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Abstract
Currently, several platforms offer solutions for the management and control of fleets of unmanned aerial vehicles (UAVs),
addressing a wide range of scenarios, each with its own particular set of objectives. Some of these solutions are mission
planning platforms for broader usage, without aiming to solve a single scenario. However, these often either do not support
multi-UAV collaboration or generate a static flight trajectory, which does not facilitate the coordination of a fleet of several
UAVs in a mission that may need to adapt to the current environment. Through the development of a domain-specific
language (DSL) - EasyMission - for UAV mission definition and control, we introduce a mission planning framework that
makes it possible to describe mission plans that also enable the user to define adjustments and constraints that may have
to be taken into account in real-time according to sensor readings or other events. This framework enables inexperienced
users to design missions with low or moderate complexity levels, while still being a useful tool for advanced users due to its
versatility in addressing multiple scenarios through a single platform. We show how the mission framework is able to easily
define differentiated mission examples with distinct purposes and scenarios, and with real-time decisions and constraints.

Keywords Autonomous aerial vehicles · Drones · Control platform · User-friendly description language · Missions ·
Unmanned systems · Multi-drone platform

1 Introduction

Nowadays, the usage of unmanned aerial vehicles (sUAVs)1

is frequent in several different scenarios, such as monitoring
emergency situations and natural disasters, patrolling urban
areas to support police forces, and tourist applications,
such as the real-time video transmission of points of
interest. It is not unusual for the control of the UAVs
to be dependent on human intervention in some of these
situations, which requires professionals specialized in its
control. However, in recent years, several solutions have
emerged that enable the autonomous flight of these vehicles,
minimizing manual interference. Since the context of

1UAV will be used whenever the discussion is on a conceptual basis;
if the discussion is related to specific types of UAVs, such as drones,
in an implementation and experimental basis, we will refer to drones
instead.
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these use cases is so heterogeneous, many of the existing
solutions for autonomous control are aimed to solve
particular scenarios. While there are already several generic
mission planning platforms, it is common that they only
allow defining missions which consist of a linear set of
waypoints to be traversed. This restricts the flexibility of
the mission plans, which do not take into account possible
unforeseen circumstances.

When designing a mission planning system, more
specifically, when defining how the user describes a
mission, we have to balance two factors: how difficult
it is for the user to describe the desired mission plan
successfully, and what level of mission complexity can
be achieved with the mission planning. A graphical user
interface (GUI) is an intuitive medium for the user to
describe several mission steps. However, it is less flexible
when there is a need to define restrictions, such as acting
upon a sensor reading, or when it is required to coordinate
several entities.

Considering that people and organizations that own UAV
fleets often come from a technological background, we
propose a solution in which the user describes the mission
flow through a scripting language developed specifically for
this purpose - a DSL to control fleets of UAVs.
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A mission solely based on following given waypoints
can be written without much programming knowledge or
even generated using other interfaces, while also enabling
the usage of control flow statements for more advanced
missions. Many navigation algorithms have already been
developed and could be easily implemented using this
language, which in turn would make it straightforward
to test, comprehend and modify such algorithms. The
purpose of this language is to provide flexibility -
it should be possible to write simple scripts without
a deep understanding of the framework; however, it
should not restrict an experienced user from implementing
complex logic.

Using a base UAV control platform as groundwork,
we seek to develop a mission planning framework,
EasyMission, which allows the description and definition of
a mission plan by using a DSL. This integration combines
the advantages of having a single generic platform that
can be used for trivial tasks that require UAVs, with
the ability to orchestrate a UAV swarm to address more
specialized scenarios. The final platform enables mission
plans that control the UAVs, sense the environment and
react accordingly, and cooperate between multiple UAVs.
This solution requires a much more complex approach
than following a mission with a set of waypoints, since
decisions must be taken in real-time according to the
sensed information.

To evaluate the proposed platform, we defined use cases
to validate how the mission planning framework can be used
to solve particular scenarios:

• Tracing the perimeter of a fire using a single UAV;
• Using a secondary UAV to continue a mission started

by another UAV that required replacement;
• Maintaining connectivity between a main UAV and

the ground station by forming a relay bridge of
several UAVs.

The results show that it is possible to create a common
solution to build these scenarios using the mission
planning framework.

The paper is organized as follows. Section 2 presents
related work for UAV control and mission planning
platforms. The description of the proposed architecture is
presented in Section 3, as well as the main components
that it comprises. The mission planning framework and
description language are described in Section 4. Section 5
presents the use cases that were selected to demonstrate
the functionalities of the platform and the validation of the
mission description language. With Section 6, we present
the final conclusions and aspects that could be improved for
future work.

2 RelatedWork

Recent research efforts present a wide array of UAV control
solutions which support mission planning. Some of these
are focused on specific use cases, while others provide more
generic functionality.

The work in [1, 2] describes a high-level architecture
for the design of multi-UAV systems which includes
communication and networking, coordination, and sensing
modules. The mission planning component takes high-level
tasks defined in a user interface, and breaks it down into
individual flight routes for each UAV. The path planning
control is centralised, which allows replanning the routes
and adaptive coordination. The system was demonstrated in
several real-world applications, which included assistance
during a disaster, documenting progress in a construction
site, and participating in a fire service drill.

A system supporting complex mission definition, plan-
ning and execution is proposed in [3]. This project provides
a platform for infrastructure inspection using UAVs. The
mission definition aims at improving planning efficiency by
setting waypoints, using high-level mission definition prim-
itives. The user has access to a GUI, where it is possible
to use a map tool to select the central target location, and
then it is possible to choose the inspection type. However, it
provides no support for multi-UAV interaction, and it has a
limited communication range using Wi-Fi.

Other works, such as [4], presented methods to generate
trajectories and missions for multiple UAVs, satisfying a
set of given Signal Temporal Logic requirements. This
approach can be used as an offline path planner, and
the resulting missions are static, unable to be adjusted
at runtime.

In [5], a model for mission planning in outdoor material
delivery with UAVs is proposed. Mission plans have
to consider several aspects such as different weather
conditions, payload capacity, energy capacity, fleet size,
and the number of customers visited by a UAV. The
proposed solution presents a model that takes the previous
considerations into account.

An embedded decision-making module for autonomous
UAVs missions is proposed in [6]. This module enables the
user to choose a recovery action when there is a failure,
generating a newmission plan. According to sensor data, the
failures are defined and may lead to changes in trajectory,
emergency landings, or decreasing the speed.

The connection of abstract task definition at a mission
level with the control functionalities in autonomous
missions is addressed in [7]. Since this work also
approaches heterogeneous vehicles, a common ground
was found by defining parametrized tasks such as fly-to,
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take-off, scan-area, or land. The behaviour of these actions
was implemented for each platform.

