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Abstract
The paper’s novelty is in combining two comparatively new fields of research: non-
transitive logic and the proof method of correspondence analysis. To be more detailed,
in this paper the latter is adapted to Weir’s non-transitive trivalent logic NC3. As a
result, for each binary extension of NC3, we present a sound and complete Lemmon-
style natural deduction system. Last, but not least, we stress the fact that Avron and
his co-authors’ general method of obtaining n-sequent proof systems for any n-valent
logic with deterministic or non-deterministic matrices is not applicable to NC3 and its
binary extensions.

Keywords Proof theory · Correspondence analysis · Natural deduction ·
Non-transitive logic · Three-valued logic · Trivalent logic

1 Introduction and Overview

1.1 Non-Transitive Logic

Non-transitive logic is a kind of substructural logic (Restall, 2000) which challenges
transitivity, one of the basic properties of the entailment relation along with (various
names might be found in the literature) reflexivity, monotonicity, contraction, and per-
mutability. The properties of transitivity and cut (which should not be equated) are
definable in different ways; we refer the reader to outlines in Ripley (2013, 2018), Bar-
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rio et al. (2019).1 In particular, we are interested in the approach of Weir who presents
three-valued, continuum-valued, and surreal-valued non-transitive logics within his
analysis of the Curry paradox (Weir, 2013a; 2013b).2 We prefer the Weirian trivalent
logicNC3 because of its tabularity and functionally incompleteness that togethermake
it a suitable choice for correspondence analysis (CA, hereafter).3

Let us briefly list and informally discuss the key features of NC3 before getting into
formal definitions. First, NC3 is tabular trivalent; its negation, conjunction, disjunc-
tion, and implication are of the Łukasiewiczian trivalent logic Ł3 (Łukasiewicz et al.,
1920) (which negation, conjunction, and disjunction are the same as in the Kleenian
strong trivalent logicK3 Kleene 1938; 1952). The reasonWeir uses the Łukasiewiczian
implication is that, otherwise, NC3 would lack theoremhood just like K3 does. Theo-
remhood of NC3 implies the second key feature that is about the transitivity property
of its entailment relation. In his robust non-transitive logic NC3, Weir clearly wants to
reject generalized transitivity (if Γ � Δ,φ and φ, Γ � Δ, then Γ � Δ) and preserve,
at least, simple transitivity (if ψ � φ and φ � χ , then ψ � χ ).4

Third, in order to show that generalized transitivity fails in NC3, Weir proposes an
original definition of the entailment relation |�NC3 such that it holds in two directions
which coincide in classical logic: downwards truth-preservation and upwards falsity-
preservation.Weir exemplifies a failure of generalized transitivity in the followingway.
Both φ ∧¬φ |�NC3 φ and φ ∧¬φ, φ |�NC3 ⊥, but φ ∧¬φ �|�NC3 ⊥ because upwards
falsity-preservation fails: if v(φ) = 1/2, then v(⊥) = 0 and v(¬φ) = v(φ∧¬φ) = 1/2.

1.2 Correspondence Analysis

Segerberg who is the most likely candidate to be the pioneer of CA, proposed it for
classical logic in the beginning of the eighties (Segerberg, 1983, 1982).5 Kooi and
Tamminga (2012) are the first who applied CA to non-classical logic, viz., to Asenjo-
Priest’s three-valued logic LP (Asenjo, 1966; Priest, 1979). Kooi and Tamminga’s
motivations are explicitly traceable back to modal correspondence theory (Sahlqvist,
1975; van Benthem, 1976, 2001). The achievements ofCA are outlined in Introduction
of Petrukhin and Shangin (2021).

Following the Segerbergian motivation, CA, basically, takes some functionally
incomplete k-valued (mostly but not limited to, trivalent or tetravalent ones)6 logic

1 In a literary way, Béziau illustrates a failure of transitivity in the academics’ life (Béziau, 2006).
2 The idea and main results are in a paper (Weir, 2013a). The proofs are in a technical report (Weir, 2013b).
3 The label NC stands for neo-classical in order to highlight the idea “to retain the operational rules for
the classical connectives but weaken the structural rules” (Weir, 2013a, p. 99).
4 In doing so, Weir takes issue with the radical approach of Ripley (2013) who argues in favour of rejecting
even simple transitivity. Note that these definitions of transitivity are not by Weir, but by Ripley. Table 2 in
the latter’s paper (Ripley, 2018) systematizes a dozen definitions of transitivity including the Weirian one
which is explicitly highlighted in footnote 4 there.
5 Note that the term itself is due to Kooi and Tamminga (2012), though it isn’t to be confused with the
homonymous statistical data analysis method (Hirschfeld, 1935).
6 Functional completeness in classical logic is studied via applying CA to its negation fragment
(Leszczyńska-Jasion et al., 2019a). CA is applied to other functionally incomplete fragments of it in
Petrukhin and Shangin (2021).
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and outputs definitions of each n-ary (mostly but not limited to, unary or binary ones)
extensions of the logic in question. Having been obtained thus, definitions are one-
to-one correspondences (hence, correspondence in the name of CA) between each
entry of the truth-table for a logical connective (that is, an extension of the logic
being analysed) and a valid formula or an entailment. These correspondences (which
we dub equivalences sometimes), moreover, allow setting up a sound and complete
proof system (mostly but not limited to, a natural deduction system)7 for each exten-
sion of the logic under consideration. Lastly, CA might be equipped with an adequate
proof searching procedure: it makes CA a powerful and flexible framework to study
(fragments of) tabular logics.

CA is not the only general method for obtaining a proof system for some logic
given its tabular semantics. For example, Anshakov-Rychkov’s method (Anshakov &
Rychkov, 1994) allows one to formalize n-valued logics with Rosser and Turquette’s
J -operators (Rosser & Turquette, 1952) via Hilbert systems. Another example of such
a method is presented by Baaz et al. (1993) showing how n-sequent calculi as well
as analytic tableaux can be presented for n-valued logics. In Baaz et al. (1993), these
calculi are transformed into labelled natural deduction systems. Section 6 below is
particularly addressed to the method for obtaining proof systems by Avron and his
co-authors (Avron et al., 2007, 2013).

1.3 Lemmon-Style Natural Deduction

In choosing Lemmon-style natural deduction (Lemmon, 1998), we follow Weir who
explains himself as follows: “Since the tree-form architecture tends to spread too
much in all but the shortest proofs I will stick with the linear sequent format, in
Lemmon-style” (Weir, 2013a, p. 101). The tree-like format or Gentzen-style natural
deduction that Weir mentions above goes hand in hand with a linear format or Fitch-
style natural deduction. However, Weir utilises Lemmon-style natural deduction, i. e.
another (arguably, less popular) kind of the linear format.8

The crucial difference is that, basically, a line in a Lemmon-style derivation visually
contains a set of the hypotheses (assumptions, premises, etc.) which a formula on this
line follows from.9 In a Fitch-style derivation, a line contains a formula only and
does not contain a set of the hypotheses which a formula on this line follows from.
Moreover, it is sometimes very difficult to visually determine this set because some
lines above might be discarded. Hence, the visualness in question might be obscure,
and one needs much more (in the worst case) efforts to scrutinize the previous non-
discarded lines in a derivation in order to detect this set. Let us refer the reader to the
monograph by Indrzejczak (2010) which seems to be the most exhaustive up-to-date
study of natural deduction. There she finds historical excursuses with a documented
claim that the origin of natural deduction should be ascribed to Jaśkowski rather than

7 In Leszczyńska-Jasion et al. (2019b), sequent calculi with invertible rules, i. e. rules which preserve
validity in both directions, are obtained via CA for the negation fragment of classical logic.
8 Note that one of the reasons Lemmon-style being less popular is, apparently, Lemmon’s premature death
by accident in the mountains (Thomas, 1968).
9 Lemmon-style natural deduction and sequent calculus have this visualness in common.
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Gentzen as well as a thorough discussion of the pros and cons of different formats of
natural deduction that leads to a clear-cut decision pro hybrid systems.

The structure of this paper is as follows. Section 2 contains an application of CA to
the trivalent non-transitive logic NC3. Section 3 contains the Lemmon-style natural
deduction system for NC3. Examples of both NC3-derivations and derivable rules are
in Sect. 4. Section 5 contains Lemmon-style natural deduction systems for the binary
extensions of NC3 as well as proofs of their soundness and completeness. Section 6
discusses related works. Concluding remarks are in Sect. 7.

2 Correspondence Analysis for the Non-transitive Logic NC3

We start with the Weirian semantics for NC3 and then apply CA to it in order to obtain
equivalences for each binary extension of NC3.

2.1 TheWeirian Semantics for NC3

NC3 is built over a propositional language L with an alphabet 〈P, ⊥, �, ¬, ∧, ∨,

→, (,)〉, whereP is a denumerable set {p, q, r , s, p1, . . .} of propositional variables.
The set F of all L -formulae is defined in a standard way. The letters φ, ψ , χ , ρ, ϕ
with subscripts run overL -formulae. The letters Γ ,Δ, X , Y , Z ,Σ ,Ξ with subscripts
run over finite sets ofL -formulae.

