Skip to main content

Advertisement

Log in

The dual personality of ionic copper in biology

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Biological copper is mainly involved in electron transport to catalyse essential oxido-reduction processes. It is an essential trace element which is extremely toxic because exchangeable intracellular copper is Cu(I) which generates reactive oxygen species. To handle this paradox the evolution has led to a fine homeostasis in which copper ions are never free. Intracellular Cu(I) instead is bound to numerous proteins forming specific cascades towards its targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Peña, M.M., Lee, J., Thiele, D.J.: A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 129, 1251–1260 (1999)

    Google Scholar 

  2. Frausto da Silva, J.J.R., Williams, R.J.P.: The Biological Chemistry of the Elements. Clarendon Press, Oxford (2001)

    Google Scholar 

  3. Rensing, C., Grass, G.: Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27, 197–213 (2003)

    Article  CAS  Google Scholar 

  4. Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry. Wiley, New York (1987)

    Google Scholar 

  5. Huheey, J.E., Keiter, E.A., Keiter, R.L.: Inorganic Chemistry: Principles of Structure and Reactivity. Harper Collins College, New York (1993)

  6. Karlin, S., Zhu, Z.Y., Karlin, K.D.: The extended environment of mononuclear metal centers in protein structures. Proc. Natl. Acad. Sci. USA. 94, 14225–14230 (1997)

    Article  CAS  Google Scholar 

  7. Koch, K.A., Peña, M.M., Thiele, D.J.: Copper-binding motifs in catalysis, transport, detoxification and signaling. Chem. Biol. 4, 549–560 (1997)

    Article  CAS  Google Scholar 

  8. Solomon, E.I., Sundaram, U.M., Machonkin, T.E.: Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2606 (1996)

    Article  CAS  Google Scholar 

  9. Hornstra, I.K., Birge, S., Starcher, B., Bailey, A.J., Mecham, R.P., et al.: Lysyl oxidase is required for vascular and diaphragmatic development in mice. J. Biol. Chem. 278, 14387–14393 (2003)

    Article  CAS  Google Scholar 

  10. Czyzyk, T.A., Ning, Y., Hsu, M.S., Peng, B., Mains, R.E., et al.: Deletion of peptide amidation enzymatic activity leads to edema and embryonic lethality in the mouse. Dev. Biol. 287, 301–313 (2005)

    Article  CAS  Google Scholar 

  11. Vulpe, C.D., Kuo, Y.M., Murphy, T.L., Cowley, L., Askwith, C., et al.: Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet 21, 195–199 (1999)

    Article  CAS  Google Scholar 

  12. Sarkar, B.: Metal replacement in DNA-binding zinc finger proteins and its relevance to mutagenicity and carcinogenicity through free radical generation. Nutrition 11, 646–649 (1995)

    CAS  Google Scholar 

  13. De Feo, C.J., Aller, S.G., Siluvai, G.S., Blackburn, N.J., Unger, V.M.: Three-dimensional structure of the human copper transporter hCTR1. Proc Natl. Acad. Sci. USA 106, 4237–4242 (2009)

    Article  Google Scholar 

  14. De Rome, L., Gadd, G.M.: Measurement of copper uptake in Saccharomyces cerevisiae using a Cu2+ -selective electrode. FEMS Microbiol. Lett. 43, 283–287 (1987)

    Article  Google Scholar 

  15. Labbé, S., Zhu, Z., Thiele, D.J.: Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J. Biol. Chem. 272, 15951–15958 (1997)

    Article  Google Scholar 

  16. Kuo, Y.M., Gybina, A.A., Pyatskowit, J.W., Gitschier, J., Prohaska, J.R.: Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J. Nutr. 136, 21–26 (2006)

    CAS  Google Scholar 

  17. Finney, L.A., O’Halloran, T.V.: Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931–936 (2003)

    Article  CAS  Google Scholar 

  18. Calderone, V., Dolderer, B., Hartmann, H.J., Echner, H., Luchinat, C., et al.: The crystal structure of yeast copper thionein: the solution of a long-lasting enigma. Proc. Natl. Acad. Sci. USA. 102, 51–56 (2005)

    Article  CAS  Google Scholar 

  19. Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C., O’Halloran, T.V.: Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808 (1999)

    Article  CAS  Google Scholar 

  20. Glerum, D.M., Shtanko, A., Tzagoloff, A.: Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271, 14504–14509 (1996)

    Article  CAS  Google Scholar 

  21. Horng, Y.C., Cobine, P.A., Maxfield, A.B., Carr, H.S., Winge, D.R.: Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. J. Biol. Chem. 279, 35334–35340 (2004)

    Article  CAS  Google Scholar 

  22. Walker, J.M., Tsivkovskii, R., Lutsenko, S.: Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J. Biol. Chem. 277, 27953–27959 (2002)

    Article  CAS  Google Scholar 

  23. Lin, S.J., Pufahl, R.A., Dancis, A., O’Halloran, T.V., Culotta, V.C.: A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J. Biol. Chem. 272, 9215–9220 (1997)

    Article  CAS  Google Scholar 

  24. Morin, I., Gudin, S., Mintz, E., Cuillel, M.: Dissecting the role of the N-terminal metal-binding domains in activating the yeast copper ATPase in vivo. Febs. J. (2009) (in press)

  25. La Fontaine, S., Mercer, J.F.: Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch. Biochem. Biophys. 463, 149–167 (2007)

    Article  CAS  Google Scholar 

  26. Mercer, J.F.: The molecular basis of copper-transport diseases. Trends Mol. Med. 7, 64–69 (2001)

    Article  CAS  Google Scholar 

  27. Sarkar, B.: Early copper histidine therapy in classic Menkes disease. Ann. Neurol. 41, 134–136 (1997)

    Article  CAS  Google Scholar 

  28. Gitlin, J.D.: Wilson disease. Gastroenterology 125, 1868–1877 (2003)

    Article  Google Scholar 

  29. Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G.: Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 106, 1995–2044 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Florent Guillain for stimulating discussions that helped in preparation of this manuscript just before his uptake into a new life after 40 harmonious lab’s years and Elisabeth Mintz, a member of our team, for critical reading and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Cuillel.

Additional information

Dedicated to Prof Jack Harrowfield and Dr Jacques Vicens on the celebration of their 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuillel, M. The dual personality of ionic copper in biology. J Incl Phenom Macrocycl Chem 65, 165–170 (2009). https://doi.org/10.1007/s10847-009-9636-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9636-4

Keywords

Navigation