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Abstract
The paper introduces a new type of rules into Natural Deduction, elimination rules by
composition. Elimination rules by composition replace usual elimination rules in the
style of disjunction elimination andgive amore direct treatment of additive disjunction,
multiplicative conjunction, existence quantifier and possibility modality. Elimination
rules by composition have an enormous impact on proof-structures of deductions:
they do not produce segments, deduction trees remain binary branching, there is no
vacuous discharge, there is only few need of permutations. This new type of rules fits
especially to substructural issues, so it is shown for Lambek Calculus, i.e. intuitionistic
non-commutative linear logic and to its extensions by structural rules like permutation,
weakening and contraction. Natural deduction formulated with elimination rules by
composition from a complexity perspective is superior to other calculi.
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1 Introduction

Since its appearence in 1934/35 by Gentzen the rules of Natural Deduction played an
epistemological role, because its discoverer or inventor claimed that these rules ’einen
Formalismus aufstellen, der moeglichst genau das wirkliche logische Schliessen in
mathematischen Beweisen wiedergibt.’ Gentzen (1934/35, p.183). And although the
calculus of Natural Deduction formulated ’real logical reasoning’ in Gentzen’s eyes
he went over to another calculus, the calculus of sequents, serving him as the pre-
ferred object of mathematical language in which his basic and famous theorem was
shown, the theorem of cut elimination. Maybe due to the technical preferences of
Gentzen the calculus of Natural Deduction slept for a while, was neither modified nor
really used, at least until Prawitz (1965) showed in his famous Natural Deduction the
proof-theoretical subtleties of this calculus: cut-elimination can be proved in Natu-
ral Deduction not just by some translation via sequent calculus, but as a result of its
own in the form of normalising or converting maximum formulas. Even Gentzen’s
idea that Natural Deduction somehow mirrors ’the real logical calculating in mathe-
matical proofs’ was further fostered since it seemed to be confirmed by the BHK -
Brouwer-Heyting-Kolmogorow interpretation of logic, e.g. Heyting (1956). And the
introduction of types into the λ-calculus for an understanding of the syntax of propo-
sitional and predicate logic led to a very close relation of Natural Deduction and typed
λ-calculus formulated as the Curry-Howard Isomorphism.

A further important step in the short history of Natural Deduction was the discovery
of general schemata of rules by Schroeder-Heister. He remarked in Schroeder-Heister
(1984) that especially the formof the elimination rule of intuitionistic disjunction could
be applied to other eliminations as well, for instance to intuitionistic conjunction, and
may serve as a generator for arbitrary connectives. In the line of such ideas several
directions of investigation started. von Plato (2003) discovered that general elimina-
tion rules are the missing link to understand the relation of the calculus of sequents
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Natural Deduction Bottom Up 603

and the calculus of Natural Deduction much better. Avron (1988), Troelstra (1995)
and Tennant (2007) started to apply general elimination rules for the formulation of
some substructural logics in the framework of Natural Deduction like linear logic and
relevant logic. Not to forget, the author of this paper went a further step and gave in
Zimmermann (2007, 2010) an exposition of rules in the style of general elimination
rules for substructural logics including Lambek Calculus, so for Intuitionistic Linear
Non-Commutative Logic.

But in this paper it is shown, that there is yet another typof rules inNaturalDeduction
worth to be considered, to be called elimination rules by composition, and presented by
this author Zimmermann (2017, 2019). These rules form an alternative to elimination
rules in the style of elimination of disjunction, and they are able to give elimination
rules at least for intuitionistic additive disjunction, existence quantifier, multiplicative
conjunction and possibility. These rules have an enormous impact on proof-structures
of derivations: they do not produce segments, so they do not give rise for reductions
like permutations; they are only binary branching, at least for binary connectives; they
do not allow vacuous discharge, so they do not give rise to immediate simplifications
and to inconfluence phaenomena caused by immediate simplifications; and last but
not least they allow a better understanding of substructural logics, i.e. logics without
structural rules.

1.1 Rules for Intuitionistic Disjunction∨

The new typ of rules, elimination rules by composition, can be shown best by exam-
ple. As a starter intuitionistic disjunction is chosen. The rules for this connective,
disjunction introduction and disjunction elimination rules, are going back to Gentzen
and Schroeder-Heister showed, as mentioned, that especially the rule of disjunction
elimination deserves extra attention, since it can be regarded as a general schema for
other connective rules, for instance conjunction elimination can be formulated in the
style of disjunction elimination. But on the other side Girard formulated some critical
comments on the rule of disjunction elimination, so that one might be interested to
consider alternatives to this rule:

’The elimination rules are very bad. What is catastrophic about them is the para-
sitic presence of a formula C which has no structural link with the formula which is
eliminated. C plays the role of a context, and the writing of these rules is a concession
to sequent calculus.’ Girard (1989), p.73.

[Av] [Bv]
...

...
...

...
...

A B C A ∨ B C
A ∨ B

∨I L
A ∨ B

∨I R
C

∨Ev
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604 E. Zimmermann

As usual the elimination rule of intuitionistic disjunction ∨E constructs a new
deduction by presupposing other deductions, which look as follows if spelled out:

A B
...

...
...

A ∨ B C C

But under the presupposition of these deductions the following elimination rules
of intuitionistic disjunction ∨ER and ∨EL construct deductions as well:

[Bv] [Av]
...

...
...

...

A ∨ B C C A ∨ B
[Av] A

∨ERv
B [Bv] ∨ELv

...
...

C C

In contrast to∨EL and∨ER the traditional∨E allows elimination of a disjunction
with complete empty discharge, whereas elimination by composition always needs a
non-empty set of active formulas to proceed.

