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Abstract Calibration is one of the most important
works for the parallel manipulator. The manufactur-
ing and assembling errors will modify the designed
parameters of the parallel mechanism, leading to the
positioning errors. Calibration is an effective method
for improving the accuracy of the parallel mecha-
nism. It is vital to identify the parameters and cali-
brate the system aiming at improving the positioning
accuracy. In order to build an object stage of the
micro/nano operation system, a 3 degree-of-freedoms
(DOFS) parallel mechanism has been designed and
constructed, with combination of legs of the PRR
type (the underline of the P represent the actuated
joint), P and R representing prismatic and revolute
pairs respectively (3PRR). Due to the space constraint,
this 3PRR mechanism is built without the end-effector
feedback, and must be calibrated for high accuracy
positioning. The error model of the 3PRR mechanism
has been derived and analyzed, and the error distribu-
tion mappings of the 3PRR mechanism are obtained.
The calibration method based on the error model is
investigated. Since some parameters are difficult to

J.-S. Mo · Z.-C. Qiu · L. Zeng · X.-M. Zhang (�)
Guangdong Province Key Laboratory of Precision
and Manufacturing Technology, South China University
of Technology, Guangzhou 510641, China
e-mail: zhangxm@scut.edu.cn

J.-S. Mo
e-mail: mo.jiasi@mail.scut.edu.cn

Z.-C. Qiu
e-mail: zhchqiu@scut.edu.cn

be identified by using the decoupling error model,
the assistant measurements are proposed and utilized
to compensate for this calibration method. Numerical
simulations and experiments are carried out. The sim-
ulation results show that it is not enough to calibrate
this system by using the calibration method based on
error model only, and the experimental results demon-
strate that the combined assistant measurements will
achieve a better effect for calibration.

Keywords Calibration method · Ultrasonic linear
motor · 3PRR positioning system · Parallel mechanism

1 Introduction

Parallel mechanisms are becoming more and more
popular in application fields due to the high precision,
high speed, and high load capacity [1]. Micro/nano
operating system is an important part in the field
of precision operation and manufacturing. The object
stage of the micro/nano operating system is used to
place and move samples at large-scale stroke. There-
fore the object stage needs to possess the features of
large stroke and high precision positioning. Macro-
micro combination method can make up the stroke
scope of the micro positioning mechanism, whereas
parallel mechanisms can realize high precision posi-
tioning. Hence, under the environment of the scanning
electron microscopy (SEM), the 3 degree-of-freedoms
(DOFS) parallel mechanism with combination of legs
of the PRR type (the underline of the P represent the
actuated joint), P and R representing prismatic and
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revolute pairs respectively (3PRR) has been designed
and constructed. The 3PRR parallel positioning mech-
anism is adopted to constitute the macro-movement
part of the macro-micro combination precision posi-
tioning system [2].

Although the parallel mechanisms are more accu-
rate than the serial mechanisms theoretically [3], they
have some similar problems which affect the posi-
tioning accuracy. The major part of the mechanism
is usually a semi closed-loop mechanism with the
actuated joint feedback only, due to the cost restric-
tion. Although the actuated joints have the capacity to
accomplish positioning very well [4], the transmission
chains usually introduce some nonlinear characteris-
tics, such as backlash, friction, elastic deformation,
etc. These nonlinear characteristics will lead to the
positioning errors of the end-effector [5]. As the actu-
ated joint feedback control method only has the state
information of the actuated joints, it is hardly to con-
trol the end-effector well without the state information
of the end-effector. If an observer is designed to esti-
mate the end-effector state information [6] the obser-
vation noise and errors will be introduced, which is
not suitable for high accurate positioning. It is an ideal
way to solve the high accurate positioning problem
by building a full closed-loop system with end-effect
sensors, but the DOFS of the sensor measurement
is limited. The suitable sensor is seldom to detect
the multiple DOFS mechanism [7]. For a mechanism
without a suitable sensor for the end-effector feedback
but requested to fulfill the high accurate positioning,
the calibration becomes an important and effective
method to ensure the positioning accuracy. References
[8, 9] adopted the camera as the sensor to measure the
end-effector state information, but the field of view
and the pixel size are limited in the machine vision
method It is difficult to reach micron level precision
in real time by using the camera as sensor.