Let � be a truth-functional operator (or connective) and f� be its truth table. Let us
remind the reader that an interpretation v of all the connectives ofNC3, except⊥,� and
→, is as in the Kleenian strong logic K3: 1 > 1/2 > 0, v(φ ∧ ψ) = min(v(φ), v(ψ)),
v(φ ∨ ψ) = max(v(φ), v(ψ)), and v(¬φ) = 1 − v(φ), where 1, 1/2, and 0 stand,
respectively, for ‘true’, ‘indeterminate’, and ‘false’.10 Implication of NC3, �, and ⊥
are the Łukasiewiczian ones: v(φ → ψ) = min(1, (1 − v(φ)) + v(ψ)), v(�) = 1,
and v(⊥) = 0. The expression φ ↔ ψ is an abbreviation of (φ → ψ) ∧ (ψ → φ).

Definition 1 Γ |�NC3 ψ iff, for each valuation v and for every φ such that φ ∈ Γ , it
holds that if, for every χ such that χ ∈ Γ \ {φ}, v(χ) = 1, then
a) if v(φ) = 1, then v(ψ) = 1 and b) if v(ψ) = 0, then v(φ) = 0.

The first effect of Definition 1, according to Weir, is that both conjunction and
disjunction do not standardly interact with the entailment relation. For example, φ,
¬φ |�NC3 ⊥, but φ ∧ ¬φ �|�NC3 ⊥. Note that such behaviour of conjunction is not
specific to NC3. There might be conjunctions which behave alike in logics, where
an entailment relation is standardly definable via one designated value, i. e. as in
K3. It is easy to check that it holds in logics with one designated value, where con-
junction takes a value “1” if both conjuncts take a value “1/2”.11 Examples of such
conjunctions are conjunction of Sette’s logic P1 (Sette, 1973) and conjunction of

10 Unlike in K3, 1 is not really a designated value in NC3; because the conception of entailment combines
truth-preservation ‘downwards’ and falsity-preservation ‘upwards’ the notion of a designated value drops
out (or perhaps one can say that 1 is designated, 0 is ‘anti-designated’).
11 We suppose conjunction behaves classically on the classical inputs, as well.
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Béziau-Franceschetto’s logic L3B (Beziau & Franceschetto, 2015). However, in con-
trast to K3, both P1 and L3B have two designated values.

Another effect of Definition 1 is that some classical entailments are neo-classically
invalid (Weir, 2013a, p. 101):12

“My proposal for a restriction on classical logic focuses on ‘minimax unsound’
rules, where the rule is nonetheless sound (as a one-step natural deduction infer-
ence) with respect to |�3. Examples of such rules are ¬E , → E , ∨E and
disjunctive syllogism, e.g. in the latter case with P false and Q gappy, the
minimum value of {(P ∨ Q),¬Q} is 1/2 whilst the conclusion P takes the false
value 0. The (sole) proposed restriction on classical propositional logic is that
in such minimax unsound rules any assumption on which both major and minor
premiss depends must be ‘determinate”’.

The rule of disjunctive syllogism is neo-classically problematic in case both its
premisses depend on the same formula(e). Classically, φ |� χ follows from both
φ |� ψ ∨ χ and φ |� ¬ψ whereas that is not the case neo-classically.13

In order to get neo-classically valid entailments from such entailments, Weir pro-
poses so called Determinacy of a sentence φ and Indeterminacy of a sentence φ

(abbreviated as D(φ) and I (φ), respectively). I (φ) is an abbreviation of (φ →
¬φ) ∧ (¬φ → φ) and D(φ) is ¬I (φ). Note that D(φ) ∈ L and I (φ) ∈ L . Weir
himself prefers φ ↔ ¬φ rather than (φ → ¬φ) ∧ (¬φ → φ). We follow him despite
↔ /∈ L . ¬D(φ) and I (φ) are used synonymously in this paper.14 Getting back to the
entailment in the previous passage, D(φ), φ |�NC3 χ follows from φ |�NC3 ψ ∨ χ

and φ |�NC3 ¬ψ .
This trick illustrates the Weirian idea. To be sure, it is not the case that this trick

makes neo-classically invalid entailments valid. The trick is thatwhenever one detects a
weak problematic indeterminate point in reasoning one is able to effectively determine
it in a special way. Hence, in checking out a classical proof one has an option to
improve it. In the simplest cases, to be sure, the premise D(φ) is derivable from initial
premisses. So, the proposed determination does not affect the entailment in question.
However, in general, one has to pay the price of making a classically valid entailment
neo-classically valid by adding the needed determinacy formulae.

Let us conclude with the important features of determinacy highlighted by Weir.
First, D(φ) is a classical tautology. Therefore, v(D(φ)) = 0 if v(φ) = 1/2 only. This
is the reason for reading D(φ) as the determinacy of φ.15 Second, |�NC3 D(φ) ↔
12 ‘|�3’ and ‘gappy’ are the Weirian designations of |�NC3 and 1/2, respectively. Let us also remind the
reader the minimax principle: a rule is sound if the minimum of the truth-values of its premises is less or
equal to the maximum of its conclusions, where 0 < 1/2 < 1.
13 φ ∧ ¬φ |�NC3 φ ∨ ⊥ and φ ∧ ¬φ |�NC3 ¬φ, but φ ∧ ¬φ �|�NC3 ⊥: upwards falsity-preservation fails
if v(φ) = v(¬φ) = 1/2 and v(⊥) = 0.
14 These formulae and their designations have some history of usage. For instance,¬(φ ↔ ¬φ) is Ekman’s
example of the proposition that has no direct proof in a natural deduction system (Ekman, 1998). See, also,
von Plato’s solution to the Ekmanian problem (Negri and von Plato, 2001, p. 194; von Plato 2000). On the
other hand, in the context of the logic of formal inconsistency, D and I are known as inconsistency and
consistency operators, respectively (Carnielli et al., 2000, 2007).
15 On the other hand, it seems to be ambivalent to dub I (φ) indeterminacy of φ because v(I (φ)) �= 1/2,
too.
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D(¬φ) ↔ D(¬¬φ) ↔ . . . ↔ D(¬ . . . ¬φ). Hence, in adding determinacy formulae
to a problematic entailment one could skip negation(s), confine oneself to D(φ), and
decrease the complexity of added formulae.16 Third, v(D . . . (D(φ)) . . .) = 1. Hence,
higher-order determinacy is ruled out (this fact will be discussed on page 14 below).

2.2 Correspondence Analysis for NC3

LetL(◦)k be an extension ofL by binary truth-functional operators ◦1, . . . , ◦k . The
setF(◦)k of allL(◦)k -formulae is defined in a standard way. The common name of the

corresponding logics is NC(◦)k
3 .

Definition 2 (Single entry correspondence (Kooi & Tamminga, 2012; Tamminga,
2014)) LetΓ ⊆ F(◦)k . Let x, y, z ∈ {1, 1/2, 0}. Then the truth table entry f◦(x, y) = z
is characterized by an inference scheme Γ /φ, if

f◦(x, y) = z if and only if Γ |� φ.

Definition 2 captures the key essence of CA: one-to-one correspondence between
entries of the truth table for a binary connective and natural deduction rules for this
connective. Below, in Sect. 5 there is a thorough explanation how this one-to-one
correspondence works. In the further exposition, we use “|�” as an abbreviation for
“|�

NC
(◦)k
3

”.

Theorem 1 Let φ, ϕ, χ ∈ F(◦)k .17 Then:18

f◦(0, 0) =
⎧
⎨

⎩

0 iff ¬φ,¬ψ, D(φ), D(ψ) |� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1/2 iff ¬φ,¬ψ, D(φ), D(ψ) |� I (φ ◦ ψ)

1 iff ¬φ,¬ψ, D(φ), D(ψ) |� D(φ ◦ ψ) ∧ (φ ◦ ψ)

f◦(0, 1/2) =
⎧
⎨

⎩

0 iff ¬φ, D(φ), I (ψ) |� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1/2 iff ¬φ, D(φ), I (ψ) |� I (φ ◦ ψ)

1 iff ¬φ, D(φ), I (ψ) |� D(φ ◦ ψ) ∧ (φ ◦ ψ)

16 However, the situation with the other connectives is not so irenic. For instance, D(φ ∧ ψ) �|�NC3
D(φ)∧ D(ψ), but D(φ∧¬φ) |�NC3 D(φ)∧ D(¬φ). Here aremore examples: D(φ)∧ D(ψ) |� D(φ∧ψ),
D(φ ∨ ψ) |� D(φ) ∨ D(ψ), D(φ) ∨ D(¬φ) |� D(φ ∨ ¬φ), D(φ ∨ ¬φ) |� D(φ) ∨ D(¬φ), D(φ →
¬φ) |� D(φ) → D(¬φ), and D(φ) → D(¬φ) |� D(φ → ¬φ) as well as D(φ) ∨ D(ψ) �|� D(φ ∨ ψ),
D(φ → ψ) �|� D(φ) → D(ψ), and D(φ) → D(ψ) �|� D(φ → ψ). A study of this topic is outside the
scope the present paper.
17 It is improper to read, say, the first equivalence as follows: for any φ, ψ, χ , the entailment holds iff
f◦(0, 0) = 0. One could easily find instances of φ, ψ, χ such that this entailment holds regardless of the
values of φ,ψ, χ, φ ◦ψ . The proper reading is natural and easily extractable from the proof of this theorem
below.
18 Note ‘D(φ ◦ ψ)∧’ right to the double corkscrew in each equivalence f◦(x, y) = 0 and f◦(x, y) = 1.
This clause plays an important role in proving the respective cases of Lemma 11.
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f◦(0, 1) =
⎧
⎨