Elimination by composition does comply much better to the very idea of Natu-
ral Deduction, that every connective has introduction rules and elimination rules. In
introduction rules the connective formula is the conclusion and its components are the
premisses; whereas in elimination rules the connective formula is the premiss and its
components are the conclusions.
The full advantage of elimination rules by composition is transparent if substruc-
tural logics and rules are considered. So we change to Lambek Calculus, which is
intuitionistic non-commutative linear logic. This is a logic without structural rules
like weakening, contraction and exchange, very early formulated in Lambek (1958),
extended in Lambek (1993), when Lambek recognized that cut elimination in the cal-
culus of sequents still holds if structural rules are removed - appropriate formulations
of connective rules presupposed. First we stick to disjunction, the additive case.

1.2 Rules for Additive Disjunction∨ in Lambek Calculus

�[A�v] [�Bv]�
...

...
...

...
...

A B C A ∨ B C
A ∨ B

∨I L
A ∨ B

∨I R
C

∨Ev

The sketched rules, by misuse of notation, modify the intuitionistic case insofar as
the elimination rules ∨E are more properly defined. Since the order and the amount
of the open assumptions in the context �,� of active formulas A, B is important,
A and B are required to have up to its order the same context, this context has to
be carefully discharged, such that the order and the amount of the context is kept
constant. Now rule ∨E can be replaced by two rules ∨EL and ∨ER, both showing
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Natural Deduction Bottom Up 605

again elimination of a connective, here additive disjunction ∨ by composition. Both
rules are translatable into each other, so for the purpose of complete calculus one of
the two rules is sufficient. Examples with the rules are shown in the sequel.

�+1B+1�+1 �+1A+1�+1

...
...

...
...

A ∨ B C C A ∨ B
� A �

∨EL + 1
� B �

∨ER + 1

...
...

C C

1.3 Rule Assignement

Rules like elimination rules by composition presuppose careful rule assignement for
unique readability, since the last applied rule in a deduction is not necessarily the rule
at the end, at the bottom of the deduction; instead the last applied rule may be a rule
at the top of the deduction. A careful rule assignement by natural numbers reveals
the order of rules applied in a deduction. To every instance of a rule in a deduction a
natural number k is assigned inductively, its step. To instances of the base rule, stating
assumptions, step 0 is assigned. If a rule R is applied to deductions where m is the
largest step number of instances of rules, then step m + 1 is assigned to R. The step
number k of a rule is further assigned to its discharged assumptions Ak or discharged
contexts �k . This rule assignement is unique, and a given derivation can be uniquely
decomposed according to its last step number, because for every deduction there is
exactly one largest step number. If the rule with the largest step number in a deduction
is removed, there result deductions with lower step numbers, each deduction again
with only one largest step number.
Such assignements of natural numbers to instances of rules are used at least by van
Dalen (2004) and Prawitz (1965), more or less occasionally. But Natural Deduction
with elimination rules by composition will use natural numbers as rule assignement
systematically. Strictly speaking rule assignement by natural numbers is not a new
kind of thing. The usual assignement of variables to instances of rules amounts to the
very same: in a large deduction with many rule instances variables very early will
receive indices consisting of natural numbers since different variables are limited.

1.4 Rules for Multiplicative Conjunction • in Lambek Calculus

Finally rules for multiplicative conjunction in Lambek Calculus are discussed to show
the enormous effects of elimination rules by composition. This author showed 2010
that multiplicative conjunction is correctly definable for Lambek Calculus by using
symmetric general elimination rules. The symmetries of such rules allow in case
of multiplicative conjunction to take care not only of the amount but more, of the
order of assumptions, what is essential for Lambek Calculus. So, the elimination rule
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606 E. Zimmermann

for multiplicative conjunction • takes the following form, besides the unproblematic
introduction rule:

�v[AB�v] [�ABv]�v

...
...

...
...

...

A B C A • B C
A • B

•I
C

•Ev

Although a correct rule, it is immediately seen that •E is a source of inconfluence
and even of indeterministic conversion of maximum formulas of the form •. Such
phaenomena disappear if for formulation of • elimination by composition is taken
into account. Again there are two rules, •ER and •EL which are both translatable
into each other, so, one rule fulfills the purpose.

...
...

A • B A • B
A ∅ B+1 •EL + 1

A+1 ∅ B
•ER + 1

...
...

C C

2 Lambek Calculus - Intuitionistic Non-Commutative Linear Logic

Definition 1 Lambek Calculus LC or intui tionistic non − commutative linear
logic in natural deductionwith binary connectives→,⇒, •,∧,∨, constants⊥,�, 0, 1,
quantifiers ∀, ∃ and modals�,♦. Assumptions are considered as sequences of formu-
las, so up to their order, and the order of assumptions in a deduction is their order in the
tree of deduction. Bk are discharged assumption singletons, �k discharged sequences
of formulas. Assumptions are open iff not discharged. qR + 1 assigns a natural num-
ber to rule instance R for operator q, which is larger than any other natural number
assigned to given rule instances at least by 1. To a rule instance BR, the base rule,
natural number 0 is assigned.
A BR 0

A+1 ∅
...

...
...

B A → B A
A → B

→ I + 1
B

→ E + 1

In → I assumption singleton A is most right in the order of open assumptions.
∅ A+1

...
...

...

B A A ⇒ B
A ⇒ B

⇒ I + 1
B

⇒ E + 1

In ⇒ I assumption singleton A is most left in the sequence of open assumptions.

123



Natural Deduction Bottom Up 607

...
...

...

A • B A B
A ∅ B+1 •E + 1

A • B
•I + 1

...

C
In •E there is no other open assumption between A, B.

� �+1

...
...

...
...

A B A ∧ B A ∧ B
A ∧ B

∧I+1
A

∧EL+1
B

∧ER+1

In ∧I premisses A, B have the same open assumptions, up to the order.
One context � is discharged to keep the amount and the order of the context constant,
one could discharge left or right, ∧I discharges the right context.

�+1B+1�+1

...
...

...
...

A ∨ B C A B
� A �

∨E + 1
A ∨ B

∨I L + 1
A ∨ B

∨I R + 1

...

C
In ∨E lower contexts C have the same open assumptions, up to the order.

...
...

...
...

...