Calibration and control are two methods for
improving the accuracy of the mechanism in differ-
ent aspects. For a mechanism without the end-effector
feedback, calibration will be the preferred way to
improve the accuracy. The parameters identification
and system calibration are vital for the high accuracy
positioning system. Without calibration, the control
will be helpless. The calibration method always based
on the error modeling of the mechanism, and the accu-
racy of the model affect the accuracy of the calibration
directly. Shao used the closed-loop kinematic chain

model to obtain the error model of the 3RRR mech-
anism [10]. Yang used the coordinate conversion to
derive the error model of the Delta mechanism [11].
These error models are always based on the geome-
try relationship and the differential kinematics [12].
Derivation of the error model based on the first order
Taylor Expansion the higher order terms are usually
eliminated. But the higher order terms are always the
coupling terms of the errors eliminating those means
decoupling the affections of the errors. For the serial
mechanism, it is not a big problem, because the serial
mechanisms are decoupling essentially. But for the
parallel mechanism, the coupling of the input and out-
put exists in the system. Decoupling means that some
of the coupling errors will no longer be considered,
and the modeling errors will be caused.

There are few people consider the affections of
the error decoupling on parallel mechanism, because
the coupling error model is too complex. The cou-
pling error model is hardly to be transferred to the
identified model, so it is not convenient for identify-
ing the system parameters. There are some problems
in parameters identification. Nubiola identified the
parameters by solving the overdetermined equation set
[13], but the overdetermined equation is unable to get
an analytical solution. The approximate solution can
only be obtained. Different optimization algorithm
will get different results in solving the overdetermined
equation set. Jiménez identified the parameters with
the least square method and calibrated the system with
the least square solution [14], but the least square is
not the optimal estimation. Xin identified the 3 DOFS
mechanism with the iterative algorithm based on the
forward kinematic [15] and it is hardly extended to the
mechanism without the closedformed forward kine-
matic solutions. Nubiola compared with different sen-
sor calibration results, but the calibration model is the
same [16]. Wang used the unit quaternion form to cal-
ibrate the 6 DOFs robot [17], but it is too complex for
the planar parallel mechanisms. For calibration pur-
pose, the most concerned is to find out the main error
source which will significantly affect the position-
ing accuracy and must be calibrated. The calibration
method based on solving the overdetermined equation
set is unable to identify all the parameters accurately,
due to the math nature of the overdetermined equation
set. If the main error source is identified difficulty, the
assistant measurements are needed to compensate for
the calibration.
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(a) Macro-micro combination object stage in SEM chamber; (b) Macro movement part (3PRR positioning system); 

Fig. 1 3D diagram of 3PRR positioning system

In order to build an object stage of the SEM, the
3PRR planar parallel mechanism has been designed
and built It is designed to fulfill micron grade posi-
tioning with the millimeter travel stroke. After the
research of calibrating the system, it is found that the
decoupling error model will cause some parameters
unable to be identified, and some of these unidentified
parameters are the main error sources. Considering
that the coupling error model is too complex to use and
the decoupling error model is not ideal for high accu-
rate calibration, a new calibration method has been
proposed.

The rest of this article is organized as follows.
The error model is derived and the main error
sources are obtained in Section 2. In Section 3 the
calibration methods based on the decoupling error
model are analyzed, and the assistant measurement
is used to compensate for the calibration based on

error model. Section 4 conducts the experiments, and
the experimental results verify this new calibration
method. Conclusions are drawn in Section 5.

2 Error Modeling and Analysis

In order to build up a macro-micro combination object
stage of the SEM, a 3PRR planar parallel mecha-
nism is designed and constructed. The 3D diagram
is shown in Fig. 1. Magnetic field free and com-
pact structure is two essential requirements under the
SEM environment. This 3PRR planar parallel mech-
anism driven by ultrasonic linear motors is able to
meet these two requirements. Because direct drive
method is an effective method to minimize the non-
linear characteristics of the mechanism this 3PRR is
constructed using the direct drive mechanism for the
high accuracy positioning. However, in practical work

Fig. 2 Reference frame of
the 3PRR
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there are many errors introduced without the end-
effector feedback, which limited the performance of
the positioning accuracy.

The errors in this system include the certain errors
and uncertain errors. The certain errors like the man-
ufacturing and assembling errors are able to be identi-
fied; but the uncertain errors like the disturbances and
noise are difficult to be identified. The certain error
model of the mechanism is based on the differential
kinematics relationship and the uncertain error model
is based on the statistics and probability theory.

2.1 Error Modeling

Here, the certain error of the kinematic model is
mainly considered. At first, building reference coordi-
nate of the 3PRR in Fig. 2.

