. At the same time,
Frege’s view of quantifiers as second-order concepts may also be associated with a categorematic reading
of these expressions. Nevertheless, it was Montague who, in his formal treatment of natural language,
explicitly proposed a uniform semantic treatment of names and quantifierswithin the category of generalized
quantifiers; cf. (Montague 1974).
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Undoubtedly, the logic M + P* is equivalent to classical first-order logic.10 That
is why we can say that quantifiers and constants can be treated as expressions of
the same category within classical logic broadly conceived. Individual constants are
distinguished from quantifiers at the inferential level (not just the linguistic one). But
one can ask what is to be gained from such a treatment: isn’t M + P* excessively
complicated? This complexity, it seems, does not in fact outweigh its richer logical
content. The axiomsP* seem unnatural, and their content may seem unclear. However,
it turns out that the logic M + P*, even if not considered particularly interesting, can
reveal a wider logical perspective.

What about system M itself? If P* narrows the category of terms to individual
constants and classical quantifiers, then onemight suspect thatM alone allows for some
other terms.What kind of terms? The answer will be clear if we equip systemM with a
semantics. Let us note that there are a lot of subsets of℘(D)which remain unexploited
in the semantics forM + P*: i.e. they are neither interpretations of individual constants
nor classical quantifiers. So, let us let us extend the interpretations of terms in the
following way:

(1*) I (t) ⊆ ℘(D), I (t) �= ∅ and I (t) �= {∅}, I (∀) = {D}, I (∃) = ℘(D) − {∅}.
retaining all other semantic conditions unchanged ((2)–(7)). The above, (1*), means

that almost all subsets of ℘(D) may be interpretations of terms. Accordingly, we will
not mention ‘individual constants’, i.e. terms which are scope independent, as separate
category of symbols of M. Curiously enough, ‘individual constants’ (singular names)
and someother kinds of noun-phrases canbedirectly defined in logicM on its deductive
level (see: the table in Sect. 4).

So what kind of terms are they supposed to be? What can they represent or stand
for? The answer is that the terms are generalized quantifiers, more precisely, monadic
generalized quantifiers11 and that they can be interpreted in various ways in the natural
language. However, it is worth noting at this point that M does not accommodate all
monadic generalized quantifiers – only those that are increasingly monotonic (see:
M2 and (7)). Needless to say, soundness and completeness theorems can be proved
for M.12

Remarkably, M looks like a generalization of classical first-order logic, and is
actually an extension of it: the classical axiomatic framework is explicitly included
in the axiomatic system of M. Undoubtedly, this resemblance to classical logic is a

10 Let us define a translation T of formulas of language M onto language of classical first order language:

(a) T (A) = A if A is an atomic formula.
(b) T (¬A) = ¬T (A)

(c) T (A ⊃ B) = T (A) ⊃ T (B)

(d) If t is not a quantifier then T (t x A) = T (A(t |x))

(e) T (Qx A) = QxT (A), where Q is a classical quantifier.

Then we can notice that: A is a thesis of M + P* iff T (A) is a thesis of classical logic. From this the
completeness of M + P* follows in straightforward way.
11 See the classical paper by Barwise & Cooper (1981) and Westerståhl (1989).
12 Completeness can be proved in a Henkin-style way; cf. (Paśniczek 1987, 1988). The proof is a little more
complicated than the proof of completeness of classical first-order logic. In particular, in order to build the
maximally consistent set of formulas we introduce to language not one but two sets of ‘witnesses’.
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great advantage of M, making it more familiar and easier to learn and use. On the
other hand, despite this resemblance, the expressive power of M as displayed in this
paper far exceeds that of classical logic, especially in its philosophically relevant
respects.13 First, M provides a category of terms that may represent a rich class of
language expressions (proper names, descriptions, noun phrases, quantifiers, etc.). The
common form of predication for these expressions, M-predication, is displayed by
formula t x Px (more generally: t x A). Besides, these terms may receive an ontological
interpretation and consequently, M can be associated with a rich ontology of objects.
Intuitively, according to (7) the object denoted by t possesses property P iff there
exists X ∈ I (t) such that X ⊆ I (P).14