⊥ C ⊥ ⊥ C
A

⊥E + 1 ⊥ ⊥WL + 1 ⊥ ⊥WR + 1

⊥, 0 as conclusion have the meaning that ⊥, 0 or nothing is conclusion.
...

...
...

...
... �+1

A � C C � � �E + 1

� �I + 1 � �WR + 1 � �WL + 1 ...

...
...

...
... 1+1

B 1 1 B 1
1E + 1

B
1WR + 1

B
1WL + 1 ...

...
...

...
...

A y not free in A or ∀yA
∀yA ∀I+1

its open assumptions A(y/t)
∀E+1
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608 E. Zimmermann

...
...

A(x/t) ∃x A
∃x A ∃I+1

A
∃E+1

x not free in A or
... x not free in C and
C its open assumptions except A

...
...

A �A
♦A

♦I + 1
A

�E + 1

...
... ♦A

...
...

�� A ��
♦E + 1 ��

...
...

♦B B
�B

�I + 1

♦E : every open branch (branch with open assumption), except the branch with A, has
a � or ⊥ node.
�I : every open branch has a � or ⊥ node.

Themodal rules pick up an idea of de Paiva / Bierman Bierman and de Paiva (2000),
that every branch has a certain modal configuration, which originally was formulated
for Natural Deduction in sequent style.

The stipulation for 0 needs an explanation, since it is indeed meaningful, although
there is no rule for 0. The stipulation says: 0 as conclusion has the meaning that 0
or nothing is conclusion. Written in sequents it says: � � 0 iff � �. So, having 0 as
conclusion is the same as having no conclusion at all.

Examples
C → A4 C3

A → B5 A
→ E1

B
→ E2

C → B
→ I3

(C → A) → (C → B)
→ I4

(A → B) → ((C → A) → (C → B))
→ I5

C3

B ∨ C4 (A ∨ B) ∨ C
∨I R1

B
∨E3

A ∨ B
∨I R1

A ∨ (B ∨ C) (A ∨ B) ∨ C
∨I L2

A
∨E4

A ∨ B
∨I L1

(A ∨ B) ∨ C
∨I L2
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(A ∧ B) ∧ C4

(A ∧ B) ∧ C A ∧ B (A ∧ B) ∧ C3 ∧EL1

A ∧ B B C
∧EL1,∧ER2,∧ER1

A B ∧ C
∧EL2,∧I3

A ∧ (B ∧ C)
∧I4

(A • B) • C
A • B B3 C4 •E4
A B • C

•E3, •I1
A • (B • C)

•I2
A ∧ C3

A ∧ C4 C
∧E1

A B ∨ C
∧E1,∨I2

(A ∧ B) ∨ (A ∧ C) A ∧ (B ∨ C) A ∧ B3 ∧I3

A ∧ B B
∨E4,∧E1

A B ∨ C
∧E1,∨I2

A ∧ (B ∨ C)
∧I3

B ∧ C4 B ∧ C3

B C
∧E1,∧E1

A ∨ B A ∨ C
∨I2,∨I2

A ∨ (B ∧ C) (A ∨ B) ∧ (A ∨ C)
∧I3

A A2 ∨E4

A ∨ B A ∨ C
∨I1,∨I1

(A ∨ B) ∧ (A ∨ C)
∧I2

�A ∧ �B �A ∧ �B3

�A �B
∧EL1,∧ER1

A B
�E2,�E2

A ∧ B
∧I3

�(A ∧ B)
�I4

�(A ∧ B) �(A ∧ B)4

A ∧ B A ∧ B
�E1,�E1

A B
∧EL1,∧ER2

�A �B
�I3,�I3

�A ∧ �B
∧I4

♦B4

B
♦E3

A ∨ B
∨I L1

♦A ∨ ♦B ♦(A ∨ B)
♦I2

♦A
∨E4

A
♦E3

A ∨ B
∨I R1

♦(A ∨ B)
♦I2
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610 E. Zimmermann

Definition 2 In an instance of a rule
A B
C

qR + 1 for operator q formulas A, B imme-

diately above the rule line are the premisses and formula C immediately below the
conclusion, except in qR = ∨E . If R = I , the rule is an introduction rule, if
R = E , the rule is an elimination rule. In ∨E only the connective formula A ∨ B
above the rule line is a premiss and formula A below the rule line and discharged
assumption B are conclusions; the other formula C above the rule line is a lower
context together with the pairwise occuring C at the end of the subdeduction from
A. And conclusion D of lower context C , its premiss, in ∨E is conclusion of cor-
responding lower context C too, again its premiss. Finally discharged formula B in
•E is a conclusion of premiss A • B too.

In → E,⇒ E the connective premiss is the major premiss and in W rules the
formula being conclusion is the major premiss; other premisses are minor .

In∧I with conclusion A∧B all open assumptions� of the subdeduction endingwith
A and all open assumptions � of the subdeduction ending with B are upper context
formulas. In ∨E with premiss A ∨ B all open assumptions �A� of the subdeduction
ending with C except A and all open assumptions �B� of the subdeduction ending
with C except B are upper context formulas.

To every instance of a rule R in a deduction a natural number k is assigned induc-
tively, its step, yielding Rk. To instances of the base rule, stating assumptions, step
0 is assigned. If rule R is applied to deductions where m is the largest step number
of instances of rules, then step m + 1 is assigned to R. So, the step numbers of the
instances of rules in a deduction serve as parameter in proofs by induction on the
so-called length of a deduction.

A branch in a deduction D is a sequence of formulas 〈A1, ..., Ak〉 in D s.t. A1 is
an assumption of D, Ak is the conclusion of D and Am+1 is the conclusion of a rule
applied on premiss Am for m + 1 ≤ k. So, for branches with C ∨ D = Am and ∨E
applied on Am as premiss or C • D = Am and •E applied on Am as premiss, there
are two branches, one s.t. C = Am+1 and the other s.t. D = Am+1.