The 3PRR positioning system uses the linkage to
connect the static platform (�A1A2A3) and mov-
ing platform (�C1C2C3) symmetrically. The static
platform and the moving platform are all equilateral
triangle with the circumradius of L1 = 210 mm, L3 =
28 mm. The sliders B1,B2,B3 on the sides (A1A2,
A2A3, A3A1) of the static platform forms the pris-
matic actuated joints The actuated distances are d1,
d2 and d3. The sliders Bi (i = 1, 2, 3) connect to
the nodes Ci (i = 1, 2, 3) of the moving platform
with the linkages in equal length (B1C1 = B2C2 =

B3C3 = L2 = 95 mm). Both ends of the linkages are
revolute pairs, composing of the passive joints of the
3PRR. The node P:(xp yp) is the geometric center of
the moving platform and defined as the end-effector
point of this system. The O-XY is the global coordi-
nate, and θ1θ2, , θ3 are included angles between the
sides B1C1, B2C2, B3C3 and X-axis, respectively. θp is
the included angle between the side C1C2 and X-axis.

Using the closed-loop vector relationship, the equa-
tion is given

AiBi+BiCi+CiP+PO+OAi=0, (i = 1, 2, 3). (1)

Expanding (1) into projections of two axes (X-axis,
Y-axis) the kinematic model of the 3PRR is

{
xp = dicosαi + L2−icosθi + L3−icos(γi) + xAi

yp = disinαi + L2−isinθi + L3−isin(γi) + yAi
,

(2)

where αi = 2π(i−1)/3; γi = βi +θp; βi = π/6+αi ;
xAiand yAi are related to the αi and L1−i , respectively
(i = 1, 2, 3).

One can introduce a small perturbation (δ) into all
active error sources. Because the error δθi is caused
by the other error sources, it is a passive error instead
of an active error The error δθi becomes a redundancy
term and it is not considered in the error modeling.
The kinematic model with errors can be obtained as
follow.

{
xp + δxp = (di+δdi)cos(αi + δαi) + (L2−i+δL2−i )cos(θi) + (L3−i+δL3−i )cos(γi + δγi) + (xAi + δxAi )

yp + δyp = (di+δdi)sin(αi + δαi) + (L2−i+δL2−i )sin(θi) + (L3−i+δL3−i )sin(γi + δγi) + (yAi + δyAi )
, (3)

where γi + δγi = βi + δβi + θp + δθp(i = 1, 2, 3);
and the error sources are listed in Table 1.

Using the approximate formula

{
sin x ≈ x

cos x ≈ 1
,

(x � 1) to simplify the error model, rounding off the

higher order terms and substituting Eq. 3 into Eq. 2,
the simplified error model of the 3PRR is obtained
as

{
δxp=−(disinαi)δαi +(cosαi)δdi +(cosθi)δL2−i − (L3−isinγi)δγi + (cosγi)δL3−i + δxAi

δyp=(di cosαi)δαi +(sinαi)δdi +(sin θi)δL2−i + (L3−i cos γi)δγi + (sin γi)δL3−i + δyAi
, (i = 1, 2, 3). (4)

Equation 4 shows that the end-effector positioning
errors (δxpδyp) are coupling with the orientation error

δθp. In order to decoupling the Eq. 4, one can multiply
δxp and δyp with cosθi and sin θi respectively as

{
cosθiδxp = cosθi [−(disinαi)δαi + (cosαi)δdi + (cosθi)δL2−i − (L3−isinγi)δγi + (cosγi)δL3−i + δxAi ]
sin θiδyp = sin θi [(di cosαi)δαi + (sinαi)δdi + (sin θi)δL2−i + (L3−i cos γi)δγi + (sin γi)δL3−i + δyAi ] , (i = 1, 2, 3). (5)
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Equation 5 can be expressed in terms of the input
errors and output errors as

cos θiδxp + sin θiδyp + L3−i sin(γi − θi)δθp

= −di sin(αi − θi)δαi + cos(αi − θi)δdi

−L3−i sin(γi − θi)δβi + cos(γi − θi)δL3−i

+cos θiδxAi +sin θiδyAi +δL2−i , (i = 1, 2, 3). (6)

Equation 6 can also be written as the matrix form

δX = J · δd, (7)

where δX = [
δxp δyp δθp

]T
; δdi =

[δαiδdiδβiδL3−i
δxAiδyAiδL2−i

]T;δd =
[δd1 δd2 δd3]T;