4 Philosophical Interpretations of M

We will show now how M can be applied to various kinds of natural language expres-
sions that play the role of subjects in subject-predicate sentences, i.e. the sentences
represented by formulas t x Px, and how the truth value of the sentences are evalu-
ated (according to condition (7)). Let us consider first expression the Polish Pope.
There are two ways of interpreting it in M. First as a term t such that I (t) =
{theseto f Polish Popes} = {{John Paul I I }}. Then everything that is true of John
Paul II (or: KarolWojtyła) is true of the Polish Pope according to semanticsM.But The
Polish Pope can also be interpreted as I (t) = {the set o f Poles, the set o f Popes}.
According to (7), t (or more precisely, the entity represented by t) possesses proper-
ties such as being a Pole, being a Pope, being a human being, etc., but not properties
such as being born in Wadowice, being a professor, etc. which are properties true of
real John Paul II. The first interpretation can be called the adjunctive interpretation,
the second the non-adjunctive15 one. Notice that the term t in adjunctive interpre-
tation behaves as the classical definite description the Polish Pope, however it does
not when interpreted non-adjunctively. The classical definite description the Polish
Pope, and the definite description the cardinal born in Wadowice, have the same ref-
erence, and consequently share every property truly ascribable to the referent. But
this is not the case when the two names are interpreted non-adjunctively, in partic-
ular when the cardinal born in Wadowice is interpreted as I (t) ={the set of people
born in Wadowice, the set of cardinals}. Then t possesses the properties being born
in Wadowice, being a cardinal, but not being a Pope or being a professor. What is
more, ∩{theseto f Poles, theseto f Popes} = ∩{the set of people born in Wadowice,
the set of cardinals}= {Karol Wojtyła}, and this may be understood to mean that the
terms the Polish Pope and the cardinal born in Wadowice refer to the same real object.

13 Conspicuously, translations of formulas P*1-P*10 (and many other M-formulas) are classical theses but,
as we mentioned earlier, the formulas are not theorems of M.
14 Here we may conceive of objects as bundles of properties, where ‘bundle’ and ‘property’ are interpreted
extensionally.
15 Roughly, adjunctiveness means that if object denoted by a term possesses extensionally properties P and
Q than it possesses the complex property ‘P and Q’. Non-adjunctiveness means that such an inference does
not hold. Conspicuously, the distinction applies to complex predicates that can be displayed as conjunction
of simpler ones.
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Interestingly enough, the identity of referents is not only expressible on the seman-
tic level, but on the syntactic level of M as well.16 The red car treated as a generic
term and interpreted non-adjunctively would refer to the entity possessing the prop-
erties of being red, being a car, being a vehicle, etc. But it is neither two-wheel drive
vehicle, nor four-wheel drive vehicle. The present king of France can be interpreted
non-adjunctivelly as {the set of living people, the set of kings of France}, and as such,
the present king of France would be a living person and would be the king of France,
but would be neither bald nor non-bald.17 If it is interpreted adjunctively as {the set of
present kings of France} than the present king of France would possess all properties
whatsoever (since the empty set is included in every set).

The issue of non-existence or the related problem of empty names is certainly one
of the most recalcitrant challenges where ontology and philosophy of language are
concerned, and is especially difficult in relation to logic. Thus, in particular, the theory
of descriptions, free logics, modal logics, and—more recently—logics of a Meinon-
gian kind, have all been devised to cope with this.18 Unlike the classical theory of
descriptions, which makes any predication involving nonexistent objects false and
thus trivial, in M, some predications are true and some are false, closely matching in
this respect our intuitions (see the examples given earlier). That is why M may also be
classified as a free logic.19 But most of all, perhaps, M is akin in its ontological spirit
to theMeinongian theory of objects and, indeed, can be regarded as a basic instance of
a so-called ‘Meinongian logic’.20 Roughly speaking, according to Meinong, every set
of properties constitutes an object and the object possesses a property if the property
is a member of this set. Meinongian objects may be incomplete or impossible: an
object will be incomplete if and only if it does not possesses a pair of complementary
properties, and will be inconsistent if and only if it possesses a pair of contradictory
properties.We can see thatMeinong’s principle is fulfilled extensionally in our seman-
tics in the following way: every set of properties represented by sets of individuals