A maximum f ormula is a formula which is

– the conclusion of an introduction rule and the premiss of an elimination rule or
– the conclusion of ⊥E and the premiss of an elimination rule or
– the conclusion of an introduction rule and the premiss of �I or
– the minor premiss of any weakening rule if it is not an assumption.

A segment is a sequence of occurrences 〈A1, ..., Ak〉 of one and the same formula A
s.t. each pair A j , A j+1 is an instance of a weakening rule, A j as the major premiss
and A j+1 as the conclusion.

A chain of applications of ∨E is a finite sequence of l applications of ∨E with
lower context formulas of the same shape, s.t. the left lower context of application i
is a lower context of application i + 1 for all i + 1 ≤ l and the lower context formula
of application l is major premiss of an elimination rule.

The degree of a formula is a natural number assigned to a formula by a recursive
function d: d(P(s1, .., sk)) = 0, d(AqB) = MAX{d(A), d(B)} + 1.
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Natural Deduction Bottom Up 611

2.1 Proposition on Unique Readability of Deductions

In every deduction D of LC there is exactly one rule last applied, and this rule last
applied can be uniquely detected.

Proof by induction on the length of a deduction, so by induction on its step number.
So, assumem to be the step number ofD. Ifm = 0,D consists of a single node, stated
by the Base Rule, and the proposition holds. Now assume the proposition to hold for
deductions with step numberm, show it to hold for deductions with step numberm+1.
So assume for three deductionsD1,D2,D3 with step numbers k1, k2, k3, respectively
the proposition to hold s.t. ki = m for some i and k j ≤ ki , and an arbitrary rule R to be
applied on these deductions. Then the definition of a step number of rules guarantees
that the step number of D∗ as a result of R applied on Di is m + 1.

It should be said,what this uniqueness of readibility is not. It is not a uniquemapping
of derivation trees to step-numbers and vice versa. There are identical derivation trees
with the same formulas as nodes butwith different step numbers, as the simple example
shows.

A • B
A B3 •E3
A • B C

•I1
(A • B) • C

•I2

A • B
A B2 •E2
A • B C

•I1
(A • B) • C

•I3

But it is neither accident nor incident that these different assignements of step
numbers to one derivation tree are existing - a translation into sequent calculus shows
too, that these two objects are really different derivations.

2.2 Proposition on Closure Under Substitution

Generally formulated substitution in Natural Deduction is the following combination
of two derivations to one derivation:

� �
... A

...

A substituted in
... gives A .

B
...

B

In presence of the defined calculus LC with its explicit rule assignement for every
rule application substitution is something more delicate. Simply substituting two
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612 E. Zimmermann

derivations in each other, leaving rule assignements untouched, yields inmost cases no
rule assignement for the combined derivations, i.e. no derivation. So, for substitution
of two given derivations the rule assignement has to be partially redefined. Assume the

rule assignement for derivation

�
...

A

to be defined and n its largest step number. Then

the construction of the substitution derivation with its rule assignement proceeds by

induction on the step numbers k of derivation

A
...

B

.

Induction begin k = 0 = BR.

A
substituted to

�
...

A

For k = 0 the largest step number of the substitution derivation is n.
For induction step k + 1 assume as induction hypothesis the substitution for k

to be constructed with the result of m being the largest step number resulting from
substituting derivation with step number n into derivation with step number k such
that k ≤ m and n ≤ m. Then substitution in induction step k + 1 has various cases
according to the different rules - some interesting cases are exemplified:

k + 1 =→ I

A Ck+1 ∅
...

D
C → D

→ I k + 1
substituted to

�
...

A Cm+1 ∅
...

D
C → D

→ Im + 1

k + 1 = ∧I

A Ak+1

...
...

C D
C ∧ D

∧I k + 1
substituted to

� �m+1

...
...

A A
...

...

C D
C ∧ D

∧Im + 1
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k + 1 = •E Case 1

A
...

C • D
C ∅ D

•Ek + 1

...

F

substituted to

�
...

A
...

C • D
C ∅ D

•Em + 1

...

F

k + 1 = •E Case 2
...

C • D
A C ∅ D

•Ek + 1

...

F

substituted to

�
...

... C • D
A C ∅ D

•Em + 1

...

F

k + 1 = ∨E Case 1

A Dk+1

...
...

C ∨ D F
C

∨Ek + 1

...

F

substituted to

�
...

A Dm+1

...
...

C ∨ D F
C

∨Em + 1

...

F

k + 1 = ∨E Case 2

Ak+1 Dk+1

...
...

C ∨ D F
A C

∨Ek + 1

...

F

substituted to

�m+1

...

A Dm+1

�
...

...
... C ∨ D F
A C

∨Em + 1

...

F

123



614 E. Zimmermann

3 Adding Structural Rules

Adding structural rules like permutation, contraction orweakening to Lambek calculus
gives intuitionistic versions of other substructural logics like linear, relevant or affine
logic. In the sequel it is shown that such structural rules exist in Natural Deduction as
well.

Proposition Intuitionistic Linear Logic ILL is LC by interpreting assumptions in
derivations not as sequences but as multisets, so by neglecting their order - Girard
(1987).
B → (A → C)5 B3

A → C A4 → E1

C
→ E2

B → C
→ I3

A → (B → C)
→ I4

(B → (A → C)) → (A → (B → C))
→ I5

A • B
B2 A

•E2
B • A

•I1

These deductions are characteristic for ILL, they implement commutativity. I.e. the
order of assumptions is free in ILL, for instance discharge → I3 in the first example
is not possible in LC, due to restrictions on order.

3.1 Explicit Structural Rules

InNaturalDeduction explicit structural rules Permutation, Contraction andWeakening
can be formulated as well as in the calculus of sequents. In the above weak instances
of explicit structural rules are already used, ⊥W ,�W , 1W rules are instances of
full weakening. But there are full structural rules definable in natural deduction, for
instance an explicit permutation rule P .

Proposition Intuitionistic Linear Logic can be equivalently defined as LC+P, LC
extended by explicit permutation rule P .