⎩

0 iff ¬φ,ψ, D(φ), D(ψ) |� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1/2 iff ¬φ,ψ, D(φ), D(ψ) |� I (φ ◦ ψ)

1 iff ¬φ,ψ, D(φ), D(ψ) |� D(φ ◦ ψ) ∧ (φ ◦ ψ)

f◦(1/2, 0) =
⎧
⎨

⎩

0 iff I (φ),¬ψ, D(ψ) |� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1/2 iff I (φ),¬ψ, D(ψ) |� I (φ ◦ ψ)

1 iff I (φ),¬ψ, D(ψ) |� D(φ ◦ ψ) ∧ (φ ◦ ψ)

f◦(1/2, 1/2) =
⎧
⎨

⎩

0 iff I (φ), I (ψ) |� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1/2 iff I (φ), I (ψ) |� I (φ ◦ ψ)

1 iff I (φ), I (ψ) |� D(φ ◦ ψ) ∧ (φ ◦ ψ)

f◦(1/2, 1) =
⎧
⎨

⎩

0 iff I (φ), ψ, D(ψ), |� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1/2 iff I (φ), ψ, D(ψ), |� I (φ ◦ ψ)

1 iff I (φ), ψ, D(ψ), |� D(φ ◦ ψ) ∧ (φ ◦ ψ)

f◦(1, 0) =
⎧
⎨

⎩

0 iff φ,¬ψ, D(φ), D(ψ) |� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1/2 iff φ,¬ψ, D(φ), D(ψ) |� I (φ ◦ ψ)

1 iff φ,¬ψ, D(φ), D(ψ) |� D(φ ◦ ψ) ∧ (φ ◦ ψ)

f◦(1, 1/2) =
⎧
⎨

⎩

0 iff φ, D(φ), I (ψ) |� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1/2 iff φ, D(φ), I (ψ) |� I (φ ◦ ψ)

1 iff φ, D(φ), I (ψ) |� D(φ ◦ ψ) ∧ (φ ◦ ψ)

f◦(1, 1) =
⎧
⎨

⎩

0 iff φ,ψ, D(φ), D(ψ) |� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1/2 iff φ,ψ, D(φ), D(ψ) |� I (φ ◦ ψ)

1 iff φ,ψ, D(φ), D(ψ) |� D(φ ◦ ψ) ∧ (φ ◦ ψ)

Proof We confine ourselves to the cases f◦(0, 0) = 0, f◦(0, 0) = 1/2, and
f◦(1/2, 1/2) = 1/2. The remaining ones are analogical.

Case f◦(0, 0) = 0. (From left to right)19 Suppose ¬φ,¬ψ, D(φ), D(ψ) �|� D(φ ◦
ψ) ∧ ¬(φ ◦ ψ). Then there is a valuation v such that downwards truth-preservation
fails or there is a valuation w such that upwards falsity-preservation fails. Let us start
with the failure of downwards truth-preservation which implies v(¬φ) = v(¬ψ) =
v(D(φ)) = v(D(ψ)) = 1 and (v(D(φ ◦ ψ)) �= 1 or v(¬(φ ◦ ψ)) �= 1). In the
former case, v(φ) = v(ψ) = 0 and v(D(φ ◦ ψ)) = 0.20 Hence, v(φ) = v(ψ) = 0
and v(φ ◦ ψ) = 1/2. Contradiction. In the latter case, contradiction is derived from
v(φ) = v(ψ) = 0 and v(φ ◦ ψ) �= 0.

With regard to upwards falsity-preservation, one must consider four cases depend-
ing on which formulae left of the double corkscrew are assumed to take a value

19 Let us clarify the strategy on this equivalence, following the first referee’s suggestion, and denote
f◦(0, 0) = 1/2 by X and ¬φ, ¬ψ, (φ ◦ ψ) ∨ ¬(φ ◦ ψ), D(φ), D(ψ) |� χ by Y in this context only. ‘From
left to right’ is conventionally shown both by contraposition and by reductio, viz., when we want to show
“If X , then Y ”, we show its contraposition, “If it is not the case that Y , then it is not the case that X”. In
order to show the latter, we reason on contrary, viz, we assume “It is not the case that Y and it is the case
that X”, arrive at contradiction, and derive “It is not the case that X”. (The specifics of NC3 lie in the fact
that we need to consider two subcases because of its bidirectional entailment relation.) Note that in this
paper, ‘from right to left’ is shown unconventionally via contraposition, i. e. by showing “If it is not the
case that X , then it is not the case that Y ”. The standard way is to show “If Y , then X” directly.
20 Note that, for any w and φ, w(D(φ)) �= 1/2. Hence, w(φ) = 1/2 iff w(D(φ)) = 0.

123



254 Y. Petrukhin, V. Shangin

distinct from 0: (1) w(¬φ) �= 0, w(¬ψ) = w(D(φ)) = w(D(ψ)) = 1 and
w(D(φ ◦ψ)∧¬(φ ◦ψ)) = 0; (2)w(¬ψ) �= 0, w(¬φ) = w(D(φ)) = w(D(ψ)) = 1
andw(D(φ◦ψ)∧¬(φ◦ψ)) = 0; (3)w(D(φ)) �= 0,w(¬φ) = w(¬ψ) = w(D(ψ)) =
1 and w(D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)) = 0; (4) w(D(ψ)) �= 0, w(¬φ) = w(¬ψ) =
w(D(φ)) = 1 and w(D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)) = 0. Note that the assumption is that
f◦(0, 0) = 0.
In the case (1), w(φ) �= 1 and w(D(φ)) = 1 imply w(φ) = 0. On the other hand,

w(D(φ ◦ ψ) ∧ ¬(φ ◦ ψ)) = 0 implies w(φ ◦ ψ) = 1/2 or w(φ ◦ ψ) = 1. Both
alternatives contradict the assumption.

The case (2) is considered by analogy with the case (1).
The cases (3) and (4) are also considered by analogy with the case (1). However,

arriving at contradiction is shorter due to w(φ) = w(ψ) = 0.
Case f◦(0, 0) = 0. (From right to left) By contraposition, showing that if

¬φ,¬ψ, D(φ), D(ψ) |� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ), then f◦(0, 0) = 0 amounts to
showing that if f◦(0, 0) �= 0, then ¬φ,¬ψ, D(φ), D(ψ) �|� D(φ ◦ ψ) ∧ ¬(φ ◦ ψ).
With regard to the latter, it is easy to see that if w(φ) = w(ψ) = 0 and w(φ ◦ψ) �= 0,
then downwards truth-preservation fails.

Case f◦(0, 0) = 1/2. (From left to right) Suppose ¬φ,¬ψ, D(φ), D(ψ) �|� I (φ ◦
ψ). Then there is a valuation v such that downwards truth-preservation fails or there
is a valuation w such that upwards falsity-preservation fails. Let us start with the
failure of downwards truth-preservation which implies there is a valuation v such
that v(¬φ) = v(¬ψ) = v(D(φ)) = v(D(ψ)) = 1 and v(I (φ ◦ ψ)) �= 1. Then
v(φ) = v(ψ) = 0 and v(I (φ ◦ ψ)) = 0. Hence, v(φ ◦ ψ) �= 1/2.21 Contradiction.

With regard to upwards falsity-preservation, one must consider four cases depend-
ing onwhich formulae left of the double corkscrew are assumed to take a value distinct
from 0: (1) w(¬φ) �= 0, w(¬ψ) = w(D(φ)) = w(D(ψ)) = 1 and w(I (φ ◦ψ)) = 0;
(2) w(¬ψ) �= 0, w(¬φ) = w(D(φ)) = w(D(ψ)) = 1 and w(I (φ ◦ ψ)) = 0;
(3) w(D(φ)) �= 0, w(¬φ) = w(¬ψ) = w(D(ψ)) = 1 and w(I (φ ◦ ψ)) = 0; (4)
w(D(ψ)) �= 0, w(¬φ) = w(¬ψ) = w(D(φ)) = 1 and w(I (φ ◦ ψ)) = 0. Note that
the assumption is that f◦(0, 0) = 1/2.

In the case (1), w(¬φ) �= 0 implies w(φ) �= 1. Together with w(D(φ)) = 1, it
implies w(φ) = 0. On the other hand, w(I (φ ◦ ψ)) = 0 implies w(φ ◦ ψ) �= 1/2.
Finally, w(¬ψ) = 1 implies w(ψ) = 0. Contradiction.

The case (2) is considered by analogy with the case (1).
The cases (3–4) boil down to the subcase thatw(φ) = w(ψ) = 0 andw(I (φ◦ψ)) =

0 which implies w(φ) = w(ψ) = 0 and w(φ ◦ ψ) �= 1/2. Contradiction.
Case f◦(0, 0) = 1/2. (From right to left) By contraposition, showing that if

¬φ,¬ψ, D(φ), D(ψ) |� I (φ ◦ ψ), then f◦(0, 0) = 1/2 amounts to showing that
if f◦(0, 0) �= 1/2, then ¬φ,¬ψ, D(φ), D(ψ) �|� I (φ ◦ ψ). With regard to the latter,
it is easy to see that if w(φ) = w(ψ) = 0, and (w(φ ◦ ψ) = 0 or w(φ ◦ ψ) = 1),
downwards truth-preservation fails.