16 Namely, by the following complicated formula: ∃x((¬sy(x �= y) ∧ ¬t y(x �= y) ∧
∀yz(¬sx(x �= y) ∧ ¬t x(x �= z) ⊃ y = z)). One may also note that the difference in meaning between
the Polish Pope and the cardinal born in Wadowice can be rendered using possible-world semantics: in
some worlds, the Polish Pope can be a different person than the cardinal born in Wadowice. However, let
us consider another example: the number greater than ten and smaller than twelve and the prime number
consisting of two identical digits. These two definite descriptions refer in all possible worlds to the same
number, 11. Thus, they are indistinguishable with respect to their intensions when construed on the basis
of this semantics. On the other hand, when interpreted as {the set of numbers greater than ten, the set on
numbers less than twelve} and {the set of prime numbers, the set of numbers consisting of two identical
digits}, the expressions have different meanings: e.g., it is true of the first one that it is less than twelve but
the same isn’t true of the second one.
17 Conspicuously, our interpretation of description ‘the present king of France’ essentially differs from the
classical one for according to the latter all predication involving this description as the subject is false.
18 Such logics inspired byMeinong’s theory of objectswere developed by Jacquette (1996), Parsons (1980),
Paśniczek (1998), Routley (1980), and Zalta (1983, 1988).
19 M is free according to the definitions of free logics given by Lambert (2001), Bencivenga (1986),
Morscher andSimons (2002) ifwe agree thatwhat the authorsmeanby ‘terms’ are our ‘terms’ (with objectual
quantification inM being over existing individuals).M can bemade even “more free” ifMG is replaced by the
classical rule of generalization: if ∃x(Px ∧ Qx) 	A then if	 ∀x A. TheM10 andM11 are no longer theses.
Instead, only weaker forms of these formulas are provable: t x B ⊃ (∀x A ⊃ t x A); t x B ⊃ (t x A ⊃ ∃x A).

Cf. (Paśniczek 1998, 2001).
20 See (Paśniczek 1993, 1998).
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(except for ∅ and {∅}) can be an interpretation of a term—i.e. it can be understood
as an object. In particular, the round square as interpreted non-adjunctively by the set
{theseto f circles, theseto f squares} possesses the properties of being round, being
a square, and being a geometrical figure, but it possesses neither the property of hav-
ing a 1m2 nor the property of having different than 1 m2 area. As such the object will
be an incomplete and inconsistent. Importantly, M is not ontologically committed to
‘Meinongian’ objects: objectual quantification is restricted to individuals, members
of D – i.e. M has no more commitments than classical first-order logic. The semantics
for M at its very bottom assumes the same non-empty domain of individuals as classi-
cal extensional semantics. Thus, according to Quine’s famous criterion of ontological
commitment, M has no more commitments than does classical logic. Objects which
are represented by terms are not quantified over! Nevertheless, there are theses that
imitate quantification over such objects. Here, one may point to M10 and M11, which
mimic M4 and M9, respectively. Certainly, this feature of M will come as a welcome
one indeed for nominalistically minded philosophers, who are reluctant to talk about
nonexistent objects.21

Let us now consider a different kind of terms. These are various logical generalized
quantifiers.22 The set {X ⊆ D : |X | ≥ 5} can be interpreted as at least five things,
whereas the set {X ⊆ D : |X | ≥ |D − X |} as Rescher’s quantifier most things, and
the set {X ⊆ D:|X | ≥ ℵ 0} as infinitely many things. Thus, at least some terms,
including the two classical quantifiers, may be understood as generalized quantifiers,
more precisely, monadic generalized quantifiers.23 Yet not all generalized quantifiers
are definable in M (were they to be so, M would not be a first-order logic according
to Lindström theorem).

The expressive power of some formulas involving identity can be displayed in the
following table:

Formula Semantic intepretation Language
intepretation

Ontological
interpretaton

∃y(t x(x = y) ∧ ¬t x(x �= y)) I(t) = {{d}}, for a
certain d ∈ D

t is an singular name
like ‘Socrates’

t is an individual

∃y(¬t x(x �= y)∧
∧∀z(¬t x(x �= z) ⊃ y = z))

⋂
I (t) = {d}, for a
certain d ∈ D

t is a definite
description in our
sense, e.g. ‘the
Polish Pope’

t is an existent indi-
vidual

(individual
existence)

21 The status of terms in M is analogous to that of expressions representing sets in the simple theory of
sets that merely ‘go proxy’ for sets. Cf. (Quine 1963) for his “theory of virtual classes and relations”.
22 These quantifiers fulfill a condition requiring them to be invariant with respect to the bijection of D
onto D, as opposed to the examples of the terms discussed above, which need not fulfill that condition. See
(Westerståhl 1989).
23 Some other examples of interpretations of noun-phrases in M: I(“every dog”) = {the set of dogs},
I(„some dog”) = {X: X ∩ the set of dogs �= ∅}, I(„John and Peter”) = {{John, Peter}}, I(„John or Peter”)
= {{John},{Peter}}, I(„John and a woman”) = {{Jan}∪X: X ⊂ the set o f women ∧ X �= ∅}.
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Formula Semantic intepretation Language
intepretation

Ontological
interpretaton

∃y¬t x(x �= y)
⋂

I (t) �= ∅ t is a non-empty
name, e.g. ‘the red
car’24

t exists
(existence)25

t x¬t y(x �= y) I(t) is a principal filter t is a universal
quantifier
(possibly
restricted to a
subset of D)26

t is a general
object

¬t x¬t y(x = y) I(t) is a principal ideal t is an existential
quantifier
(possibly
restricted to a
subset of D)27

t is a particular
object

The terminology adopted in the right column is conventional. Yet it meets some
formal properties of the defined objects. To see this let us list some theses of M that
will characterize more closely the meaning of the identity-involving formulas.