B A B A
A ∅ B+1 P + 1

A+1 ∅ B
P + 1

...
...

Two examples of applications of P in LC+P show commutativity of • and →:

B • A
B A3 •E3
A B2 P2

A • B
•I1
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A5 B4

B → (A → C)6 B
P3

A → C A3 → E1

C
→ E2

B → C
→ I4

A → (B → C)
→ I5

(B → (A → C)) → (A → (B → C))
→ I6

For deductive equivalence of ILL and LC+P it is first shown that P is a derived
rule in ILL: either by connective •, where permutations can be executed locally, or by
connective →, where permutations of two assumptions presuppose a whole sequence
of reordering of applications of rules.

B A
B • A

•I1
A ∅ Bk+1 •Ek + 1

...

Bk+2 Ck+3 Dk+1 ∅
...

E
D → E

→ I k + 1

B → (D → E)
→ I k + 2

C → (B → (D → E)) C
→ I k + 3

B → (D → E) B
→ Ek + 4

D → E D
→ Ek + 5

E
→ Ek + 6

For deductive equivalence of I LL and LC + P it is shown secondly that sequences
of assumptions in deductions of LC+P can be rearranged to an arbitrary order by per-
mutation rule P . This is a proof by induction on the length k of a sequence of open
assumptions. If k ≤ 2 the proof is by one application of P . If k = n + 1 and the proof
is shown for length n the argument is this. The sequence be 〈An+1, An, .., Ai , .., A1〉.
Sequence 〈An, .., Ai , .., A1〉 can be arranged by induction assumption to any order,
even to 〈Ai , .., An, .., A1〉, so any Ai can be put to the end of the sequence. But with
permutation rule P it holds that sequence 〈Ai , An+1, .., An, .., A1〉 can be constructed,
and that 〈An+1, .., An, .., A1〉 - without Ai - can be arranged by induction assumption
to any order.

Proposition IRL, intuitionistic relevant logic, is ILL extended by contraction rule C .
For sake of uniqueness contraction rule C underlies a convention if many assump-

tion formulas of the same type occur in a derivation: formula Am discharged by
contraction rule Cm refers to that other formula occurrence A being on the left side
of Am but rightmost.

The following derivations show characteristic axioms of relevant logic.
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A+1

A A
C + 1

...

A2

A A
C2

A • A
•I1

A → (A → B)5 A4 A3

A → B A
→ E1,C3

B
→ E2

A → B
→ I4

(A → (A → B)) → (A → B)
→ I5

Proposition IAL, intuitionistic affine logic, or BCK logic is ILL extended by weak-
ening rule W .

The derivations show characteristic axioms of affine logic.
...

...

A C
A

W + 1

B3 A2

B
W1

A → B
→ I2

B → (A → B)
→ I3

A • B
B A2 •E2
B

W1

Proposition IL, intuitionistic logic, is ILL extended by rules weakening W and con-
traction C .

The derivation shows a characteristic axiom of IL, distributivity of additive ∧ over
additive ∨.

A ∧ (B ∨ C)6

A ∧ (B ∨ C)
C6

A C5 C3 A ∧ (B ∨ C)3
∧E1

A C
W2,W1

A ∧ (B ∨ C) A ∧ C
∧I3

B ∨ C (A ∧ B) ∨ (A ∧ C)
∧E1,∨I4

A ∧ (B ∨ C)5 B
∨E5

A ∧ (B ∨ C) B3 A ∧ (B ∨ C)3
W1

A B
∧E2,W1

A ∧ B
∧I3

(A ∧ B) ∨ (A ∧ C)
∨I4
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Of course, there is a great redundancy of the defined rules for IL and this
redundancy starts even with ILL. For example weakening rules for the constants
⊥WR,⊥WL,�WR,�WR are superfluous in presence of full weakeningW or some
of these weakening rules are superfluous in presence of permutation P . But we neglect
these considerations to keep the presentation straight forward.

4 Reductions

4.1 Conversions

For the conversions it is assumed that the rule instance of the elimination rule producing
the max formula to be converted is the last rule instance in the derivation, so has the
largest step number in the derivation.

Ak ∅ ...
... A ∅
B

...
...

A → B A
→ I k →-Conversion B

B
→ Ek + m

In the sequel reductions only for one implication → in LC are shown, reductions
for ⇒ are left out, they are simply symmetric to each other.

...
...

A B

A • B
•I k ...

...

A ∅ Bk+m •Ek + m •-Conversion A ∅ B
...

...

C C

� �k

...
... �

A B
...

A ∧ B
∧I k ∧-Conversion A

A
∧ELk + m

A similar conversion holds for B as conclusion of max formula A ∧ B.
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... �k+mBk+m�k+m

B
...

A ∨ B C
∨I Rk ...

� A �
∨Ek + m ∨-Conversion � B �

...
...

C C

A similar conversion holds for A as premiss of max formula A ∨ B.
...

A
...

∀yA ∀I k ∀-Conversion A(y/t)
A(y/t)

∀Ek + m

...

A(x/t)

∃x A ∃I k ...

A
∃Ek + m ∃-Conversion A(x/t)

...
...

C C
...

��
...

C
�C

�I k �-Conversion
C

�Ek + m

...

��
...

C

...

A
... ♦A

...
♦I k ♦-Conversion

�� A ��
♦Ek + m

...

♦C

...
...

...

�� A ��
...

♦C

4.2 ⊥- Conversions

The rule assignements with their step numbers in the following derivations have to be
read very carefully, since they can not be read as open variables with a possible univer-
sal closure. Instead they have the following specific meaning: if there is a derivationD
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with highest step number k, then there is a reduced (converted, permuted) derivation E
with highest step number m. Generally there can not be much said about m for given
k, although m is unique for given E .

...
...

...

⊥ ... ⊥ A
A → B A

⊥Ek →-Conversion ⊥ ⊥WRn

B
→ Ek + m

B
⊥En + l

...
...