Case f◦(1/2, 1/2) = 1/2. Suppose I (φ), I (ψ) �|� I (φ ◦ψ). Then there is a valuation
v such that downwards truth-preservation fails or there is a valuation w such that
upwards falsity-preservation fails. Let us start with the failure of downwards truth-

21 Note that, for any w and φ, w(I (φ)) �= 1/2. Hence, w(φ) = 1/2 iff w(I (φ)) = 1.
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preservation which implies there is a valuation v such that v(I (φ)) = v(I (φ)) = 1
and v(I (φ ◦ ψ)) �= 1. Then v(φ) = v(ψ) = 1/2 and w(φ ◦ ψ) �= 1/2. Contradiction.

With regard to upwards falsity-preservation, onemust consider two cases depending
on which formulae left of the double corkscrew are assumed to take a value distinct
from 0: (1) w(I (φ)) �= 0, w(I (ψ)) = 1 and w(I (φ ◦ ψ)) = 0 and (2) w(I (ψ)) �= 0,
w(I (φ)) = 1 andw(I (φ ◦ψ)) = 0. Note that the assumption is that f◦(1/2, 1/2) = 1/2.

In the case (1), w(I (φ)) �= 0 implies w(I (φ)) = 1 which, in turn, implies w(φ) =
1/2. On the other hand,w(I (φ◦ψ)) = 0 impliesw(φ◦ψ) �= 1/2. Finally,w(I (ψ)) = 1
implies w(ψ) = 1/2. Contradiction.

The case (2) is considered by analogy with the case (1).
Case f◦(1/2, 1/2) = 1/2. (From right to left) By contraposition, showing that

if I (φ), I (ψ) |� I (φ ◦ ψ), then f◦(1/2, 1/2) = 1/2 amounts to showing that if
f◦(1/2, 1/2) �= 1/2, then I (φ), I (ψ) �|� I (φ ◦ ψ). With regard to the latter, it is easy to
see that if w(φ) = w(ψ) = 1/2, and (w(φ ◦ ψ) = 0 or w(φ ◦ ψ) = 1), downwards
truth-preservation fails. ��

We would like to stress that the equivalences above are, certainly, not unique.
This fact clearly indicates that obtaining CA, still, remains a creative and non-

algorithmic task. Therefore, it is a future roadmap tomakeCA a routine and algorithmic
task à la (Avron et al., 2007; Avron & Konikowska, 2005).

3 Natural Deduction SystemNDNC3

3.1 The Rules of Natural Deduction System for NC3

The rules ofWeir’s natural deduction system forNC3 denoted here byNDNC3 operate
on a line which is a quadruple 〈hs, nl, fr, an〉, where
– hs stands for a (possibly, empty) set of hypotheses fr depends on,
– nl stands for a number of a line which fr occurs on,
– fr stands for a f ormula which is derivable on a line,
– an stands for an analysis of fr and specifies whether fr is a hypothesis, or an axiom,
or is derived from the previous lines via some NDNC3 -rule.

For a line which has a standard structure of a sequent, then hs, fr, and nl are referred
to as the antecedent of, consequent of, and unary corkscrew of a sequent, respectively.
For example, the line

ψ (1) χ

is to mean the sequent ψ � χ . The letters α and β with subscripts run over sequents.
The capital I or E stands for an ‘introduction’ and ‘elimination’, respectively.

X (1) φ H , where φ ∈ X

Weir notes that the rule of Hypothesis includes thinning.22 The Weirian notation
‘(1)’ is not to mean that H is applicable to the first line only.23

22 Note that it is not the rule of thinning on page 15 below.
23 This comment is about other digits and NDNC3 -rules, too. Hence, we will not repeat it. For more
conventional notation, see Pavlović (2015).
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X (1) φ Given
X (2) φ ∨ ψ 1,∨I1

X (1) ψ Given
X (2) φ ∨ ψ 1,∨I2

X (1) φ ∨ ψ Given
Ξ,φ (2) χ Given
Z , ψ (3) χ Given
Σi , i ∈ I (4.i) D(ρi ) ∀ρi ∈ (X ∩ (Ξ ∪ Z))

X , Ξ, Z ,
⋃

i∈I Σi (5) χ 1, 2, 3 [4.i, i ∈ I ],∨E

Let us kindly thankAlanWeir for the following explication of the notation (personal
communication): “Here I indexes all the sentences in common to assumption sets X
andΞ ∪ Z , and so (4.i) can be a large (finite, in the finitary systems) set of sub-proofs,
collapsed to one line in this non tree-form format. I use square brackets as in [4.i] to
indicate determinacy assumptions used to implement the restrictions which can block
transitivity”. In derivations themselves, there are no i and the enumeration of lines is
traditional.24

X (1) φ Given
Ξ (2) ψ Given
X , Ξ (3) φ ∧ ψ 1, 2,∧I

X (1) φ ∧ ψ Given
X (2) φ 1,∧E1

X (1) φ ∧ ψ Given
X (2) ψ 1,∧E2

X , φ (1) ψ Given
X (2) φ → ψ 1,→ I

X (1) φ → ψ Given
Ξ (2) φ Given
Zi (3.i) D(ρi ) ∀ρi ∈ X ∩ Ξ

X , Ξ,
⋃

i∈I Zi (4) ψ 1, 2 [3.i],→ E

X (1) φ Given
Ξ (2) ¬φ Given
Zi (3.i) D(ρi ) ∀ρi ∈ X ∩ Ξ

X , Ξ,
⋃

i∈I Zi (4) χ 1, 2 [3.i],¬E

X ,¬φ (1) ⊥ Given
X (2) φ 1,¬IC L

X , φ (1) ⊥ Given
X (2) ¬φ 1,¬II N T

Though Weir utilises the same name ¬I for the two previous rules, we would like
to dub them differently: C L and I N T stand for ‘classical’ and ‘intuitionistic’ versions
of the Weirian ¬I , respectively.

X (1) φ ∧ ¬φ Given
X (2) ψ ∨ ¬ψ 1, M

X (1) (φ ∨ ψ) ∧ (φ ∨ χ) Given
X (2) φ ∨ (ψ ∧ χ) 1, D PC

24 Again, we will not repeat these comments about other NDNC3 -rules with determinacy.
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Note that Weir dubs it the ‘Mingle’ rule in Weir (2013b, p. 3) in order to stress the fact
that it is derivable inAnderson andBelnap (1975) via themingle axiomφ → (φ → φ).
For the reason that such a name is not in line with the traditional usage of the term
mingle rule (Kamide, 2002), we dub it M rather than Mingle.

X (1) φ ∧ (ψ ∨ χ) Given
X (2) (φ ∧ ψ) ∨ (φ ∧ χ) 1, D P D

D PC and D P D stand for distributivity principle for conjunction and disjunction,
respectively.

− (1) D(φ) ∨ I (φ) L E M

L E M stands for the law of excluded middle restricted to determinacy.

X , φ (1) I (φ) Given
Ξ,ψ (2) I (ψ) Given, where φ �= ψ

X , Ξ, φ,ψ (3) ⊥ 1, 2,⊥rule

Being a Lemmon-style (Suppes-style or a system with dependencies) natural deduc-
tion system,25 NDNC3 has the distinctive feature of such systems, viz., a device of
listing all the hypotheses which a formula follows from (depends on or rests on) in
a special leftmost column. It allows for easily checking out the hypotheses on which
premises of a rule are dependent on. Hence, an advantage ofNDNC3 is the simplicity
and clearness of the notion of a derivation for it (Lemmon, 1998; Suppes, 1957; Weir,
2013a, p. 31, pp. 8–9, p. 5).

Our definition is a slight modification of the one by Pavlović (2015, p. 79).

Definition 3 A derivation in NDNC3 (NDNC3 -derivation) is a non-empty finite
sequence of lines such that each line results from an application of some NDNC3-
rule to lines occurring earlier in the sequence.

A derivation inNDNC3 of a formula φ from a (possibly, empty) set of formulae Γ

is a derivation in NDNC3 such that the last line k of it is 〈Γ , k, φ, an〉.
If Γ = ∅, then φ is said to be a theorem of NDNC3 .

4 Examples ofNDNC3-derivations and theNDNC3-derivability of
some newNDNC3-rules

This section is devoted to examples ofNDNC3 -derivations. Someof them illustrate that
the NDNC3 -derivability might be classical or neo-classical. The choice of examples
is governed by metatheorems in Sect. 5.

Note that in the examples below, sets of hypotheses might contain a number of a
formula instead of the formula itself or a mix of numbers and formulae. This feature,
adopted for space-saving reasons, is characteristic of a Lemmon-style derivation (in
contradistinction to, say, a sequent-style derivation) and is employed from the first
pages of the textbooks (Lemmon, 1998; Suppes, 1957) and by Weir (2013b). Of
course, any number is replaceable with the corresponding hypothesis because every
hypothesis has its unique number in a derivation.