M12 t x(x = y) ∧ ¬t x(x �= y) ⊃ (t x A ≡ A(y/x)).
M13 t x¬t y(x �= y) ⊃ (t x¬A ⊃ ¬t x A)

M14 t x¬t y(x �= y) ⊃ (t x A ∧ t x B ⊃ t x(A ∧ B))
M15 t x¬t y(x �= y) ⊃ (t x(A ⊃ B) ⊃ (t x A ⊃ t x B))
M16 t x¬t y(x �= y) ⊃ (sxty A ⊃ t ysx A).
M17 t x¬t y(x �= y) ⊃ (t xt y A ⊃ t x A(x/y)), where A(x/y) is a formula obtained

from A by freely substituting every occurrence of y by x .
M18 ¬t x¬t y(x = y) ⊃ (¬t x A ⊃ t x¬A).
M19 ¬t x¬t y(x = y) ⊃ (t x(A ∨ B) ⊃ (t x A ∨ t x B)).
M20 ¬t x¬t y(x = y) ⊃ (t x(A ∨ B) ⊃ (t x A ∨ t x B)).
M21 ¬t x¬t y(x = y) ⊃ (t ysx A ⊃ sxty A).
M22 ¬t x¬t y(x = y) ⊃ (t x A ⊃ t xt y A(y/x)), where A(y/x) is a formula obtained

from A by freely substituting every or some occurrence of x by y.
M23 t x¬sy(x �= y) ⊃ (sx A ⊃ t x A).
M24 t x¬sy(x �= y) ∧ sx¬t y(x �= y) ⊃ (sx A ≡ t x A).
M25 ¬sx¬t y(x = y) ⊃ (sx A ⊃ t x A).
M26 ¬sx¬t y(x = y) ∧ ¬t x¬sy(x = y) ⊃ (sx A ≡ t x A).
M27 ∃y(t x(x = y) ∧ ¬t x(x �= y)) ≡ t x¬t y(x �= y) ∧ ¬t x¬t y(x = y).

24 This is simply because there exist red cars.

25 Intuitively, an object ‘exists’ in this sense if it exits but it need not be one (like a red car). It also can be
incomplete – it is neither a two-wheel drive vehicle, nor a four-wheel drive vehicle.

26 E.g. “everything”, “every dog”.

27 E.g. “something”, “some dog”.
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We can see that identity plays a highly important role in M. It enables us to
categorize terms with respect to their syntactic and semantic properties, and cate-
gorize objects represented by terms accordingly (see M12-M27). The fact that t is
an individual constant (and represents an individual) is expressed by the formula
∃y(t x(x = y) ∧ ¬t x(x �= y)), and the fact that this individual coincides with the
value of the variable y is expressed by the formula t x(x = y) ∧ ¬t x(x �= y). This
means that in the sense of M-predication individual t possesses the same properties as
the object y in the sense of classical predication (cf. M15). The formula t x¬t y(x �= y)

expresses the fact that the term t possesses the same syntactic properties as the uni-
versal quantifier (see M13-M17). We shall call the corresponding entities—i.e. the
entities correlated with such terms—general objects. The identity of these objects
will be rendered by the formula t x¬sy(x �= y) ∧ sx¬t y(x �= y) (see M24). General
objects are basically incomplete, but are consistent in the sense of M13.28 Meanwhile,
the formula ¬t x¬t y(x = y) expresses the fact that the term t possesses the same syn-
tactic properties as the existential quantifier (see M18-M22), and in this case we shall
call the corresponding entities particular objects. The identity of these objects will
be rendered by the formula ¬sx¬t y(x = y)∧¬t x¬sy(x = y) (see M18). Particular
objects are basically inconsistent, but they are complete in the sense ofM21. An object
will be an individual if and only if it is both general and particular (see M27), so it
must be complete and consistent. Apart from general and particular objects, further
categories of entities can also be distinguished; however, the notion of identity can only
be defined in M for these two categories. Note, also, that two kinds of existence can be
defined in M, and that individuality entails individual existence and the latter entails
existence. Existent individual possess only properties possessed by respective individ-
ual; compare existent individual: The Polish Pope interpreted as {the set of Poles, The
set of Popes} and individual per se: John Paul II interpreted as {{John Paul I I }}.
Notice that neither the round square, nor the present king of France exists in any sense
of existence.29