⊥ E ⊥
A • B

⊥Ek ⊥ F
⊥WLk

E A ∅ Bk F
•Ek + m •-Conversion ⊥ ⊥WRk + 1

... C
⊥Ek + 2

C
...

...

⊥ ⊥
A ∧ B

⊥Ek ∧-Conversion A
⊥Ek

A
∧ELk + m

A similar conversion holds for B as conclusion of max formula A ∧ B.
... �k+mBk+m�k+m

⊥ ...
...

A ∨ B C
⊥Ek ⊥

� A �
∨Ek + m ∨-Conversion � A �

⊥Ek

...
...

C C
...

⊥ ...

q A
⊥Ek ⊥

A
qEk + m

q-Conversion A
⊥Ek

...
...

For q ∈ {∀, ∃,�,♦}.
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4.3 �-Conversions

C Ak ∅
...

B
A → B

→ I k

� �I k + m

converts to

�1

C � �E1

� �WL2

...
...

A B
A • B

•I k
� �I k + m

converts to

...

A
...

� B
�I n

� �WRn + l

� �k

...
...

A B
A ∧ B

∧I k

� �I k + 1

converts to

�
...

A
� �I k

...

A
A ∨ B

∨I k

� �I k + m
converts to

...

A
� �I k

A similar conversion holds for B as premiss of max formula A ∨ B.
...

A
qA

q Ik

� �I k + m
converts to

...

A
� �I k

For q ∈ {∀, ∃,�,♦}.
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4.4 ⊥-W and �-W Conversions

C1...Ck
...

...
...

⊥ A Conversion ⊥ C1
⊥ ⊥WRn ⊥ ⊥WRm + 1

...

⊥ Ck

⊥ ⊥WRm + k

Such conversions hold for weakening rules ⊥WL , �WR and �WL too.

4.5 Conversions in Upper Contexts

If conclusions of maximum formulas are upper contexts in ∧I or ∨E , then there are
corresponding contexts, and the substitutions in the converted derivation have to be
done in the contexts and in the corresponding contexts, as exemplified below. Even
more, one and the same formula occurrence can be context not only in one application
of∧I or∨E , but in many. And so the substitution of derivations caused by conversion
has to occur manifold. This is shown in an example of a context formula being context
in two applications of ∧I in the below.

� �
...

...

C D
C • D

•I1
C D2 C1 D1 •E2

...
...

A B
A ∧ B

∧I1

converts to

� � �1 �1

...
...

...
...

C D C D
...

...

A B
A ∧ B

∧I1

� �
...

... c.to
C D
C • D C2 D2 C1 D1 •I1

C D3
...

...
•E3

... A B
E A ∧ B

∧I1

E ∧ (A ∧ B)
∧I2

�2 �2 �1 �1

� �
...

...
...

...
...

... C D C D

C D
...

...
... A B
E A ∧ B

∧I1

E ∧ (A ∧ B)
∧I2

Finally a concrete example of substitution in contexts caused by conversion.
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A ∧ B3 A ∧ B2

B A
∧ER1, ∧EL1

B ∧ A (A ∧ B) ∧ C
∧I2

(A ∧ B) → (B ∧ A) A ∧ B
→ I3, ∧EL1

converts to
B ∧ A

→ E4

(A ∧ B) ∧ C (A ∧ B) ∧ C3

A ∧ B A ∧ B
∧EL1, ∧EL1

B A
∧ER2, ∧EL2

B ∧ A
∧I3

4.6 Simultaneous Substitution Due to Conversion of •Max Formulas

Substitution of derivations due to conversion of a max formula • is done simultane-
ously. This is possible without violating determinacy of conversions, since there may
exist below any step k of rule applications more than 1 rule applications of step k − 1.
In the sequel is an example of a derivation D1 with 2 max formulas • converting
twofold to D2 and to D3 and the final conflueing normal derivation D4.

B E C D
B • E C • D

•I1, •I1
(B • E) • (C • D)

•I2
A B • E

•E4
A • (B • E)

•I1 D1

A B • E3 •E3
A • (B • E) C • D4 •I1

(A • (B • E)) • (C • D)
•I2

B E
A B • E

•I1
A • (B • E)

•I2
A B • E3 C D

•E3 D2

A • (B • E) C • D
•I1, •I1

(A • (B • E)) • (C • D)
•I2

B E C D
B • E C • D

•I1, •I1
(B • E) • (C • D)

•I2
A B • E

•E3 D3

A • (B • E) C • D3 •I1
(A • (B • E)) • (C • D)

•I2

B E
A B • E C D

•I1
A • (B • E) C • D

•I2, •I1 D4

(A • (B • E)) • (C • D)
•I3
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4.7 Permutations

As usual elimination rules qE having a lower context of ∨E as premiss can be per-
muted with this ∨E , such that the conclusion of qE is lower context of ∨E , up to
preserving the order of assumptions. In the permutations below the variables for formu-
las A, B,C, ... are open variables, so schema variables and can arbitrarily instantiated.
But the step numbers of permutations are existentially closed: if there are step numbers
k,m for a derivation, then there are step numbers i, j, n for its permuted derivation.
Elimination rules qE are assumed to have the largest step number in the derivation to
be permuted.

Bk

.

.

.
.
.
.

A ∨ B C ∧ D
A

∨Ek

.

.

.

C ∧ D
C

∧ELk + m

permutes to

Bn

.

.

.

.

.

. C ∧ D
A ∨ B C

∧ELi

A
∨En

i, j < n
.
.
.

C ∧ D
C

∧EL j

Bk

.

.

.
.
.
.

A ∨ B C • D
A

∨Ek

.

.

.

C • D
C Dk+m •Ek + m

.

.

.

H

permutes to

Bn

.

.

.

C • D
C Di •Ei

.

.

.
.
.
.

A ∨ B H
A

∨En
i, j < n

.

.

.

C • D
C D j •E j

.

.

.

H
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Bk

.

.

.
.
.
.