25 See Indrzejczak (2010, p. 43–45) for historical and comparative accounts.
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Example 1 (p → q) → ((q → r) → (p → r)) is a NDNC3 -theorem.

1 (1) p → q H
2 (2) q → r H
3 (3) p H
1, 3 (4) q → E : 1, 3
1, 2, 3 (5) r → E : 2, 4
1, 2 (6) p → r → I : 5
1 (7) (q → r) → (p → r) → I : 6
− (8) (p → q) → ((q → r) → (p → r)) → I : 7

Example 2 ¬¬p → p is a NDNC3 -theorem.

1 (1) ¬¬p H
2 (2) ¬p H
1, 2 (3) ⊥ ¬E : 1, 2
1 (4) p ¬IC L : 3
− (5) ¬¬p → p → I : 4

Examples 1–2 are used in showing the NDNC3 -derivability of the rule ¬¬E :

X (1) ¬¬φ Given
X (2) φ ¬¬E : 1

Note that there are two ways to show its derivability. If ¬φ /∈ X , then the way is
classical as in Example 3.1 below. Otherwise, it is neo-classical as in Example 3.2
below, where X = {X ′,¬φ}.
Example 3.1 ¬¬E is NDNC3 -derivable if ¬φ /∈ X .

X (1) ¬¬φ Given
2 (2) ¬φ H
X , 2 (3) ⊥ ¬E : 1, 2
X (4) φ ¬IC L : 3

Example 3.2 ¬¬E is NDNC3 -derivable if ¬φ ∈ X .26

X ′,¬φ (1) ¬¬φ Given
X ′ (2) ¬φ → ¬¬φ → I : 1
− (3) (¬φ → ¬¬φ) → ((¬¬φ → φ) → (¬φ → φ)) Example 1
X ′ (4) (¬¬φ → φ) → (¬φ → φ) → E : 2, 3
− (5) ¬¬φ → φ Example 2
X ′ (6) ¬φ → φ → E : 4, 5
7 (7) ¬φ H
X ′, 7 (8) φ → E : 6, 7

26 Note that this condition invalidates the application of ¬E in the previous example.
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In the same fashion, the NDNC3 -derivability of the rules ¬¬I , ¬∨E , and ¬∨I is
shown.

X (1) φ Given
X (2) ¬¬φ ¬¬I : 1

X (1) ¬φ ∧ ¬ψ Given
X (2) ¬(φ ∨ ψ) ¬ ∨ I : 1

X (1) ¬(φ ∨ ψ) Given
X (2) ¬φ ∧ ¬ψ ¬ ∨ E : 1

Example 4 D(p) → D(¬p) is a NDNC3 -theorem.

1 (1) D(p) H
2 (2) I (¬p) H
2 (3) ¬p → ¬¬p ∧E1: 2
2 (4) ¬¬p → ¬p ∧E2: 2
5 (5) ¬p H
2, 5 (6) ¬¬p → E : 3, 5
2, 5 (7) p ¬¬E : 6
2 (8) ¬p → p → I : 8
9 (9) p H
9 (10) ¬¬p ¬¬I : 9
2, 9 (11) ¬p → E : 4, 10
2 (12) p → ¬p → I : 11
2 (13) I (p) ∧I : 8, 12
1, 2 (14) ⊥ ¬E : 1, 13
1 (15) D(¬p) ¬IC L : 14
− (16) D(p) → D(¬p) → I : 15

Example 4 shows the NDNC3 -derivability of the rule ¬ID which is to be read as
“introduction of negation inside determinacy”.27 In the same fashion, both NDNC3-
theoremhood of D(¬p) → D(p) and the NDNC3-derivability of the rule ¬ED

(“elimination of negation inside determinacy”) are shown.

X (1) D(φ) Given
X (2) D(¬φ) ¬ID: 1

X (1) D(¬φ) Given
X (2) D(φ) ¬ED: 1

NDNC3 enjoys a restricted version of the cut rule.

X (1) φ Given
Ξ,φ (2) ψ Given
Σi , i ∈ I (3.i) D(ρi ) ∀ρi ∈ (X ∩ Ξ)

X , Ξ,
⋃

i∈I Σi (4) ψ Cut : 1, 2, [3.i, i ∈ I ]
Its justification readily boils down to the one for → E .
Let D0(φ) be φ and Dn+1 be D(Dn(φ)). The case with Dm I (φ) is similar. Then

higher-order determinacy, i. e. determinacy of determinacy or determinacy of indeter-
minacy, for instance, is ruled out by28

27 We acknowledge that two usages of I as introduction and indeterminacy in the papermight bemisleading.
We do hope the reader does not find it harmful.
28 This updated version of Proposition 1 (Weir, 2013b) is kindly shared with us by Weir in an email.
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Lemma 1 [Proposition 1 (Weir, 2013b)]. � Dn(φ), for all n ≥ 2, and � Dm+1 I (φ),
for all m ≥ 0.

Hence, two rules which we dub D(D) and D(I ), respectively, are justified.29

– (1) Dn(φ) D(D), n ≥ 2 – (1) Dm I (φ) D(I ), m ≥ 1

Let us remind the reader that in applying→ E ,∨E , and¬E she has to check for an
overlap between the premises of these rules and, if found, to determinate each formula
from the overlap. However, derived classical, as Weir dubs it, variants of these rules
are justified by30

Lemma 4 [Proposition 2 (Weir, 2013b)]. Where we have proofs of the determinacy
of the succedents of a premiss of ¬E and → E rules, and both disjuncts of the
major premiss succedent of the ∨E rule, then the full classical rule is neo-classically
derivable, that is we do not need to establish the determinacy of the overlapping
assumptions.

We denote them → EC L , ∨EC L , and ¬EC L .

X (1) φ Given
X (2) ¬φ Given
X (3) D(φ) Given
X (4) ⊥ ¬EC L : 1–3

X (1) φ Given
X (2) φ → ψ Given
X (3) D(φ) Given
X (4) ψ → EC L : 1–3

Another version of ¬EC L is obtainable via replacing D(φ) with D(¬φ).
Another version of → EC L is obtained via replacing D(φ) with D(φ → ψ).

X (1) φ ∨ ψ Given
X , φ (2) χ Given
X , ψ (3) χ Given
X (4) D(φ) Given
X (5) D(ψ) Given
X (6) χ ∨EC L : 1–5

X (1) φ Given
X , φ (2) ψ Given
X (3) D(φ) Given
X (4) ψ CutC L : 1–3

Cut , also, has a derived classical version CutC L whose justification easily follows
from the justification of→ EC L . Another version ofCutC L is obtainable via replacing
D(φ) with D(φ → ψ).

The rule of disjunctive syllogism is justified in Weir (2013a, p. 101):

X (1) ¬φ Given
Ξ (2) φ ∨ ψ Given
Zi (3.i) D(ρi ) ∀ρi ∈ (X ∩ Ξ)

X , Ξ,
⋃

i∈I Zi (4) ψ DS: 1, 2, [3.i , i ∈ I ]
It is not difficult to justify rules of thinning31 and IE :

29 Weir employs the following
Lemma 2 [Lemma 1 (Weir, 2013b)]. If �NDNC3

φ ∨ ¬φ, then �NDNC3
D(φ).

30 Weir employs the following
Lemma 3 [Lemma 2 (Weir, 2013b)]. If X �NDNC3

D(φ), then X �NDNC3
φ ∨ ¬φ.

31 Note that it is not the thinning that the rule of hypothesis on page 10 above includes.
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X (1) φ Given
X , Ξ (2) φ thinning: 1

X (1) I (φ) Given
Σ (1) φ Given
X ,Σ (2) ¬φ IE : 1, 2

At last, let us remind the reader of the entailments from footnote 16 above which
proofs we do not present here due to space reasons only.

5 Natural Deduction SystemsND
(◦)k
NC3

for the binary extensions of NC3

Here we demonstrate the way CA allows one to obtain the rules of a natural deduction
system for each binary extension of NC3.

Suppose we are interested in the extension with exclusive disjunction � and take
two entries as examples: f◦(1/2, 1/2) = 0 and f◦(1, 1) = 0.

In the former entry, we need the equivalence f◦(1/2, 1/2) = 0 iff I (φ), I (ψ) |�
D(φ � ¬ψ) ∧ ¬(φ � ψ). So, ND

�
NC3

contains the rule:

I (φ), I (ψ) (1) D(φ � ¬ψ) ∧ ¬(φ � ψ) R�(1/2, 1/2, 0)

In the latter entry, we need the equivalence f◦(1, 1) = 0 iff φ,ψ, D(φ), D(ψ) |�
D(φ ◦ ψ) ∧ ¬(φ ◦ ψ). So, ND

�
NC3

contains also the rule:

φ,ψ, D(φ), D(ψ) (1) D(φ � ¬ψ) ∧ ¬(φ � ψ) R�(1, 1, 0)

Thus, we obtain exactly nine rules for � (or any other connective) because its truth-
table has nine entries and because each rule obtainable via CA is independent.32 We
hope the reader easily manages to obtain the remaining rules for � herself. Sure, the
rules look clumsy and dissimilar to the conventional ones. Arguably, this phenomenon
is effected by the generality of CA. In practice, the number of rules for a connective
is (considerably) fewer than the number of entries in its truth-table.33 At present, the
problem of finding the general (and algorithmically implemented) way to combine
both conventional rules and the ones obtainable via CA, is still open.