J=J-11 J 2; J1 =
⎡
⎣ cos θ1 sin θ1 L3−1 sin(γ1 − θ1)

cos θ2 sin θ2 L3−2 sin(γ2 − θ2)

cos θ3 sin θ3 L3−3 sin(γ3 − θ3)

⎤
⎦ ;

J2 =
⎡
⎣ A11 01×7 01×7

01×7 A22 01×7

01×7 01×7 A33

⎤
⎦
3×21

;

Table 1 Description of
Error source Error sources, (i = 1, 2, 3) Description

δdi Input errors of each actuated joint

δαi Angle errors of the static platform

δL2−i Errors of each linkage length

δL3−i Circumradius errors of the moving platform

δβi Angle errors of the moving platform

δxAi Circumradius errors projection (Xaxis) of the static platform

δyAi Circumradius errors projection (Yaxis) of the static platform

Aii = [−di sin(αi − θi) cos(αi − θi) − L3−i sin(γi − θi) cos(γi − θi) cos θi sin θi 1
]
, (i = 1, 2, 3)

The matrix J is so call the error transfer matrix; the
elements of the matrix J represent the contribution of
every error sources to the end-effector errors.

2.2 Analysis of the Error Sources

Considering the error model of the 3PRR, there are 21
error sources which will affect the positioning accu-
racy of the end-effector. Some of these error sources
may affect the accuracy evidently, while the end-
effector may be not so sensitive to the other error
sources. The first row of the error transfer matrix J
is corresponding to the end-effector errorδxp; the sec-
ond row corresponds to the end-effector error δyp, and
the last row corresponds to δθp. For example, the ele-
ments of the first row in matrix J are the weights of the
error sources. They determine the error sources in δd
which will affect δxp mostly. Put it another way, the
percentage of the elements in J reflects the sensitiv-
ity of the error transfer. But in the whole workspace,
every single point has a matrix J, and the elements
of the matrix J change in every positioning point.
In order to figure out which source will affect the

end-effector significantly in the whole workspace the
sensitive factor of the errors in forms is defined as

GESI=
∫∫
s

[(Jij · δdj )/δXi ]ds

/∫∫
s

ds, (i =1, 2, 3; j =1 to 21),

(8)

where GESI (Global Errors Sensitive Index) is defined
as the error transfer factor; Jij is the element of the
matrix J; δdj is the error source corresponding to the
Jij ;

∫∫
s

ds is the whole workspace area.

Equation 8 represents the global proportion of each
error source. For a calculation example, the angle
parameters of the 3PRR are described previously. The
dimension parameters are L1 =210 mm, L2 =95 mm,
L3 =28 mm. Assuming that all the angle errors are the
same, and so does the length errors, the GESI of the
3PRR are shown in Figs. 3, 4 and 5.

The GESI histograms Figs. 3 and 4 specified the
same Length errors and different angle errors; while
Figs. 4 and 5 specified the same angle errors and
different length errors.
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(a) The GESI to the

(b) The GESI to the

(c) The GESI to the pδθ

Fig. 3 The 3PRR GESI of each error source (Angle errors are all specified as 0.1◦; Length errors are all set as 0.01 mm)

After analyzing Figs. 3 and 4, the most sensitive
error sources are the angles of the static platform
(δαi(i = 1, 2, 3)) and the moving platform (δβi(i =
1, 2, 3)). These errors are certain errors coming from
manufacturing and assembling. They are hardly to be
eliminated, but they are able to be identified and cal-
ibrated. When the angle errors are at the same order
of magnitude with length errors (Fig. 4), the other
error sources also affect the end-effector obviously
although δαi(i = 1, 2, 3) are the most sensitive error
sources. However, if the magnitude of the angle errors
is ten times higher than that of the length errors, the
other effects are weakened, and δαi(i = 1, 2, 3) will
become the main error sources.

After analyzing Figs. 4 and 5, the main error
sources are different. This comparison specified the
same angle errors, so the different of the main error
sources caused by the different volume of the length
errors. When the angle errors are at the same order of
magnitude with length errors (Fig. 4), the main error
sources are δαi(i = 1, 2, 3). But if the length errors
are ten times higher than the angle errors, the main
error sources will be changed to the linkage length
errors. The comparisons of the Figs. 3, 4 and 5 are
summarized in Table 2.