A language aimed at solving collaboration among robots
and communication with humans was proposed in [8],
called Situation Information Exchange and Interpretation
Language (SIEIL). This language’s purpose is to provide
a common language specification to command and control
robotic forces. SIEIL uses a context-free grammar to
describe the possible actions, subjects of those actions,
and other variables. Those expressions are transformed into
RDF/XML documents to be interpreted as commands by the
intervening robots.

The work in [9] targets underwater vehicles instead
of UAVs, and it approaches task description languages.
The proposed notation provides a hierarchical structure
consisting of simple and composite statements. The task
description is easily understandable by humans and may
contain responses to events, such as finding an object or
setting a time limit for the task. However, collaboration was
not addressed, with the mission being sent to each vehicle
to be executed individually. Similarly, the work in [10] also
suggests an approach to mission planning for underwater
vehicles by formalising the task description. In this case,
the language is based on the GeoJSON standard, which is
a format for encoding geographic data structures, such as a
point, a line string, or a polygon.

In [11, 12], a platform for communication and multi-UAV
control with autonomous mission support was presented.
The architecture was composed of the UAV side and the
ground station components. It contains a mission planner
that enables the user to configure a mission in a web
interface, selecting the desired actions. By monitoring
the UAV’s telemetry, it is possible to verify anomalous
situations, such as a low battery level. In that case, the
current UAV will be replaced. During a mission, an UAV
can request for another one to collaborate, which will
cause the remaining waypoints to be distributed among the
participating vehicles.

3 Architecture

Before addressing the mission planning framework, we had
already designed, implemented and tested a multi-UAV
control and monitoring platform. The architecture of this
base platform is depicted in Fig. 1 and is published in [13].
With this platform, we are able to remotely send instructions
to the UAVs, such as an order to takeoff or to move to a
position, as well as monitoring telemetry and sensor data.

The communication between drones, ground station, and
sensors relies on Robot Operating System (ROS), more
specifically, ROS2. The decision to use ROS2 instead of
ROSwas due to its ability to provide node discovery without
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Fig. 1 Multi-UAV mission control platform architecture

a centralized master node, essentially allowing Peer-to-
Peer (P2P) communication. The drone modules and ground
station both communicate through ROS2 messages. Sensors
may either use ROS2 or MQ Telemetry Transport (MQTT),
according to the requirements of the devices, but if MQTT
is used, only the ground station will be able to receive those
messages, since the drone software is not configured to
handle them. Alternatively, if an external module is to be
integrated with our platform and implements standard ROS
instead of ROS2, ROS provides a package to set up a bridge
between ROS and ROS2 nodes.

The drone module publishes ROS2 messages with
telemetry data (altitude, flight mode...) and status date (tak-
ing off, landing...) and receives command messages. The
ground station receives these messages and provides a repre-
sentational state transfer (REST) application programming
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interface (API) through which it is possible to monitor the
fleet’s state and issue the commands.

A dashboard is also implemented, which communicates
with the ground station and provides a GUI for the
previously describe functionalities.

The Mission Planning module featured in this architec-
ture is the main focus of this work. Without this module,
the system presents a low level of autonomy, since the user
has to provide each action to the UAVs in real-time. The
internal architecture of this module is not depicted in this
figure since it comprises many components that will be later
explained in Section 3.2b.

Ideally, a UAV should autonomously plan the appropriate
course of action by observing the current state of the
environment (such as sensor or telemetry data from itself or
other UAVs), formulating a plan that best suits the current
goal and given constraints, and acting accordingly. As an
example, the user could provide a task to a UAV, such
as monitoring a predetermined area, and the UAV would
locally decompose it into several instructions. This could
lead to different outcomes in response to events, such as
a high temperature reading or detection of bad network
conditions, which could trigger additional tasks such as
avoiding a particular hot area or requesting a backup UAV.
This level of autonomy and collaboration requires a highly
sophisticated decentralized decision system.

In the context of the presented work, we propose an
intermediate solution in which the description of different
tasks and restrictions is possible, but the decision process
which may trigger those behaviours is centralized in the
ground station machine. There is an improvement on the
global autonomy level of the system, since one or more
courses of action can be defined in the mission plan without
requiring further input from the user after the mission
submission. As an example, previously, after sending a UAV
to a location, the user had to evaluate in real-time if a relay
UAV was necessary to improve the network performance,
and then instruct that secondary UAV to takeoff and provide
appropriate positions for it to follow. In this iteration,
the course of action to take when detecting bad network
conditions (for example, assigning a new UAV to the
mission which should follow the first UAV) could already be
present on the mission plan and be triggered automatically
when certain conditions are met - these conditions are
evaluated by a centralized control entity.

We propose a mission planning framework that interprets
and executes a mission script which defines the possible
execution paths that may be followed during the mission.
This approach leverages the existing UAV management
platform functionalities (sending isolated commands to
the UAVs and consulting telemetry and sensor data), and
provides an API through which it is possible to interact
with the UAV fleet during a mission. We supply a general

purpose UAV management platform and mission planning
framework that may be used to cover a wide range of highly
specific multi-UAV scenarios.

3.1 Mission Planning Requirements

At its core, a UAV mission can be seen as a set of
locations that one or more UAVs have to traverse or be
placed. However, a random set of waypoints does not
fully constitute a mission, since there should be a goal
to be achieved - for example, we may want to monitor a
forest area, and the UAV will traverse intermediate points
that allow full coverage, or a UAV may attempt to trace
the perimeter of a fire and will move according to the
temperature readings at the previous waypoint. At the
lowest complexity level, a mission planning framework has
to allow the definition of where the UAV should be placed
and how it should move to reach that location. Complexity
arises from the decision process of moving the UAVs to
achieve the mission’s goals:

• Which UAV should be used? Is any particular sensor
required in order to perform this mission? Are multiple
UAVs required?

• When should the UAV move to a new position? Does it
need to wait for another UAV to finish a previous task
or for a sensor to send new data?

• Why should the UAV move to a different position? Is
it too close to another UAV? Does a sensor reading
indicate that the UAV is in a dangerous situation or that
it is currently in a point of interest to explore?

As such, we will formulate concrete requirements that
have to be addressed by the mission framework, given that
it should support contrasting levels of mission complexity
and provide tools for the user to declare the decision process
during the mission.

3.1.1 Commands and Telemetry

The base feature that has to be implemented in the
mission support framework is the integration of the features
developed in the base platform, which includes sending
commands to a UAV and accessing telemetry data. Sending
a sequence of commands to a UAV and obtaining the UAV’s
current location has to be a trivial task for the user, as those
are the base actions upon which more complex behaviour
is built.

3.1.2 UAV Assignment and Revocation

It should be possible to assign a UAV to a running mission
at any time - although in many scenarios there will be at
least one UAV assigned when a mission starts, it may also be
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relevant to dispatch additional UAVs afterwards. Similarly,
it should be possible to remove a UAV from the mission if it
is no longer required, allowing it to be allocated to another
mission. The user should be able to have some control over
the drones that are assigned to the mission, whether by
indicating the specific drone’s reference or by providing a
set of properties, such as having a sensor or being closer to
a certain location. However, the user should also be able to
leave that decision entirely to the system, if it is not relevant
for the use case.