We direct the reader’s attention to the difference between the Weirian rules and
the rules obtained via CA with respect to introducing determinacy formulae into a
derivation. In the former rules, one determines every hypothesis occurring in an overlap
of sets in antecedents of premises of a rule. In the latter rules, one needs not check up
the sets in question for overlapping. The needed determinacies have already occurred
in the antecedents of the rules. To put it another way, the rules obtainable via CA are
local rather than global in the Weirian sense (Weir, 2013a, p. 101). We believe this is
another effect caused by the generality of CA, where ◦ might be any connective and,
hence, has any truth-table. In a situation like this, there seems to be no alternative way
to preserve soundness than guaranteeing it locally, at every line of a derivation.34

32 See Petrukhin (2018) for a standard proof.
33 The Gentzenian harmony is a well-known argument pro.
34 Classical predicate logic got such an alternative in Aguilera and Baaz (2019), where a correct proof is
allowed to make unsound inferences in order to construe shorter proofs. Despite the fact that these results
depend on rules for quantifiers only, we believe in a perspective of studying unsound inferences that make
proofs shorter in propositional logic, too.
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Soundness and Completeness ofND
(◦)k
NC3

Let us remind the reader that L(◦)k is an extension of L by binary truth-functional
operators ◦1, . . . , ◦k , that F(◦)k is the set of allL(◦)k -formulae defined in a standard

way, and NC(◦)k
3 is the common name of the corresponding logics.

Theorem 2 (Soundness)For each Γ ⊆ F(◦)k and φ ∈ F(◦)k , it holds that if Γ �
NC

(◦)k
3

φ, then Γ |�
NC

(◦)k
3

φ.

Proof is by induction on the depth of a derivation defined in the usual way. Note that
each NDNC3 -rule is shown to be valid in Weir (2013a, p. 102) and Weir (2013b, pp.

5–7). The validity of ND
(◦)k
NC3

-rules is shown in Theorem 1. ��

We would like to precede the completeness theorem with addressing the first ref-
eree’s point of view that “the method of prime theories simply cannot work for a logic
without generalized transitivity, since this idea of ‘containing its own consequences’
seems strongly tied up with transitivity” and his (her) kind recommendation to look
“at the work of Frankowski, particularly (Frankowski, 2004a), for ideas about related
methods that might be more suitable”.

Let us start with acknowledging that the first referee’s point of view is fair, and the
Henkinian method in the form suggested in the embryonic draft of this paper is not
applicable to NC3. Roughly, the standard condition of closure — Γ � φ iff φ ∈ Γ —
that holds of the Henkin-type sets used in Kooi and Tamminga’s completeness proofs
(Kooi & Tamminga, 2012; Tamminga, 2014), fails for the equivalent sets in NC3,
as Weir notes (Weir, 2013b, pp. 8–9). As a result, below we employ the Henkinian
method not in the standard form, but in the form that Weir tailors this method to the
needs ofNC3 inWeir (2013b, pp. 9–18) following bothWeir’s and the second referee’s
amendments to this exposition.

Second, the need for modification of the Henkinian method to non-transitive
approaches is not confined to the Weirian one only. For example, Wansing and Skurt
wonder “if identity is deprived of transitivity, what does that mean for the Henkin-style
completeness proof for classical first-order logic with the impoverished notion” and
show how “the Henkin-style completeness proof for classical first-order logic with
identity can thus be modified” (Wansing & Skurt, 2019, p. 536, 542).

Lastly, let us agree with the first referee’s kind recommendation that it is instructive
to apply (see (Barrio et al., 2019) for one of applications) the method of Frankowski
(2004a, b) who underlines that his approach is closely related to the one ofMalinowski
(1990), to the logics discussed in this paper. With all due respect, both the first and
the second points above together with the non-embryonic completeness proof below
make applying the Frankowskian method a topic of a future paper.

The completeness theorem below is proved via the Henkinian paradigmatic method
with ND

(◦)k
NC3

-specific modifications and discriminations. We base our proof on the
Weirian proof of the completeness theorem for NC3 (Weir, 2013b, pp. 8–18). We start
with auxiliary definitions and lemmata adapting the Weirian original terminology for
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�NDNC3
to �ND

NC
(◦)k
3

. In the remaining proofs and definitions from this Section,

therefore, � stands for �ND
NC

(◦)k
3

, and φ,ψ, χ ∈ F(◦)k .

Definition 4 Weir (2013b, p. 9) A set Γ is

1. Weakly consistent iff Γ � ⊥;
2. Strongly consistent iff it is not the case that Γ � φ and Γ � ¬φ;
3. Negation-complete iff φ ∈ Γ or ¬φ ∈ Γ ;
4. Negation-complete1 iff Γ � φ or Γ � ¬φ.

Note that Weir employs special 1 and 4 rather than standard 2 and 3, respectively,
employed in the Tammingian (in fact, standard) proof. The need for these discrimina-
tions is argued with the following

Lemma 5 (Weir 2013b, pp. 8–9). It is not the case that Γ � φ iff φ ∈ Γ .

Let us show how it works on the example of a weakly consistent Γ = {φ ∧ ¬φ}35
suggested by the first referee. So, we start with the hypothesis φ ∧ ¬φ � φ ∧ ¬φ.
By ∧E1, we derive Γ � φ. (The case with ∧E2 is the same.) However, due to the
failure of closure, this does not mean we should expand Γ to a weakly inconsistent
{φ ∧ ¬φ, φ}.36 On the other hand, we could continue and by ∧E2, derive Γ � ¬φ.
Again, this does not meanwe should expandΓ to a weakly inconsistent {φ∧¬φ,¬φ}.
Moreover, φ ∧ ¬φ � φ and φ ∧ ¬φ � ¬φ do not allow us to derive φ ∧ ¬φ � ⊥, by
¬E because we lack determinacy of φ∧¬φ that both φ and¬φ depend on. The failure
of closure, nevertheless, does not prevent us from employing the Henkinian method.
Instead of assigning truth-values of formulae in a maximally (weakly) consistent set
standardly in terms of set-theoretic membership, we will do it in terms of theND

(◦)k
NC3

-
derivability following Weir (2013b) (see the beginning of Lemma 11).

Now let us get back to the completeness proof and list all the preliminary definitions
and lemmata that Weir employs (Weir, 2013b, pp. 8–18).

Lemma 6 Weir (2013b, pp. 8–9) Let Γ be weakly consistent. Let Δ be its expansion
by the following Henkin-style construction, where F1, F2, . . . is an enumeration of all
elements of F(◦)k :

Δ1 = Γ ,

Δ j+1 =
{

Δ j ∪ {Fj+1}, i f Δ j ∪ ¬{Fj+1} � ⊥,

Δ j , otherwise,

Δ =
∞⋃

j=1

Δ j .

Then Δ is both weakly consistent and negation-complete1.

35 Note that φ ∧ ¬φ � ⊥, due to the failure of upwards falsity-preservation and soundness.
36 Note that φ ∧ ¬φ, φ � ⊥.
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In what follows, both Γ and Δ will be employed in the sense of Lemma 6.
Let us remind the reader that Weir’s Lemma 1, Proposition 1, Lemma 2, and Propo-

sition 2 are Lemma 2 on page 14, Lemma 1 on page 14, Lemma 3 on page 14, and
Lemma 4 on page 14, respectively.

Lemma 7 [Proposition 3 (Weir, 2013b)]. If Δ �NDNC3
φ and Δ �NDNC3

¬φ, then
Δ �NDNC3

D(φ).

Another version of Lemma 7 is as follows: If Δ �NDNC3
φ and Δ �NDNC3

¬φ,
then Δ �NDNC3

D(φ).
Lemma 7 justifies the following

Lemma 8 [Proposition 4 (Weir, 2013b) (primality)]. If Δ �NDNC3
φ ∨ ψ , then

Δ �NDNC3
φ or Δ �NDNC3

ψ .

Lemma 9 [Lemma 3 (Weir, 2013b)]. I (φ), I (ψ) �NDNC3
φ → ψ .

Lemma 10 [Lemma 4 (Weir, 2013b)]. If Δ �NDNC3
¬(φ → ψ), then Δ �NDNC3

D(φ) ∨ D(ψ).

Definition 5 [Weir (2013b, p. 13)] A quasi-model or q-model for a set Γ is a model
such that v(φ) �= 0, for each φ ∈ Γ .

Lemmata 4, 7, 8, 9, and 10 justify the following

Lemma 11 [Proposition 5 (Weir, 2013b)] Let the canonical valuation v for the nega-
tion-complete1 weakly consistent Henkin set Δ be the function v generated from the
semantic clauses for the connectives by extending the following assignment of truth
values to propositional variables: v(A) = 1 iff Δ � A,Δ � ¬A; v(A) = 0 iff
Δ � A,Δ � ¬A, and v(A) = 1/2 iff Δ � A,Δ � ¬A. For the canonical model
valuation v for Henkin set Δ the following holds:

(1) v(ϕ) = 1 iff Δ � ϕ,Δ � ¬ϕ;
(2) v(ϕ) = 0 iff Δ � ϕ,Δ � ¬ϕ;
(3) v(ϕ) = 1/2 iff Δ � ϕ,Δ � ¬ϕ

(negation-completeness1 of Δ rules out the possibility of neither φ nor its negation
being provable).