A ∨ B C → D
A

∨Ek

.

.

.
.
.
.

C → D C
D

→ Ek + m

permutes to

Bn

.

.

.
.
.
.

.

.

. C → D C
A ∨ B D

→ Ei

A
∨En

i, j < n
.
.
.

.

.

.

C → D C
D

→ E j

Bk

.

.

.
.
.
.

A ∨ B C ∨ D
A Dk+m ∨Ek

.

.

.
.
.
.

C ∨ D F
C

∨Ek + m

.

.

.

F

permutes to

Bn Di

.

.

.
.
.
.

C ∨ D F
C

∨Ei

.

.

.
.
.
.

A ∨ B F
A D j ∨En

i, j < n
.
.
.

.

.

.

C ∨ D F
C

∨E j

.

.

.

F

Bk

.

.

.
.
.
.

A ∨ B ∀yC
A

∨Ek

.

.

.

∀yC
C(y/t)

∀Ek + m

permutes to

Bn

.

.

.

.

.

. ∀yC
A ∨ B C(y/t)

∀Ei
A

∨En
i, j < n

.

.

.

∀yC
C(y/t)

∀E j

Bk

.

.

.
.
.
.

A ∨ B �C
A

∨Ek

.

.

.

�C
C

�Ek + m

permutes to

Bn

.

.

.

.

.

. �C
A ∨ B C

�Ei

A
∨En

i, j < n
.
.
.

�C
C

�E j
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Bk

.

.

.
.
.
.

A ∨ B ∃xC
A

∨Ek

.

.

.

∃xC
C

∃Ek + m

.

.

.

H

permutes to

Bn

.

.

.

∃xC
C

∃Ei
.
.
.

.

.

.

A ∨ B H
A

∨En
i, j < n

.

.

.

∃xC
C

∃E j

.

.

.

H

Bk

.

.

.
.
.
.

A ∨ B ♦C
A

∨Ek

.

.

.

♦C
C

♦Ek + m

.

.

.

♦H

permutes to

Bn

.

.

.

♦C
C

♦Ei

.

.

.
.
.
.

A ∨ B ♦H
A

∨En
i, j < n

.

.

.

♦C
C

♦E j

.

.

.

♦H

A simple example of a derivationD1 reducing to a normal derivationD5 via conver-
sions and a permutation: permutation ofD1 givesD2, which can be converted twofold
to D3 and to D4, which conflue by conversion to D5.

B2

A ∨ B B ∨ A A3 ∨I R1

A B ∨ A
∨E2, ∨I L1

B ∨ A (B ∨ A) ∨ C
∨I L1, ∨I R2 D1

B
∨E3

B ∨ A
∨I R1

(B ∨ A) ∨ C
∨I R2
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A3

B4 B ∨ A
∨I L1

B ∨ A (B ∨ A) ∨ C
∨I R1, ∨I R2

B
∨E3

B ∨ A
∨I R1 D2

A ∨ B (B ∨ A) ∨ C A3 ∨I R2

A B ∨ A
∨E4, ∨I R1

B ∨ A (B ∨ A) ∨ C
∨I L1, ∨I R2

B
∨E3

B ∨ A
∨I R1

(B ∨ A) ∨ C
∨I R2

B4

B ∨ A
∨I R1

A ∨ B (B ∨ A) ∨ C A3 ∨I R2

A B ∨ A
∨E4, ∨I R1 D3

B ∨ A (B ∨ A) ∨ C
∨I L1, ∨I R2

B
∨E3

B ∨ A
∨I R1

(B ∨ A) ∨ C
∨I R2

A3

B4 B ∨ A
∨I L1

B ∨ A (B ∨ A) ∨ C
∨I R1, ∨I R2

B
∨E3

B ∨ A
∨I R1 D4

A ∨ B (B ∨ A) ∨ C
∨I R2

A
∨E4

B ∨ A
∨I L1

(B ∨ A) ∨ C
∨I R2

B3

B ∨ A
∨I R1

A ∨ B (B ∨ A) ∨ C
∨I R2

A
∨E3 D5

B ∨ A
∨I L1

(B ∨ A) ∨ C
∨I R2
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4.8 1-Conversion and 1-Permutation

... 1k+1
...

B 1
1Ek + 1

converts to B

B
1WRk ...

...

...
...

...

C
... C 1

B 1
Rk

permutes to C
1WRn

B
1WRk + m

B
Rn + 1

...
...

Such conversions and permutations hold for 1WL too.

5 Normalisation

Weak normalisation for a calculus of Natural Deduction is the property that from every
deduction of the calculus a normal deduction, a deduction without any maximum
formula, can be constructed by reductions. The first published proof of this property
was given by Prawitz (1965) for intuitionistic, classical and minimal predicate logic
in natural deduction and will shortly be sketched for the case of intuitionistic logic.
It is a proof by double induction on the pair 〈l, s〉, with an outer, major induction on
l, the largest degree of max formulas in a given deduction and with an inner, minor
induction on s, the sum of lengths of the segments of max formulas of largest degree
in this very deduction. Further Prawitz gives an algorithm how to detect an appropriate
segment of max formulas of largest degree for reduction (conversion or permutation),
such that the induction value can be minimized. For reduction a segment σ of largest
degree is chosen such, that no other segment κ of largest degree a) is above σ or b)
is above a formula side-connected to the last formula of σ or c) contains a formula
side-connected to the last formula of σ . So no other segment κ of largest degree is
above the conclusion of the last formula of σ or contains a formula side-connected to
the last formula of σ .

Formula A is side-connected to formula B iff A and B are premisses in one and
the same instance of a rule. And segment κ is above segment σ iff the last formula
occurrence of κ is above the first formula occurrence of σ . Troelstra / Schwichtenberg
Schwichtenberg and Troelstra (2000) call these conditions for segments of largest
degree to be chosen for reduction top critical and rightmost, assumed that major
premisses are notated left andminor premisses right in elimination rules. The argument
of Prawitz, that such segments exist, goes at follows: in the set of segments of largest
degree, which are topmost, must be a segment which is rightmost.