When the angle errors are multiplied with the
radius, it will be amplified to arc errors Therefore, a
little angle errors will cause remarkable end-effector



J Intell Robot Syst (2017) 85:613–631 619

0

0.2

0.4

0.6

0.8

1

Error Sources

δα
1

δd
1

δβ
1

δL
3−1

δx
A1

δy
A1

δL
2−1

δα
2

δd
2

δβ
2

δL
3−2

δx
A2

δy
A2

δL
2−2

δα
3

δd
3

δβ
3

δL
3−3

δx
A3

δy
A3

δL
2−3

G
E

SI
 −

 δ
x p

pxδ

0

0.2

0.4

0.6

0.8

1

Error Sources

δα
1

δd
1

δβ
1

δL
3−1

δx
A1

δy
A1

δL
2−1

δα
2

δd
2

δβ
2

δL
3−2

δx
A2

δy
A2

δL
2−2

δα
3

δd
3

δβ
3

δL
3−3

δx
A3

δy
A3

δL
2−3

G
E

SI
 −

 δ
y p

pyδ

0

0.2

0.4

0.6

0.8

1

Error Sources

δα
1

δd
1

δβ
1

δL
3−1

δx
A1

δy
A1

δL
2−1

δα
2

δd
2

δβ
2

δL
3−2

δx
A2

δy
A2

δL
2−2

δα
3

δd
3

δβ
3

δL
3−3

δx
A3

δy
A3

δL
2−3

G
E

SI
 −

 δ
θ p

(a) The GESI to the

(b) The GESI to the

(c) The GESI to the pδθ

Fig. 4 The 3PRR GESI of each error source (Angle errors are all specified as 0.01◦; Length errors are all set as 0.01 mm)

errors. The length errors of the 3PRR result from the
manufacturing, so they are usually less than 0.05 mm.
The angle errors δβi(i = 1, 2, 3) also result fromman-
ufacturing, but it is not so sensitive to the end-effector
errors. However the angle errors δαi(i = 1, 2, 3)
are from the assembling, and it is much larger than
δβi(i = 1, 2, 3) and the installation angles are difficult
to be guaranteed. The main error sources are related
to the order of magnitude of the active errors. Because
the angle errors (from assembling) are bigger than the
length errors (from manufacturing) in practical situ-
ation, therefore, δαi(i = 1, 2, 3) are the main error
sources of this 3PRR positioning system, and it is must
be identified and calibrated.

2.3 The Relationship Between the Error Model
and the Velocity Jacobian Matrix

The velocity Jacobianmatrix is an important definition in
robot field. It defines the velocity linear input-output
equations relating the end-effector velocity vectors to
the actuated joint variables [1], and the general form
is

A · Ẋ = B · ḋ, (9)

where Ẋ is the output velocity vector of the end-
effector, and ḋ is the input velocity vector of the
actuated joint.
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Fig. 5 The 3PRR GESI of each error source (Angle errors are all specified as 0.01◦; Length errors are all set as 0.1 mm)

The matrix A and B reflects the relationship
between the input velocity and the output velocity. The
matrix A and B can be combined and given as

˙d = J inv · Ẋ, (10)

where Jinv=B−1 · A
The matrix Jinv is called the inverse kinematic

velocity Jacobian matrix. The 3PRR velocity Jacobian

matrix has been derived by Jiasi Mo [2] and the
equations of the 3PRR velocity Jacobian matrix are

A=

[
cos θ1 sin θ1 L3 sin(π/6 − θ1 + θp)
cos θ2 sin θ2 L3 sin(π/6 − θ2 + θp)
cos θ3 sin θ3 L3 sin(π/6 − θ3 + θp)

]
,

B=

[
cos θ1 0 0
0 cos(θ2 − 2π/3) 0
0 0 cos(θ3 − 4π/3)

]
. (11)

Table 2 The main error sources comparison

Figure Angle errors / ◦ Length errors / mm Order of magnitude Main error source

Fig. 3 0.10 0.01 Angle errors >Length errors Guide way angle error(δαi)

Fig. 4 0.01 0.01 Angle errors = Length errors Guide way angle error(δαi)

Fig. 5 0.01 0.10 Angle errors <Length errors Linkage length error(δL2−i δL3−i , , δxAi δyAi )
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Fig. 6 Error distribution in whole workspace with δαi = 0.01◦ only. a Distribution of δxp; b Distribution of δyp; c Distribution of√
δx2

p + δy2
p ; d Distribution of δθp

From Eqs. 11 and 7, it can be found that A=J 1,
and the elements corresponding to δdi from matrix J2
are the same as those of matrix B. This phenomenon
shows that the velocity Jacobian matrix also represents
the errors transfer relationship, but it only reflects
the input errors transfer to the output errors. If one
only considers the influence of input errors to out-
put errors, the error transfer matrix in Eq. 7 become
dimensionality reduction as the velocity Jacobian
matrix.