Proof The cases (1)–(3) for the other connectives than ◦ are proven by Weir. We are
left to prove them for ◦.
Case (1) from left to right. Suppose v(φ ◦ ψ) = 1. Let us consider f◦(0, 0) = 1 and
f◦(1/2, 1/2) = 1. The 7 others are analogous.

f◦(0, 0) = 1. So, v(φ) = v(ψ) = 0. By IH, Δ � φ,Δ � ¬φ,Δ � ψ,Δ � ¬ψ .
By Lemma 7, it follows that Δ � D(¬φ) and Δ � D(¬ψ). Then R◦(0, 0, 1) is a rule
of ND

NC
(◦)k
3

and the proof runs as follows, where D(φ ◦ ψ) ∧ (φ ◦ ψ) is denoted by
ω.
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Δ (1) ¬φ Given
Δ (2) ¬ψ Given
Δ (3) D(¬φ) Given
Δ (4) D(¬ψ) Given
Δ (5) D(φ) ¬ED: 3
Δ (6) D(ψ) ¬ED: 4
– (7) D(D(φ)) D(D)

¬φ,¬ψ, D(φ), D(ψ) (8) ω R◦(0, 0, 1)
Δ,¬φ,¬ψ, D(φ) (9) ω Cut : 3, 4, 6–8
Δ,¬φ,¬ψ (10) D(φ) → ω → I : 9
Δ,¬φ (11) ¬ψ → (D(φ) → ω) → I : 10
Δ (12) ¬ψ → (D(φ) → ω) CutC L : 1, 3, 11
Δ (13) D(φ) → ω → EC L : 2, 4, 12
Δ (14) ω → EC L : 5, 7, 13
Δ (15) D(φ ◦ ψ) ∧E1: 14
Δ (16) φ ◦ ψ ∧E2: 14

Now let us remind the reader footnote 18 caused by the second referee’s remark
that both non-triviality of Δ and the proof above that Δ � φ ◦ ψ do not imply that
Δ � ¬(φ ◦ ψ), i. e. the needed half of the condition for v(φ ◦ ψ) = 1.

In order to show that Δ � ¬(φ ◦ ψ) we reason for the sake of contradiction, i. e.
we assume that Δ � ¬(φ ◦ ψ). This assumption, Δ � φ ◦ ψ , and step 15 imply, by
¬EC L , that Δ � ⊥, i. e. triviality of Δ. And this fact contradicts the condition that Δ
is non-trivial.

f◦(1/2, 1/2, 1). So, v(φ) = v(ψ) = 1/2. By IH, Δ � φ,Δ � ¬φ,Δ � ψ,Δ � ¬ψ .
Then ND

NC
(◦)k
3

has R◦(1/2, 1/2, 1). So, the proof runs as follows.

Δ (1) ¬φ Given
Δ (2) ¬ψ Given
Δ (3) φ Given
Δ (4) ψ Given
I (φ), I (ψ) (5) D(φ ◦ ψ) ∧ (φ ◦ ψ) R◦(1/2, 1/2, 1)
Δ, φ (6) ¬φ thinning: 1
Δ,ψ (7) ¬ψ thinning: 2
Δ,¬φ (8) φ thinning: 3
Δ,¬ψ (9) ψ thinning: 4
Δ (10) φ → ¬φ → I : 6
Δ (11) ψ → ¬ψ → I : 7
Δ (12) ¬φ → φ → I : 8
Δ (13) ¬ψ → ψ → I : 9
Δ (14) I (φ) ∧I : 10, 12
Δ (15) I (ψ) ∧I : 11, 13
– (16) D(I (φ)) D(I )
– (17) D(I (ψ)) D(I )
Δ (18) D(φ ◦ ψ) ∧ (φ ◦ ψ) CutC L : 5, 14–17
Δ (19) φ ◦ ψ ∧E2: 18
Δ (20) D(φ ◦ ψ) ∧E1: 18
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The justification that Δ � ¬(φ ◦ ψ) is analogous to the above proof on page 19.
Case (1) from right to left. SupposeΔ � φ◦ψ andΔ � ¬(φ◦ψ). Hence, by Lemma 7,
Δ � D(φ ◦ ψ).

Because Δ is negation-complete1 by the Henkin construction, (Δ � φ or Δ � ¬φ)
and (Δ � ψ or Δ � ¬ψ). Hence, out of the 16 combinations with regard to whether
Δ � φ, or Δ � ¬φ, or Δ � ψ , or Δ � ¬ψ we are left with nine.

Let us take the combinationΔ � φ,Δ � ¬φ,Δ � ψ , andΔ � ¬ψ . The 8 others are
analogous. By Lemma 7, Δ � D(¬φ). By IH, v(φ) = 0, v(ψ) = 1/2. So, ND

NC
(◦)k
3

has either the rule R◦(0, 1/2, 0), or the rule R◦(0, 1/2, 1/2), or the rule R◦(0, 1/2, 1).
Suppose ND

NC
(◦)k
3

has R◦(0, 1/2, 0). So, the proof runs as follows.

Δ (1) ¬φ Given
Δ (2) ¬ψ Given
Δ (3) D(¬φ) Given
Δ (4) ψ Given
Δ (5) φ ◦ ψ Given
Δ (6) D(φ ◦ ψ) Given
¬φ, D(φ), I (ψ) (7) D(φ ◦ ψ) ∧ ¬(φ ◦ ψ) R◦(0, 1/2, 0)
– (8) D(D(φ)) D(D)

– (9) D(I (ψ)) D(I )
Δ (10) D(φ) ¬ED: 3
Δ (11) D(φ ◦ ψ) ∧ ¬(φ ◦ ψ) CutC L : 1, 3, 7–10
Δ (12) ¬(φ ◦ ψ) ∧E2: 11
Δ (13) D(φ ◦ ψ) ∧E1: 11
Δ (13) ⊥ ¬EC L : 5, 12, 13

Hence, supposing that ND
NC

(◦)k
3

has R◦(0, 1/2, 0) implies triviality of Δ. And this

fact contradicts the condition that Δ is non-trivial. Thus,ND
NC

(◦)k
3

does not have the

rule R◦(0, 1/2, 0).
Suppose ND

NC
(◦)k
3

has R◦(0, 1/2, 1/2). So, the proof runs as follows.

Δ (1) ¬φ Given
Δ (2) ¬ψ Given
Δ (3) D(¬φ) Given
Δ (4) ψ Given
Δ (5) φ ◦ ψ Given
Δ (6) D(φ ◦ ψ) Given
¬φ, D(φ), I (ψ) (7) I (φ ◦ ψ) R◦(0, 1/2, 1/2)
– (8) D(D(¬φ)) D(D)

– (9) D(I (ψ)) D(I )
Δ (10) I (φ ◦ ψ) CutC L : 1, 7–9
– (11) D(D(φ ◦ ψ)) D(D)

Δ (12) ⊥ ¬EC L : 6, 10, 11
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Hence, supposing thatND
NC

(◦)k
3

has R◦(0, 1/2, 1/2) implies triviality ofΔ. And this

fact contradicts the condition thatΔ is non-trivial. Therefore,ND
NC

(◦)k
3

does not have

the rule R◦(0, 1/2, 1/2).
To conclude case (1), supposing thatΔ � φ ◦ψ andΔ � ¬(φ ◦ψ), leads to the fact

that ND
NC

(◦)k
3

does not have either the rule R◦(0, 1/2, 1/2), or the rule R◦(0, 1/2, 1/2).
Therefore, it has the rule R◦(0, 1/2, 1). Therefore, v(φ ◦ ψ) = 1.
Case (2) from left to right and from right to left is symmetrical to case (1).
Case (3) from left to right. Suppose v(φ ◦ ψ) = 1/2. Let us consider f◦(0, 0) = 1/2

and f◦(1/2, 1/2) = 1/2. The 7 others are analogous.
f◦(0, 0) = 1/2. So, v(φ) = v(ψ) = 0. By IH, Δ � φ, Δ � ¬φ, Δ � ψ , and Δ �

¬ψ . By Lemma 7, it follows that Δ � D(¬φ) and Δ � D(¬ψ). Then R◦(0, 0, 1/2)
is a rule of ND

NC
(◦)k
3

and the proof runs as follows.

Δ (1) ¬φ Given
Δ (2) ¬ψ Given
Δ (3) D(¬φ) Given
Δ (4) D(¬ψ) Given
Δ (5) D(φ) ¬ED: 3
Δ (6) D(ψ) ¬ED: 4
– (7) D(D(φ)) D(D)

– (8) D(D(ψ)) D(D)

¬φ,¬ψ, D(φ), D(ψ) (9) I (φ ◦ ψ) R◦(0, 0, 1/2)
Δ (10) I (φ ◦ ψ) CutC L : 1, 2, 7–9

Now suppose that Δ � φ ◦ ψ and Δ � ¬(φ ◦ ψ). (The case Δ � φ ◦ ψ and
Δ � ¬(φ ◦ ψ) is analogous.) By Lemma 7, it follows that Δ � D(φ ◦ ψ). So, the
proof proceeds as follows.