3.1.3 Multi-UAV and Synchronization

Another important aspect is the support of multi-UAV
missions and the coordination/synchronization strategies to
enable those. The user should be able to, independently,
control several UAVs in a single mission, but also
coordinate tasks that require multiple UAVs or that have
sequential steps distributed among different UAVs that must
be synchronized.

3.1.4 Multiple Execution Paths

As previously mentioned, it should be possible to describe
a mission that may follow different execution paths. This
means that running the same mission script could yield
different results according to the context in which it is
being executed. For example, a secondary UAV could
be summoned to replace another one in response to low
battery. This can be achieved by allowing decision-making
statements (if-then-else, switch), looping statements (for,
while), and branching statements (break, continue, return)
to be part of the scripts.

3.1.5 Sensor Support

One factor that may influence the execution path of a
mission is a sensor reading; for example, if the temperature
is too high, the UAV’s path could be diverted to avoid
damage. The framework should allow reading sensor data
from within the mission context.

3.1.6 Mission Constraints

Some circumstances should lead to a mission failure, as
when one of the UAVs detects a health failure, the battery
reaches a critical level, or it moves too far from the
fleet, risking losing connectivity. These constraints can be
verified through the mission script, but it is impractical
to inspect those conditions before every single action. As
such, to avoid cluttering the mission script, some of these
common concerns should either be automatically solved, or

immediately stop the mission from progressing without any
user input.

3.2 Proposal

We propose a mission planning framework that lets the user
define a mission plan through a script written in a DSL,
and that can be integrated into the existing UAV control
platform. A DSL provides a fair trade-off between ease of
use and adaptability when it comes to designing a mission
plan. A GUI could be more intuitive to use, but it is often
restrictive on the options that are offered for mission plans
that are not linear, and when presenting a more extensive
set of tools to fill those needs, it loses the ease of use.
These are suitable for presenting higher level tasks, but may
not be enough to design mission plans that have several
constraints or that may require different courses of action
according to the real-time conditions. On the other end, it
is possible to develop a solution that does not depend on
a GUI, but instead relies on code definition of the mission
plan. However, it may be counter-intuitive to leave most of
the control to the user, requiring the user to write a fair
amount of boilerplate code in order to integrate with the
mission planning system. With EasyMission, we aim to fill
the gap between these two types of solutions: the user is
left with a language that is targeted to this specific use case
- which is simpler to read and write - with much of the
underlying control logic already handled. This also eases the
bridge to building a GUI that can generate a mission plan in
this DSL.

As already mentioned, the groundwork for this frame-
work was already established, having developed a working
UAV control platform. The global architecture is shown in
Fig. 1, and we will focus on the mission planning compo-
nents, which are the ones developed for providing mission
planning capabilities. The components of the mission plan-
ning module are depicted in Figs. 2 and 3.

In Fig. 2, we portray the interaction between the user and
the system in order to start a mission or retrieve its status.
Through a REST API client or the existing dashboard,
the user may submit a file containing the mission script.
The Mission API controller provides this content to the
script loader, which loads all required context, notifies the
mission manager of the new mission, and instructs the Task
Launcher to launch a thread which will run the mission
script. The script can invoke methods that are exposed by
other mission planning modules, such as a takeoff method.
Further requests may be sent to the Mission API Controller
to retrieve the mission status or cancel a running mission.

Figure 3 depicts the internal architecture of the mission
planning module, as well as other entities that were already
part of the base platform. This diagram excludes the API
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Fig. 2 Mission creation
and management
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controller modules and the Script Loader, since those are
not required internally after the mission submission.

The components presented in this diagram are colored
according to the modules they belong to in the general
architecture.

The communication modules, colored in yellow, are
those responsible for communicating with the drones, either
by publishing or subscribing message topics, and were
already present in the original architecture in order to
retrieve telemetry data and send commands.

The code management modules, colored in green, were
already implemented for fleet management - keeping track
of the drone and sensor data.

The purple and blue modules, in conjunction with
the Script Loader, are the new development of this
work which provide the mission planning features. The
mission planning modules interact with the already existent
modules, effectively implementing the planning features.
The mission planning client interfaces expose methods
from the mission planning modules that may be invoked
through the mission script. These components provide
a layer of abstraction, exposing methods to be used
specifically during a mission in a predetermined way,
with the internal logic protected by the other mission
planning modules.

As an example, this is the flow that happens when
providing a mission script with a takeoff command:

• The mission script file is submitted and received by the
Mission API Controller.

• The Script Loader launches a thread which will run the
mission script.

• At some point, the provided script will invoke the
takeoff method. This method is exposed by the
Command Parser, which will perform some validations:
can this command be executed by this drone at the
moment? If the takeoff altitude is not defined, what
value should be used?

• The request is then redirected to theCommand Handler,
which builds the corresponding command message in
the right format.

• The message is sent through the Message Publisher,
which publishes it to other ROS2 nodes.

• The Command Handler will request Synchronization
Channel to wait for the completion of the command,
and the thread’s execution will be halted until a message
is received with the command status.

Many steps had to be taken to ensure the proper execution
of the command, but the only method that was exposed at
the mission layer is takeoff.
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Fig. 3 Multi-UAV mission
control platform architecture
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Following is the description of the responsibilities of the
mission planning components:

• Script Loader - Receives a mission file, notifies the
Mission Manager of the new mission, and launches the
thread that runs the main mission script.

• Mission Manager - Registers starting missions, keeps
track of the mission status, and requests the termination
of threads started by the mission when it concludes with
an error.

• Drone Assigner - Assigns UAVs to a mission according
to the requested requirements, and alternatively revokes
a UAV or replaces it with another one if that is solicited.

• Wrapper Manager - Builds UAV data wrapper
models, containing data from currently active UAVs,
which includes telemetry fields, running commands,
remote parameters, and sensor data. Each UAV’s most
recent data can be retrieved in the corresponding
mission at anytime.

• Command Parser - Parses and validates the sequences
of commands present in a mission. Through the
Command Handler, it translates the command request
into a message and will signal the Synchronization
Channel that it wants to wait for the completion of this
command. The thread in which the current command
is being executed will wait until it is concluded before
allowing it to progress to the next action.

• Synchronization Channel - Central point for thread
synchronization. It provides a mechanism to halt
execution until a command is concluded or a new
telemetry or sensor message is received.

• Task Launcher - Allows the user to start a task in a
separate thread from within a mission, which enables
the concurrent execution of multiple commands (each
handled in a different thread). It also enables consulting
task status or waiting for completion.