5 Notes onModal M

Let us now mention some further consequences of bracketing together names and
quantifiers within first-order logic. The opposition de re – de dicto is certainly highly
important within modal logic, but this opposition can only be expressed in classical
logic by means of universal and existential quantifiers. Yet in the language M we can
express it directly in relation to any term: t x�A, �t x A (or, correlatively, in relation
to any object). Thus, the formulas t x�A and �t x A need not be logically equivalent.
We will now sketch a semantics for a modal version of M, and show some possible
advantages of this extension of it.30

28 The term ‘general object’ was used by members of Lvov-Warsaw School. In particular, they stresses the
incompleteness of such objects.
29 For more on philosophical applications of M, see (Paśniczek 1998).
30 We will apply here S5 as the modal base for M.
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Let 〈D, W〉 be a modal frame, where D is a nonempty set of possible individuals
and W is a nonempty set of possible worlds. And let M = D, W, I be a model of the
modal M-language, where I is an interpretation function such that:

(a) I (P)(w) ⊆ D n for w ∈ W and n-argument predicate symbol P ,
(b) I (t) ∈ (℘ (℘(D)))W

Let V be a valuation functionwhich assigns to variables elements of DW. V x
i differs

possibly from V , in that V x
i (x) = i, where i ∈ DW. ‖A‖M,w

V will be the logical value
of A in M in possible world w with respect to the valuationV.

(c) ‖Py1 . . . yn‖M,w
V = 1 iff [V (y1)(w), . . . , V (yn)(w)] ∈ I (P)(w),

‖Py1 . . . yn‖M,w
V = 0 in the other case;

(d) ‖x = y‖M,w
V = 1 iff V (x)(w) = V (y)(w),

‖x = y‖M,w
V = 0 in the other case

(e) ‖¬A‖M,w
V = 1 − ‖A‖M,w

V ,

(f) ‖A ⊃ B‖M,w
V = max

{
1 − ‖A‖M,w

V , ‖B‖M,w
V

}
.

(g) ‖t x A‖M,w
V = 1 iff there exists X ∈ I (t)(w) and X ⊆ {i(w) : ‖A‖M,w

V x
i

= 1}
(h) ‖�A‖M,w

V = 1 iff f orallw ∈ W, ‖A‖M,w
V = 1.

Let us consider two formulas whose contents are of interest:

(*) �t x�¬t y(x �= y)

(**) �¬t x¬�t y(x = y)

As regards the above, (*) expresses the fact that t is a (possibly restricted) universal
quantifier the same in all possible worlds. Meanwhile, (**) expresses the fact that t
is a (possibly restricted) particular quantifier the same in all possible worlds. In other
words, (*) and (**) define ‘rigid’ quantifiers. Notice also that if t is ‘rigid’ than its
converse t is also ‘rigid’:

�t x�¬t y(x �= y) ≡ �¬t x¬�t y(x = y) and,

�¬t x¬�t y(x = y) ≡ �t x�¬t y(x �= y)

In ontological terms, (*)means that t refers to the same general object in all possible
worlds, (**) means that t refers to the same particular object in all possible worlds.
Both (*) and (**) express the fact that t refers to an individual object that is the same
in all possible worlds, making t a truly rigid designator.31 So we see that in modal M
we can define cross-world identities for some kinds of objects.

It can also be verified that (*) entails both the generalized Barcan formula and the
generalized converse of the Barcan formula, while (**) entails only the latter:

�t x�¬t y(x �= y) ⊃ (t x�A ≡ �t x A)

31 Actually, we can define within modal M rigidity of other terms, in particular definite and indefinite
descriptions.
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�¬t x¬�t y(x = y) ⊃ (t x�A ⊃ �t x A)

Because the proposed semantics is constant domain semantics,�∀x�¬∀y(x �= y)

and �¬∃x¬�y∃(x = y) are valid, consequently, the classical Barcan formulas
∀x�A ≡ �∀x A and ∃x�A ⊃ �∃x A will also be valid.32

6 Conclusions

The present paper has sought to demonstrate the great potential of classical first-order
logic. Aswe have seen, certain relatively small changes to the language of the predicate
calculus (i.e. the axiomatic system and the semantics involved), when made, lead to
a logic M which is much stronger in its expressive power, while the latter can still be
considered a first-order logic—one that, on the syntactic level, does not involve higher-
order logic.We have then tried to argue thatM furnishes an efficient tool for addressing
various linguistic and ontological issues, including those pertaining to modality.
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Paśniczek, J. (1993). The simplest meinongian logic. Logique Et Analyse, 143–144, 1993.
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