This normalisation proof of Prawitz can bemodified slightly, by taking as induction
parameters again the largest degree of max formulas as major value, but the number
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of max formulas of largest degree as minor value. Now the segments to be reduced are
again as in Prawitz algorithm the topmost, rightmost, but the segment, which is chosen
for reduction, is reduced completely to size zero. This can be done simply because the
property of segments being topmost and rightmost is preserved under permutation.

5.1 Lemma on Normalisation in LC - Lambek Calculus

From a deduction D in LC a normal deduction D′ without max formulas can be
constructed, preserving up to the order the open assumptions and the conclusion.

Proof The proof proceeds by an induction on pair 〈k,m〉, where k is the largest degree
ofmax formulas in a given deductionD andm is the number ofmax formulas of largest
degree in D, so k is the major induction value and m is the minor induction value.
Inspection of the conversions of operators →,⇒, •,∧,∨,∀, ∃,�,♦,⊥,�, 1, 0
shows, that every conversion of a max formula A of degree k inD removes A, possibly
generating max formulas of degree at most k − 1, but preserving the conclusion and
the assumptions of D up to their order. So, a conversion applied on a max formula A
of largest degree k in D gives a D′ with m − 1 max formulas of largest degree k, or
D′ has max formulas of largest degree at most k − 1, if m = 1.

But some cases of max formulas need a special treatment.
If a max formula occurs as a segment of length l, this segment is due to applications

of 1W , but this segment can be shortened to l − 1 by a 1W -permutation moving 1W
applications upward. 1W -permutations do not affect subderivations or assumptions.

If a max formula occurs as a lower context of some ∨E or even as a lower context
in a chain of some ∨E at least one permutation preceeds the conversion. Apparently
a chain of l ∨E can be shortened to l − 1 by permutation.

If in a derivation many max formulas of largest degree do occur, multiplication
of subderivations during conversions and permutations are to be considered. In LC
multiplication of subderivations D happen during conversions due to multiple occur-
rences of upper contexts of ∧I and ∨E : If conversion forces multiple substitution of
D in upper contexts of ∧I or ∨E with a max formula X of largest degree in D, X is
converted first.

Further multiplication of some subderivation D may happen in LC during permu-
tation of an elimination rule with ∨E . If a max formula of largest degree X is in such
D, again X is converted first.

The search in subderivations comes to an end, since derivations here considered
are finite and the relation of D being a subderivation (subtree) of E , is transitiv, anti-
symmetric and not cyclic.

Finally lengthening of chains of ∨E may happen during permutations, if the con-
clusion of the elimination rule which is permuted with a∨E is itself a lower context in
an elimination rule of a chain. So there are two chains i, j , and j would be lengthened
by shortening i through permutation, but not vice versa. So chain j is permuted first.

In the case of a collection of max formulas of largest degree as lower contexts of
∨E we use Prawitz’ argument: firstly we take the subclass of this collection such that
permutations do not produce multiplication effects; and secondly in this subclass there

123



Natural Deduction Bottom Up 629

must be a permutation, which does not generate lengthening of chains, since from two
chains i, j the bottom-most does not lengthen the top-most. q.e.d.

5.2 Lemma on Normalisation in ILL - Intuitionistic Linear Logic

Normalisation of ILL, its statement and its proof, is exactly the same as normalisation
in LC, the order or disorder of assumptions does not affect reductions like conversions
and permutations, so the normalisation lemma of LC can be immediately transferred
to ILL.

For sake of uniqueness the rules for additives ∧,∨ need some specifications. If
in pairwise occuring multiset context � of ∨E or ∧I there is some formula occuring
multiple, say� = {A, A}, it is to be specifiedwhich occurrences do correspond to each
other in the pairs. Therefore it is simply stipulated that multiple occurrences of one
formula do correspond to each other according to their natural order in the derivation
trees. So the left most occurrences do correspond to each other, than the second left
most, and so on. Such specifications are important for unique substitution in contexts
in case of reductions, which always take place in both components of the pairwise
occuring context.

Finally it is to be specified in ∨E , which of the assumptions counts as the active
subformula A and B of major premiss A∨ B in case of multiple occurrences of these
formulas as assumptions. Here for B the left-most and for A the right-most occurrence
is chosen. These specifications again guarantee deterministic substitutions in case of
reductions.

5.3 Permutation ofWeakening

...
...

...

C
... C B

A B
Rk

permutes to C
Wv

A
Wk + m + 1

A
Rv + 1

5.4 Lemma on Normalisation in IAL - Intuitionistic Affine Logic

The one and only difference of normalisation in IAL to normalisation in ILL is the
existence of additional segments of max formulas, due to general weakening rule W .
But segments are reduced to aminimal length similar to 1W by permuting applications
of W upwards to prepare conversion. Subderivations and multisets of assumptions
are not affected by such W -permutations. With these additional W -permutations the
normalisation lemma of ILL can be transferred to IAL.
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5.5 Substitution in Contraction

If deduction D is substituted in deduction D′ at substitution formula A, where A is
a contraction formula, substitution is done twice and open assumptions Bi of D now
occuring twice are contracted, as shown below. If contractions are applied manifold
on one formula, substitution is done manifold.

B+i
i

Bi Bi
C + i

Bi A+1
...

...
... substituted in A A

C + 1
gives A A

A
...

...

5.6 Lemma on Normalisation in IRL - Intuitionistic Relevant Logic

The difference of normalisation in IRL to normalisation in ILL is, that additional
multiplications of subdeductions do occur, whenever multiple substitutions of subde-
ductions D in course of conversions are carried out within contraction rules C . If in
D exists a max formula Y of largest degree, Y is converted first.

5.7 Lemma on Normalisation in IL - Intuitionistic Logic

Normalisation of IL, so ILL extended by rules W and C, simply combines the tech-
niques of IRL and IAL for normalisation.

6 Concluding Remark
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