• Thread Executor - Keeps track of the threads for
running missions and manages their lifecycle. When a
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new task is created, the thread executor will launch a
new thread to run it, and when a mission finishes, either
successfully or with an error, it will stop all pending
threads related to that mission.

• Plugin Manager - Mission plugins will allow invoking
common behaviour during a mission, without the need
of repeating the same code in multiple missions. This
component will load and validate mission plugins, and
will keep track of the running plugins for each mission.
A mission script can enable or disable a plugin through
the Plugin Client.

• Parameter Client - Retrieves the current value of a
UAV’s parameter, or sets it to a new value. These
parameters are relative to the UAV’s remote ROS2
node, running in the UAV’s companion computer.

• Sensor Client - Retrieves the most recent values of a
sensor, whether it is or is not attached to a particular
UAV.

• Message client - Sends any string message through
ROS2 to notify external entities (such as a sensor or an
auxiliary UAV module) of an event.

• Position Utils - Provides methods for some position-
related calculations during a mission, such as distance
or bearing between coordinates.

Previously in Section 3.1, we defined the requirements
of the mission planning framework. After introducing our
proposed architecture, we are able to trace how these
components address each of the requirements:

• Command handling is directly supported by the
Command Parser and Command Handler, while
telemetry data can be retrieved during a mission through
the fields provided by theWrapper Manager.

• The Drone Assigner assigns and revokes UAVs.
• In order to have multiple UAVs to execute commands

simultaneously, the Task Launcher provides the mecha-
nisms for launching several simultaneous tasks.

• Multiple execution paths are not explicitly supported
by any single component but by the DSL itself, which
should include the mentioned control structures. This
is extended by telemetry and sensor data retrieval,
allowing decisions to be based on the current state of
the environment.

• Sensor data can be read in a mission script through the
usage of the Sensor Client methods.

• Error situations, such as low battery level or bad sensor
calibration, which were already automatically detected,
can now be used by the Mission Manager in order to
cancel any mission that is currently using a faulty UAV.
More specific mission constraints can be described
using the DSL, and stored as a mission plugin which
could be enabled during a mission.

3.3 Resulting DSL

EasyMission, the DSL that resulted from this architecture,
allows an expressive declaration of mission steps. Algo-
rithm 1 demonstrates one possible way to write a mission
script that instructs a drone to arm, takeoff, and follow the
path of a 20 meters wide square before landing.

Algorithm 1 Following the path of a square.

4Mission Framework and Description
Language

The literature [8–10] contained some examples of mission
description languages for robot systems. Although the
presented languages were human readable, they were
also verbose, not as straightforward to define by an
inexperienced user, and lacked mechanisms for adjusting
the course of the mission in response to real time events.
Using JSON or XML as the base for the description
language, as seen on the previous examples, eases the
parsing of the instructions since several libraries exist
for that purpose. However, using those formats restricts
the fluidity of the language and makes it difficult to
express different possible paths of execution within the
same mission.

Another possible alternative, since part of our system
already uses ROS, would be to rely on the ROS API
and using a client library such as the one for the
Python language. Since the drone commands and telemetry
are already exchanged through ROS messages, with this
approach it would be possible to use a Python script as a
mission plan by simply reading and sending those messages.
This would be simpler and faster to start developing for
those already familiar with the ROS ecosystem, which is
widely used in this field. We chose to restrict ROS usage
to communication between the drones and ground station
systems, which enable “lower level” functionality, such as
requesting commands and sharing telemetry data. Mission
planning is at a higher level, which we preferred to keep

2 Page 8 of 21



J Intell Robot Syst (2023) 108:2 

agnostic to ROS. With a DSL, anyone can easily type a
mission without understanding anything of what is going
in the “backstage” - the same cannot be said about a ROS
based API, which would require some knowledge about
ROS and not only about the context at hand. If at a later
stage, it is concluded that ROS no longer meets our needs,
we can use a different technology and that will not require
any changes on the mission planning framework, provided
that we keep the same message format.

Writing a custom language and corresponding interpreter
from scratch would require manually implementing basic
features and integrating with the existing platform. Using
an existing scripting language and building a custom
DSL through it is a more efficient approach, leveraging
what the base language offers and extending it with the
necessary features. With an embedded DSL, we can use the
underlying language to provide basic syntax and semantics,
such as variable declaration, conditional expressions, and
loop constructs.

The language we selected to build the DSL is the Apache
Groovy programming language. Many features present in
Groovy make it easy to hide complex logic behind a more
comprehensible and domain-specific API - the Groovy in
action document [14] details how to write a custom DSL
using Groovy, with the most relevant features it provides
being the following:

• Command chaining - Groovy allows omitting
parentheses around the arguments of a method
call and chaining consecutive calls, which means
turn(drone).by(45) can also be written as turn
drone by 45.

• Named arguments - The arguments of a method
may be named instead of relying on the order in
which they are provided, which makes it more read-
able. Instead of writing move drone to 40.6,
8.6, 10, 5, we can opt for a named approach
of move drone to lat: 40.6, lon: 8.6,
alt: 10, speed: 5.

• Categories - We may extend the functionality of a class
by implementing a category, which allows creating
additional methods for that class without modifying
existing behaviour, while also limiting the introduced
changes to the scope in which it is applied. This feature
can be useful to add new methods to numbers, which
enables a statement such as 10.centimeters, in
which we are able to easily declare which unit we are
using and convert to different units.

• Binding and delegation - Variables can be created
outside of a Groovy script and passed into it through
a Binding when it is loaded. This can be used to
pass initialized instances of classes to be referenced
from within the user-provided script without explicitly

declaring those variables. It is also possible do delegate
all public methods of a class instance to a script,
allowing those methods to be directly called through
a groovy script without specifying the instance. As
an example, a script would not require a Command
Parser instance to be initialized followed by arming the
drone as commandParser.arm(drone); instead,
directly invoking arm(drone) would have the same
effect given that a Command Parser instance is passed
to the script binding and its methods are delegated to
the script.

The usage of these features improves the expressiveness
of the DSL, making it easier to understand, even by
inexperienced users. By passing instances of the mission
planning client interface classes to the mission script
binding and delegating its methods, we can access these new
functionalities through the mission script in a clear way. All
of these methods are handled internally, meaning that the
user only has to provide a script containing mission logic.
Combining this with the existing control flow structures
enables the user to design missions with diverse complexity
levels, with a layer of abstraction that hides the UAV control
and communication logic.

4.1 DescribingMission Logic

In order to better demonstrate how it is possible to write a
mission using EasyMission, we will present how to declare
some base actions and simple examples.

4.1.1 UAV Assignment and Revocation

A UAV/drone has to be assigned to a mission before it
can be controlled. The drone can be picked according to
its drone ID, the available sensors or its proximity to a
coordinate. It is also possible to request a drone without
specifying any requirements.
drone1 = assign ‘drone01’
drone2 = assign temperature
drone3 = assign lat: 40.6339,
lon: -8.6605
drone4 = assign any

If a drone meeting the requirements is currently available,
it will be assigned to the mission, and the drone variable
will reference a drone wrapper object. This object can
be used subsequently to send commands to the drone or
monitor telemetry data.