Δ (11) φ ◦ ψ Given
Δ (12) D(φ ◦ ψ) Given
Δ (13) ¬(φ ◦ ψ) IE : 11, 12
Δ (14) ⊥ ¬EC L : 11–13

Supposing that Δ � φ ◦ ψ or Δ � ¬(φ ◦ ψ) leads to the fact that Δ � ⊥, i. e.
triviality of Δ. And this fact contradicts the condition that Δ is non-trivial. Hence,
both Δ � φ ◦ ψ and Δ � ¬(φ ◦ ψ).

f◦(1/2, 1/2) = 1/2. So, v(φ) = v(ψ) = 1/2. By IH, Δ � φ,Δ � ¬φ,Δ � ψ,Δ �
¬ψ . Then R◦(1/2, 1/2, 1/2) is a rule of ND

NC
(◦)k
3

and the proof runs as follows.

Δ (1) ¬φ Given
Δ (2) ¬ψ Given
Δ (3) φ Given
Δ (4) ψ Given
I (φ), I (ψ) (5) I (φ ◦ ψ) R◦(1/2, 1/2, 1/2)
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The justification that steps (1)–(4) imply Δ � I (φ) and Δ � I (ψ) is analogous to
the one in the proof on page 19. Then the reader is referred to the previous proof in
order to conclude this proof of triviality of Δ if Δ � φ ◦ ψ or Δ � ¬(φ ◦ ψ). Hence,
both Δ � φ ◦ ψ and Δ � ¬(φ ◦ ψ).
Case (3) from right to left. Suppose Δ � φ ◦ ψ and Δ � ¬(φ ◦ ψ).

By the condition of this Lemma, we take Δ � φ, Δ � ¬φ, Δ � ψ , and Δ � ¬ψ

out of the 9 combinations specified in the beginning of the case (1). The 8 others are
analogous. By Lemma 7, Δ � D(¬φ) and Δ � D(¬ψ). By IH, v(φ) = v(ψ) = 0.
So, ND

NC
(◦)k
3

has either the rule R◦(0, 0, 0), or the rule R◦(0, 0, 1/2), or the rule

R◦(0, 0, 1).
Suppose ND

NC
(◦)k
3

has R◦(0, 0, 0). So, the proof runs as follows.

Δ (1) ¬φ Given
Δ (2) ¬ψ Given
Δ (3) D(¬φ) Given
Δ (4) D(¬ψ) Given
¬φ,¬ψ, D(¬φ), D(¬ψ) (5) D(φ ◦ ψ) ∧ ¬(φ ◦ ψ) R◦(0, 0, 0)

The justification that steps 1–5 imply Δ � D(φ ◦ ψ) ∧ ¬(φ ◦ ψ) is analogous to
the one in the proof on page 19. The proof proceeds as follows.

Δ (6) D(φ ◦ ψ) ∧ ¬(φ ◦ ψ) 1–5
Δ (7) φ ◦ ψ Given
Δ (8) ¬(φ ◦ ψ) Given
Δ (9) D(φ ◦ ψ) ∧E1: 6
Δ (10) ⊥ ¬EC L : 7, 8, 9

Supposing that ND
NC

(◦)k
3

has R◦(0, 0, 0) contradicts the condition that Δ is non-

trivial. Therefore, ND
NC

(◦)k
3

does not have the rule R◦(0, 0, 0).
It is analogously to prove that supposing that ND

NC
(◦)k
3

has R◦(0, 0, 1) contra-

dicts the condition that Δ is non-trivial. Therefore, ND
NC

(◦)k
3

does not have the rule

R◦(0, 0, 1).
To conclude the case (3), supposing that Δ � φ ◦ψ and Δ � ¬(φ ◦ψ), leads to the

fact that ND
NC

(◦)k
3

does not have either the rule R◦(0, 0, 0), or the rule R◦(0, 0, 1).
Therefore, it has the rule R◦(0, 0, 1/2). Therefore, v(φ ◦ ψ) = 1/2. ��

Lemma 11 justifies

Lemma 12 [Q-model Existence Theorem (Weir, 2013b)] If Γ � ⊥, then there is a
model of Γ such that v(φ) �= 0, for each φ ∈ Γ .

Theorem 3 (Completeness) [Completeness Theorem (Weir, 2013b)] If Γ |� φ, then
Γ � φ.

Proof is by contraposition and by reductio.37 Suppose that Γ � φ. Then we have
Γ ,¬φ � ⊥. We expand it to a maximal weakly consistent negation-complete1 set Δ

37 Note that this proof is more compact than Weir’s one.
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and use Lemma 12 to show that for all ψ ∈ Δ, v(ψ) �= 0. Since Δ � ⊥, there is at
most one ψ ∈ Δ such that v(ψ) = 1/2 (Weir, 2013b, pp. 15–16).38 If v(χ) = 1, for
each χ ∈ Γ , then Γ �|� φ because v(¬φ) ≥ 1/2 and so downwards truth-preservation
fails. If v(χ) = 1/2, for the only one χ ∈ Γ , then v(¬φ) = 1 and so upwards
falsity-preservation fails. ��

By Theorems 2 and 3, we obtain the following Corollary 1.

Corollary 1 For each Γ ∪ {φ} ⊆ F(◦)k , it holds that Γ |� φ iff Γ � φ.

6 RelatedWork

This section is an update to the comparative study of the CFOSC-method39 and CA
in Petrukhin and Shangin (2019), where footnote 4 contains the following hypothesis:
“We don’t mean here we can provide an example of correspondence analysis being
applied to a non-transitive logic. What we mean here is that transitivity property of
the logical consequence relation (i. e. validity of cut-rule) is not a necessary part of
correspondence analysis”. So, the present paper is a confirmation of this hypothesis,
and CA is shown to be applicable to the logics which the CFOSC-method is not
applicable to. We, again, underline that the CFOSC-method is more general than
CA primarily due to the fact, that the former deals with both deterministic and non-
deterministic matrices.40 For non-deterministic matrices, we direct the reader to the
lists of references in Avron and Zamansky (2011), Avron and Lev (2001), Avron
and Konikowska (2005), Kearns (1981) and, especially, to the emeritus Lomonosov
MSU professor Yuri Vasilyevich Ivlev’s contribution, who has been proposing non-
deterministic matrices (he dubs them quasi-matrices) for propositional and modal
logics since the year of 1972 (Ivlev, 1987, 1988, 1998, 2000, 2005, 2020).

Getting back to the CFOSC-method, we highlight that it sets up an n-sequent
calculus for each n-valued logic that is characterizable by any finite-valued semantics
based on the above-mentioned types of matrices. As a result, such a n-sequent calculus
can be transformed into an ordinary sequent calculus and a natural deduction calculus.
Proof systems of the latter type are usually (but dissimilar to the ones by the CFOSC-
method) obtainable via CA, too. There are two crucial differences between the ways
both methods set up proof systems. First, the ones by the CFOSC-method contain
superficial, dependent rules, and special pruning procedures run in order to get rid
of them. The ones by CA have independent rules only. Second, the CFOSC-method
is designed to set up cut-free sequent calculi, and this type of proof system is well-
known to be inefficient from the viewof computational complexity theory (D’Agostino
& Mondadori, 1994). On the other hand, natural deduction calculi are among the

38 Roughly, Weir proves there that if there are at least two formulae ψ1 and ψ2 such that Δ � ψ1 and
Δ � ψ2, then Δ � ⊥, by the ⊥ rule.
39 The acronym CFOSC, “Cut-Free Ordinary Sequent Calculi“, is exclusively our idea. We call it this
simply because Avron and his co-authors never call it that themselves.
40 Applying CA to non-deterministic matrices is an open question. However, note that there is nothing in
the nature of CA to prevent it.
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proof systems (in)efficiency of which is, still, unprovable (Cook & Reckhow, 1979;
Urquhart, 1995).

The motivational reasons of the two methods are different, too. In the case of
CFOSC, one of the reasons is to provide a general proof of the cut-elimination theorem,
a corner stone of the modern automated proof theory. Such a general proof allows
one to obtain cut-free sequent calculi, where a proof searching procedure becomes
a routine and brute-force task [this procedure is highly inefficient, nevertheless: the
complexity of a cut-free sequent calculus is shown to be factorial, i. e. it is worse
than the exponential one of the truth-table method (Urquhart, 1995)].41 Hence, from
the beginning CFOSC rests on the presupposition that the entailment relation of a
treated logic is the Tarski-Scott one (Scott, 1974), that is, it enjoys the generalized
transitivity (see, for instance, Avron and Lev (2001, p. 2) and Avron et al., (2007,
44). To be sure, we are claiming neither that it is a drawback of CFOSC (the general
cut-elimination theorem is not expected to hold when the general transitivity fails),
nor that CFOSC cannot be adapted to (the above-treated) non-transitive logics. On the
other hand, Petrukhin (2018) shows flexibility of CA by generalizing different CAs.

7 Conclusion

We present CA for the Weirian non-transitive trivalent neo-classical logic NC3 in
order to obtain sound and complete Lemmon-style natural deduction systems for all
the binary extensions of it. The future research will be about proof-searching for (the
obtained extensions of) NC3. An application of Frankowski’s method (Frankowski,
2004a, b) to the target logics is another future research.
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