Besides handling drone assignment, the Drone Assigner
can also be used to replace and revoke a drone from a
mission. Once the drone is revoked, it is no longer possible
to send a command or read its telemetry within the mission,
unless it is reassigned. Both tasks can be executed by calling
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either replace drone or revoke drone, given that
drone is the variable the drone was assigned to.

4.1.2 Reading Telemetry and Sensor Data

With the previously developed platform, we can retrieve the
most recent telemetry data for all available drones. Not all
telemetry data is relevant in the context of a mission. To
better suit the mission scope, we created a drone wrapper
model that contains the most important values, as well as
sensor readings from available sensors. The data can be
easily accessed during a mission by accessing the attribute
in the corresponding drone’s object, such as drone.id,
drone.cmd, or drone.position.alt. The Wrapper
Manager manages this data, updating the values after a new
telemetry message is received for the drone. If the drone is
revoked from the mission before it ends, these values will no
longer be accessible - the only available data is from drones
within the mission scope.

The sensor readings are also updated when the sensor
sends a new value. These can be retrieved on a mission script
using, for example, sensor.drone01.temperature,
while sensor.drone01 would simply return the latest
values of all sensors connected to the drone with that ID.

During a mission, the user may want to wait for a new
telemetry or sensor message before evaluating the next step.
Through the wait command, it is possible to do so. This
will prevent the current thread from progressing until a new
message is received and the values are updated.
wait drone: drone1
wait sensor: [type: ‘temp’, drone:
‘drone01’]

4.1.3 Command Execution

The most crucial feature of the framework is the ability
to send commands to the drone. All commands follow a
similar format, comprised of [command] [droneId]
[options], with the main difference being the possible
additional parameters and how those can be provided. If
the command is provided with non-existent parameters or
parameters with an invalid value, the mission will fail;
otherwise it is then sent to the drone. If the drone-side
execution of the command fails, the mission also fails.

A simple mission script will include the assignment of
a drone followed by a sequence of commands that should
be executed consecutively. However, if the script execution
progressed immediately after sending the first command
without waiting for confirmation that it successfully
finished, it would be cancelled by the following command,
which would be immediately sent. To avoid requiring to
manually polling if the command has completed, command

methods are synchronous: each command method call
results in halting the mission’s thread execution until
the ground station is notified that the command has
concluded. After sending the command, the Command
Parser will lock the current thread until it is notified that
the command has finished, which happens after the Status
Updater receives the corresponding status message from
the drone.

The arm, disarm, land, and the cancel commands
do not take additional arguments. As such, they can be
executed by simply calling them in the [command]
[droneId] format, such as:
drone = assign any

arm drone
disarm drone

The takeoff and return commands may be issued
while providing a target altitude. Otherwise, they will use
the drone’s default takeoff altitude. The keyword that is used
to indicate a return to launch command is home, as return
is a reserved keyword.

takeoff drone, 10.meters
home drone

The turn command can be used to rotate the drone,
either by a certain angle or to face a certain direction,
drone, or coordinate. This means that turning the drone by
x degrees will rotate the yaw angle by that amount, while
turning it to x degrees will rotate it to that angle, relative
to North.
turn drone1 by 90.deg
turn drone1 to 90.deg
turn drone1 to drone2

In order to instruct the drone to move to a certain
position, the move command is available. The move
command can either define a latitude/longitude coordinate
or a location relative to the current position. The latitude and
longitude are represented by the lat and lon arguments,
while relative coordinates can be defined using up,
down, left, right, forward, backward. The
alt, yaw and speed parameters may be provided but
are optional. However, to improve the readability, these
commands can be issued in an alternate form. GPS
coordinates can be provided after a “to” keyword. When
sending a command with coordinates relative to the current
position, the first direction has to be followed by the
keyword “by” (such as “down by:”), while the remaining
ones do not require the “by”.
move drone1 at 5./s to lat: 40.6342,
lon:

↪→ -8.6614, alt: 17.4.meters
move drone1 at 10.m/s forward by: 5.m,
right:

↪→ 10.m
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The drone-side movement can be interpreted either as
GPS coordinates or by North-East-Down (NED) coordi-
nates, as this is what the library that we used for drone con-
trol (MAVSDK) exposed. When the drone receives a move
command with GPS coordinate, it will move to that GPS
coordinate. The drone can be configured to execute com-
mands specified in relative coordinates differently, it will
either calculate the GPS coordinates or the NED coordinates
of the target position.

4.1.4 Controlling Multiple Drones

As previously explained, a running command will halt the
thread progress until it has completed. A consequence of
this behaviour is that, if the script contains two consecutive
commands targeting different drones, the second drone’s
command will only start after the first drone’s command
has finished. This restriction is not appropriate for multi-
drone missions, as sending commands to multiple drones in
parallel may be a requirement.

To solve this, we have to allow the user to define different
tasks that can be executed concurrently. A task is a set of
instructions, such as those that have already been described
previously, but that are designated to be executed in a
separate thread instead of running in the main loop. Any
failure that happens during its execution will also lead to the
failure of the mission. After launching a task, it is possible to
stop it, wait for its conclusion, or verify if it is still running.
task1 = run takeoff drone1
task2 = run takeoff drone2
if (task1.running)

stop task2
wait task1

When the user requests for a task to be launched during
a mission, the Task Launcher will generate a task ID and
send it to the Thread Executor, which will assign a thread
to execute it. The task ID is returned when it is requested to
run the task, which can be used later for further operations.

4.2 Mission Examples

This section presents examples demonstrating how to write
a coherent mission script compatible with EasyMission.

4.2.1 Mapping Mission

A task that is commonly useful is the mapping of an area.
Algorithm 2 presents an algorithm that instructs the drone
to traverse the area to the right and ahead of itself, according
to the initial heading after takeoff.

The map area() method is responsible for the
movement logic. In this example, the method call contains
parentheses around the arguments, as it is valid, but it is not

Algorithm 2 Mapping.

a requirement. Due to Groovy’s command chaining, those
can be omitted when it does not cause ambiguity, which is
the case of the remaining examples.

Groovy provides different looping strategies out of the
box, which are made possible by extending the Integer class
with other methods. One example is the times method,
which executes a code block the number of times upon
which it is called. This type of code blocks in Groovy is
called Closure, which is an anonymous code block which
receives arguments, returns values and may be assigned to
a variable. Closures follow the syntax of { argument ->
statements}. In this script, since the provided value for
steps y was 4, the closure that follows will be executed
5 times, and the traversal variable will iterate over the
numbers 0 to 4, representing the number of the current
traversal of the area width.

Figure 4 depicts the resulting path after concluding this
mission. The drone covered an area of 100 by 80 meters,
with the next coordinate being calculated in real time, after
reaching the previous waypoint.

4.2.2 Drone Replacement

During mission execution, it is possible that the drone
reaches a low battery level before its conclusion. One simple
approach to this problem is to verify the drone’s battery
level before executing a command, and replacing it with a
different drone if it is too low.

Adapting the previous example, we have Algorithm 3
featuring a move or replace method which is invoked
instead of calling the move command directly. If the battery
is lower than 40% before instructing the drone to move, it is
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Fig. 4 Drone path of the mapping mission

Algorithm 3 Replacement during mapping.

revoked from the mission, and another one is assigned. This
could be achieved by running replace drone, but for
demonstrative purposes, each intermediate step was written
for this mission.

Figure 5 shows the path of both drones during the
mission, the green path belonging to the drone that started
the mission, and the red path corresponding to the drone that
executed the replacement and concluded the mission. The
secondary drone continued the mission where the previous
drone stopped.

Fig. 5 Drone path of the replacement mission

4.3 Extending and ReusingMission Functionalities

Most of the mission framework requirements have been
addressed so far, but the framework still lacks support for
mission constraints. Those can be solved in the mission
script itself, such as the drone replacement in Algorithm 3;
however, it is not an ideal solution. One consequence is that
it demands the repetition of the same algorithms through
different missions scripts. Besides, an inexperienced user
may need to solve a constraint, such as keeping network
connectivity throughout the mission, but the required
algorithm could be too complex to be implemented.

To reduce the amount of code that is repeated across
multiple missions and to allow verifying certain condi-
tions in the background, we introduced the concept of
mission plugins. Plugins are mission scripts that can be
enabled from within other mission scripts to provide
additional functionality.

Several types of plugins can be implemented: (1) plu-
gins that expose methods, such as mapping, to be used
during the mission; (2) plugins that monitor each drone’s
status and act upon it; (3) plugins that transform a com-
mand into subcommands (such as to implement obstacle
avoidance); (4) plugins that re-transmit telemetry and drone
status to external components in different formats; (5) plu-
gins that process and transform sensor data, and many
other functionalities.

At the current state of the platform, monitoring plugins
have been implemented, which allow demonstrating how
to integrate plugins into the framework, and at the same
time, support mission constraints. Monitoring plugins will
analyse each drone’s data after a telemetry update, which
may lead to additional actions, such as assigning another
drone to the mission or revoking the current drone.
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In order to communicate how the user should launch the
plugin, such as what parameters have to be present, each
plugin file should provide a plugin configuration. These are
the available parameters:

• id - plugin ID used to identify the plugin;
• input - some plugins may require that the user provides

input parameters; if so, the parameter data type has to
be declared, as well as any default value if applicable;

• vars - initialises internal variables, required by the
plugin, that do not have to be provided by the user;

• callback - in the case of a monitoring plugin, the
callback indicates the closure that is called upon
receiving a new telemetry message for a drone;

• init - closure to be called once at startup when a mission
enables this plugin, aimed at initializing internal vars
according to the received input.

4.3.1 Replacement Plugin

In the previous mission example, drone replacement was
conducted by checking at each waypoint if the drone still
had enough battery to proceed. A better approach is to
monitor the drone’s battery level as a background task,
interrupting the drone if it is decided that it should be
replaced. Algorithm 4 demonstrates how such a script could
be developed, although with a naive approach in regards to
the necessary battery calculation. A file with the contents
of this script can be placed on the ground station’s plugin
directory, which will load it when starting the software. This
plugin can be later enabled on any mission script, as in
the example provided in Algorithm 5, which demonstrates
how to enable the drone replacement plugin during a
regular mission.

Since this mission enabled a plugin of type monitor, the
closure defined in the main variable in the plugin will be
called for every drone from this mission when it receives a
telemetry update.

4.4 Mission Extensions and Considerations

Plugins were developed as a starting point for implementing
safety constraints in missions. The replacement plugin is
one such constraint, but many more could be useful to
provide out of the box - such as collision avoidance.
However, this only accounts for conditions that may unravel
at run time, leaving it up to the user to validate if the
written mission plan is coherent. For example, a user
could write a valid mission plan that moves the drone
forward until a sensor alerts that there is an obstacle
1 meter ahead. This mission plan could theoretically
be endless and there would be no way to predict
this beforehand.

Algorithm 4 Replacement plugin.

Algorithm 5 Drone replacement using plugin.

A path that was not explored is the pre-processing of
a mission plan. The mission script is only interpreted by
Groovy at the moment the Script Loader launches a thread
to run it. There could be a previous step in which a different
context was used to execute the mission (without actually
running any command), opening the possibility to an early
error detection.

4.5 Viability in Other Contexts

This work was developed solely with UAVs in mind, and
those are the use cases we target. However, our mission
planning framework could be applied to different contexts,
such as Unmanned Water Vehicles or ground robots.
This could be achieved by creating an appropriate robot-
side module and introducing a few changes on the fleet
management side.

An equivalent module to the drone module would have to
be developed, but compatible with that specific robot. This
would mean retrieving the appropriate telemetry data and
exposing the available commands, as well as implementing
how those commands are issued. Our implementation of the
drone module makes use of the MAVSDK library, which
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provides an API for MAVLink; robots which are not UAVs
would need an equivalent library. As long as the message
format is the same as the one currently in use, it would be
easily integrated with the ground station system.

On the ground side, equivalent changes would need to
be applied in order to be aware of the new commands and
telemetry data fields. Some functionality would have to be
locked according to the vehicle type (it would not make
sense for a ground robot to takeoff, for example).

5 Use Cases and Evaluation

To validate that this mission planning framework can
be useful to address concrete problems, we chose three
different use cases. Since these use cases address unrelated
issues, we can use those to demonstrate how versatile the
platform is, and to prove that it is also possible to declare
missions with a moderate level of complexity.

The experimental setup used for evaluating the perfor-
mance of the missions is delineated and the results of these
experiments are presented.

5.1 Use Cases

5.1.1 Fire Perimeter Tracing

Forest fires are usually monitored by humans, which may
take some time to be identified when occurring in a secluded
area. UAVs could be dispatched to monitor remote forest
areas that are at risk of a fire, equipped with temperature
sensors to detect any anomalies. Once a certain temperature
threshold is surpassed, the UAV should stop traversing the
area and start tracing the perimeter of the potential fire.
This data could be useful for firefighters to assess the fire
dimensions and the required resources to extinguish it.

We designed a mission script in which a drone,
equipped with a temperature sensor, maps a given area.
Simultaneously, the sensor values are monitored, and as
soon as they reach a predefined value which could represent
danger, the drone will begin to trace the area around that
temperature level. The perimeter tracking algorithm uses
(PID) control [15].

5.1.2 UAV Replacement

During the execution of a regular mission, it may occur that
the UAV’s battery reaches a critical level in which it would
not be able to complete its task and return to the home
position safely. This may happen either because the UAV
started the mission without enough battery for the mission,
due to a faulty battery, adverse wind conditions required
more effort to move the UAV causing the battery to drain

faster, or the mission may take too long to complete without
a battery replacement. In some cases, instead of restarting
the mission, it may be feasible to simply replace the current
UAV with another UAV with a higher battery level, which
will simply takeover the mission at the point at which
it stopped.

When the user assesses that the mission could be safely
taken over by a different UAV during execution, they
can enable the replacement plugin previously depicted in
Algorithm 4, as demonstrated on Algorithm 5.

5.1.3 Network Relay

The scope of somemissions may require a UAV to move to a
location that is far from the ground station computer. Under
traditional circumstances, it would no longer be possible to
monitor the UAV’s behaviour once it got out of reach. This
is not ideal, since it would not be even possible to retrieve
the UAV remotely in case of an emergency. A solution is
to issue a chain of UAVs to follow the main UAV during
the mission, forming a bridge of UAVs with the purpose of
acting as a relay for the network, effectively maintaining
connectivity throughout the mission.

To address this, and since this is a common mission
constraint that has to be solved, a relay mission plugin
can be created. Given the groundstation coordinates, it
should monitor the telemetry data of each mission UAV
and, according to where it is moving, a relay UAV will be
dispatched to prevent loss of connectivity. Since the relay
UAVs are assigned to the mission, this process is recursive.
Once the relay UAV is ready, it should follow the UAV
ahead of it and position itself accordingly.

5.2 Experimental Setup

For each of the use cases, one or more mission scripts are
written using this mission planning framework. Some of the
examples can be tested in a real environment, while others
are only possible to experiment in a simulated setting.

Since ROS2 is used for sending telemetry updates, the
rosbag package, the official tool for storing ROS data, is
used to record data during the missions for later analysis.

5.2.1 Simulation Setup

During simulated experiments, the computer that hosted
the ground station software was simultaneously running
instances of the jMAVSim simulator and of the drone
control software.

Fire perimeter tracing cannot be properly tested in a
real setting; as such, the results are only demonstrated
in simulation. A simple simulated temperature sensor was
developed for this purpose, which publishes the current
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Fig. 6 Topology of simulated heat sources

temperature reading according to the drone’s position and a
user-provided heat topology configuration.

The chosen topology and heatmap for these experiments
are both depicted in Fig. 6, which displays a complex
shape and temperatures ranging from 20◦C and 65◦C. In
the algorithm, the temperature threshold at which the drone
should begin tracing the heat source is fixed at 37◦C, with
the target temperature level to trace at 40◦C.

The relay bridge algorithm can be used in a real setting,
but since we are restricted by the number of available
drones, we will also test this scenario in simulation to
observe how it behaves with a larger fleet. This required
launching four instances of the UAV simulator. The
maximum distance to maintain between drones and ground
station is recommended to be lower than 70 meters, as
determined experimentally.

5.2.2 Field Setup

The tests conducted on the field are performed with drones
with FPV S550 and DJI Flamewheel F550 Hexacopter
frames. An NVIDIA Jetson Nano (SBC) is coupled to the
frame of each drone, in which the drone-side software
modules were executed. This device is connected through a
serial port to the Pixhawk 4 flight controller. A USB Wi-Fi
adapter is connected to the SBC, which enables connectivity
to the ground station computer and the other drone’s SBCs
through an ad-hoc network. The ground station machine is a
laptop with a Linux distribution, running the ground station
software. Similarly to the SBCs, the laptop has a USBWi-Fi
adapter connected to the ad-hoc network.

These experiments have been performed at the campus of
the University of Aveiro, Portugal. The mission scripts were
prepared and tested on a simulated environment beforehand
to prevent possible dangerous situations, such as a drone

crashing into a nearby wall. Before starting a mission, the
drones were placed in an appropriate initial position, after
which the mission script was submitted. Telemetry data was
monitored while the mission was running.

The drone replacement mission was modified to be
executed in a real scenario. We chose to trigger the
replacement with a timeout instead of checking the battery
level, because it is not easy to predict how fast it will deplete
in a physical drone. In this case, 40 seconds after the initial
drone finishes taking off, the second drone will start the
replacement and then conclude the mission.

Besides testing the mission performance, we also
executed an experiment to retrieve metrics for the relay
algorithm. This experiment is relevant to calculate an
estimate of the distance that the drone could have from each
other or the ground station while still maintaining a reliable
network connection. These metrics can be obtained by
monitoring the network performance while moving a drone
further away from the ground station. We opted for using
the iPerf32 tool for monitoring the network performance.

The relay bridge is enabled while the main drone
traverses predefined waypoints. The target distance to keep
between relay drones is chosen based on the reliable
distance discovered through the previous experiment.

5.3 Results

After executing the experiments, the drone’s recorded
data was used to generate several plots and maps for
visualization of the mission. We will present and discuss the
results concerning each of the experiments.

5.3.1 Fire Tracing Simulation

The heatmap previously presented in Fig. 6 was used by
the simulated temperature sensor during this mission. The
resulting drone path, after executing this mission, is shown
in Fig. 7. The drone is initially mapping the area until the
temperature surpassed the threshold, and we can observe
that the path roughly resembles the simulated fire topology.

Although there is some accentuated error around the
edges between heat sources, it is still possible to discern the
approximate perimeter of the fire. This can be a result of the
simplified temperature simulation, and not of the perimeter
tracing algorithm itself.

Figure 8 contains the temperature of the simulated sensor
through time. The registered temperature is also coherent
with what is expected from this algorithm, surpassing the
limit when the abnormal temperature is first detected, and
then occurring a few times after that, at each edge, before it
corrects its own path. This behaviour is expected, since the

2https://iperf.fr/
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Fig. 7 Drone path during fire tracing

algorithm is based on a PID controller, which attempts to
follow a setpoint value (in this case, the defined temperature
threshold) and applies constant corrections to the angle of
movement in order to keep it. Overall, it is possible to notice
that there was an attempt to keep the trajectory close to the
40◦C perimeter.

5.3.2 Drone Replacement Experiment

In a real setting, we use two drones to demonstrate the
replacement mission, which is supposed to take place
approximately 40 seconds after the initial drone finishes
taking off. The resulting path of both drones is depicted in
Fig. 9. The first drone, portrayed in yellow, returned to the
launch position once it reached a waypoint after being on
air for 40 seconds. The second drone moves to the position
where the previous one stopped and finishes mapping the
area successfully.

Fig. 8 Sensed temperature

Fig. 9 Path of two drones during mapping mission with replacement

Figure 10 displays the registered altitude of both drones
during the mission. By observing the altitude variation, we
can notice that the second drone only started taking off after
the first one was landing.

5.3.3 Relay Bridge Experiment

In order to conduct the relay bridge experiment, it was
necessary to estimate a reasonable distance to maintain
between drones at which they were still able to stay
connected. We executed a separation-value test to reach a
conclusion experimentally.

We analysed network performance while increasing
the distance between the drone and the ground station.
Figure 11 depicts the registered distance between the drone
and the ground station through time, and Fig. 12 depicts
the bitrate it was possible to achieve. During some periods,
telemetry messages were not received; thus, we implicitly

Fig. 10 Drone altitude
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Fig. 11 Distance between the drone and the ground station

determined the distance based on the previous and next
available data.

At around 75 seconds, after some instability, the network
stopped being able to handle the requested bitrate, as
shown in Fig. 12, which happened when the drone was
located around 70 meters from the ground station. Since
the telemetry data was recorded in the ground station, we
can also observe that some ROS messages were lost. Fifty
seconds later, although there was an increase in the bitrate,
it remained considerably unstable, and ROS messages were
still occasionally lost. With this information, we can adjust
future missions to be compatible with this limitation. We
concluded that the distance between drones in this setting
has to be less than 70 meters.

By enabling the relay plugin, we are able to maintain
connectivity with the ground station even if the drones move
far away from it. To test the algorithm in simulation, a
mission script is used in which the main drone is only

Fig. 12 Achieved bitrate

concerned with mapping a remote area, while the distance to
the ground station is continuously monitored by the plugin
to dispatch a relay drone when needed.

The traversed path of each drone is shown in Fig. 13,
in which the white circle represents the ground station
location. The path of the yellow drone shows the mapping
algorithm, and it is possible to observe that each relay drone
followed the previous one, drawing a path that is roughly
similar to the first one’s. The placement of the different
drones throughout the mission is explained in Fig. 14.

In Fig. 15, we can observe that, although the distance
between drones surpassed 50 meters, which was the target
distance, it did not reach the 70 meters mark, which was
determined by the separation-value test as the maximum
distance. The target distance should not be seen as a hard
limit that if surpassed would cause the drones to lose
connectivity, but as an approximate distance that the drones
should keep between each other. Regarding the distance
from the ground station, as seen in Fig. 16, it is apparent that

Fig. 13 Path of multiple drones with three relay drones on simulation
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Fig. 14 Progress of a simulated
mission in which one drone is
mapping an area and three
drones serve as relay

(a) The main drone is moving and
a relay drone is dispatched

(b) The main drone starts mapping
the area and another relay drone
follows the previous one

(c) The last relay drone is
dispatched

(d) The main drone finishes
mapping and returns home; the
relay drones move towards the
ground station

the distance to the relay drones varies proportionally to the
main drone’s movement.

We can observe that the target distance is surpassed at
the beginning of the mission. It is not trivial to predict the
best moment to request another drone in a generic algorithm
that does not take into account the end goal of the mission.
One of the issues is that the time it takes for a drone to
take off may vary and be influenced by external factors (e.g:
wind), and an incorrect prediction may cause the drone to
be requested to soon, draining the battery unnecessarily, or
the drone may take too long to finish taking off, which may
cause the main drone to be well past the target distance.
Another issue is that we cannot safely assume the path
that the main drone will take after the current command,
or predict if the command will be cancelled by a sensor
reading or other user-defined condition without tailoring the
algorithm to each scenario. We may request a relay drone,
and by the time it is ready to move, the main drone may be

returning to launch and conclude the mission, rendering the
relay drone unnecessary, or it may start to move so fast that
the relay drone will not be able to reach the target distance.

This algorithm was conceived to ensure that a single
drone is able to maintain connectivity throughout a mission.
As such, it is not very efficient in scenarios with multiple
drones executing a mission near each other. Since a chain
of relay drones is spawned for each drone that moves
too far away from the ground station, if two or more
drones move close together, the algorithm will request
redundant relay drones. A simple workaround could involve
verifying if there is a surrounding drone that is already
being followed by relay drones before requesting backup.
Although this could minimise the number of summoned
drones, it would not place the relay drones in an optimal
position. To fully solve this, we would have to develop a
more advanced algorithm that would be able to calculate the
best distribution based on all drones.
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Fig. 15 Distance between drones on simulation

Even though some aspects could be refined, this algo-
rithm provides a good starting point towards guaranteeing
connectivity in a mission. Overall, this was successful, as we
could observe that it was possible to place the relay drones
where they could help maintain connectivity.

Finally, we conducted the relay bridge experiments on
the field. We increased the target distance a bit in relation
to what was used in the simulation, setting it at 60 meters.
This enabled us to cover a larger area with less drones,
since either two or three were available at the time of
the experiments. We started with a relay mission with
two drones and progressed to a mission with a bridge of
three drones.

For the relay mission with two drones, the path of both
drones is depicted in Fig. 17. In this experiment, the yellow

Fig. 16 Distance between drones and ground station on simulation

Fig. 17 Mission path in a real setting with one relay drone

path is the one of the main drone, the one performing the
task, which travelled to predefined waypoints; the green
path is the one of the relay drone.

In Fig. 18, the results show an equivalent behaviour
to what we obtained in the previous simulated relay
experiment, although with only one relay drone. Overall,
the distance between drones was close to the target distance,
with some slight fluctuations above that mark, which, given
the margin, is very close to the objective.

Although a 3-drones’ mission is more complex to
evaluate in a real scenario, we also performed this mission
experiment. In this mission, the path of the three drones
is depicted in Fig. 19. The yellow path is the one of the
main drone, the blue path is the one of the second drone,
and the green path is the one of the drone connected to the
ground station.

Fig. 18 Distance between drones on the real setting
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Fig. 19 Mission path in a real setting with two relay drones

Figure 20 shows the distance between drones. Again, the
distance between drones is close to the target distance, and
we can conclude that the relay mission is deployed and
performed as expected.

6 Conclusions

This paper proposed a novel mission planning framework
for autonomous fleets of aerial UAVs. While most available
solutions offer restricted mission planning support, often
comprised of a linear set of waypoints, or alternatively
target a very specific scenario without providing support
for generically describing custom mission plans, this
framework offers flexible mission planning, with non-linear
missions that can change the course of a UAV at any time

Fig. 20 Distance between drones on the real setting

during its sequence of actions, while being able to request
data from its own sensors and reacting to that data. Mission
plans can be described using EasyMission, providing a
layer of abstraction which allows an inexperienced user to
plan, execute and monitor complex missions with multiple
UAVs. Using a single platform, it is possible to address
multiple different scenarios and rapidly develop and test
new algorithms.

Through the completion of a set of simulated and real-
life experiments, it was possible to demonstrate that this
framework can effectively be used to describe mission plans
of varying complexity and context.

As future work, we aim to transition the current platform
to a decentralized system that does not constantly rely on
the ground station for the decision process, granting a higher
level of autonomy to the UAVs.
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