According to the above relationship, the traditional
optimization based on velocity Jacobian matrix like
the GCI (Global Condition Index) optimization is not
so ideal [18–23], especially for thosemechanismwhose
main error sources are not the actuated joint inputs.
Optimization for the parameters of the mechanism
only considering the input and output relationship is
not enough for the high accurate mechanism.

Using the relationship between the error model
and the velocity Jacobian matrix, the generalized
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Jacobian matrix of the δαi(i = 1, 2, 3) can be written
as

δX = Jα · δα, (12)

where Jα =
[
cos θ1 sin θ1 L3−1 sin(γ1 − θ1)
cos θ2 sin θ2 L3−2 sin(γ2 − θ2)
cos θ3 sin θ3 L3−3 sin(γ3 − θ3)

]−1

·
[ −d1 sin(α1 − θ1) 0 0

0 −d2 sin(α2 − θ2) 0
0 0 −d3 sin(α3 − θ3)

]
;

δα = [
δα1 δα2 δα3

]T
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According to Eq. 12, the mapping of the error dis-
tribution only with the errors of δαi = 0.01◦ can be
plotted as Fig. 6.

Figure 6 shows the error distribution when the main
error source is δαi = 0.01◦. δxp and δyp are monotone

decreasing. The error
√

δx2
p + δy2

p becomes a pyra-

mid shape and the best positioning performance is
achieved on the origin point. The distribution of δθp
is symmetric, and the minimum error is achieved on
origin point too. This result conforms to the distribu-
tion of the velocity Jacobian matrix of the 3PRR [2].
It demonstrates that the generalized Jacobian matrix is
an effective method for error analysis and optimiza-
tion. The generalized Jacobian matrix can compensate
for the disadvantage when optimizing the mechanism
with the velocity Jacobian matrix only.

3 Calibration Method

The error model can be used as the identified model
when the inputs are the δX. Using this model, it is able
to calibrate the system parameters

Fig. 10 Assistant measurement points

3.1 Calibration Based on the Error Model

According to the above mentioned, the matrix J is the
error transfer matrix of the 3PRR If the end-effector
errors δX are able to be measured then δd can be
identified. The error model can be rewritten as the
parameters identification model

δd = J−1 · δX, (13)

where J−1 is the generalized inverse of J.
Since matrix J is not a square matrix, and the num-

ber of equations is less than the number of unknowns
(3<21), Eq. 13 is an indeterminate equation set. In
order to identify δd the redundant data of δX are
needed. If many positioning points (larger than and
equal to 7 points) of the workspace can be measured
and so many δX have been obtained, this calibration
method based on error model becomes a problem of
solving overdetermination equation set.

Assuming that N points (N ≥ 7) have been mea-
sured (13) becomes the over determination equation

Table 3 Calculation of the parameters.

Error sources, Description

(i = 1, 2, 3)

αi 〈XLXR,Wcs oWcs x〉 (i = 1),

〈YLYR,Wcs oWcs x〉 (i = 2),

〈ZLZR,Wcs oWcs x〉 (i = 3)

L2−i |BiCi|
L3−i |PCi|
βi 〈PCi,CiCi+1〉
(xAiyAi ) Intersection of ZLZR and XLXR (i =1)

Intersection of XLXR and YLYR (i =2)

Intersection of YLYR and ZLZR (i =3)
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Table 4 Definitions of the assistant measurement points

Definitions of the points Functions

Wcso The origin point of the world coordinate on the static platform

Wcsx The x-axis point(20 mm from the origin) of the world coordinate on the static platform

Wcsy The y-axis point(20 mm from the origin) of the world coordinate on the static platform

XL Arbitrary point on the left side of the linear guideway X, used for fitting a straight line

and measuring δα1δxA1, , δyA1

XR Arbitrary point on the right side of the linear guideway X, used for fitting a straight line

and measuring δα1δxA1, , δyA1

YL Arbitrary point on the left side of the linear guideway Y, used for fitting a straight line

and measuring δα2δxA2δyA2

YR Arbitrary point on the right side of the linear guideway Y, used for fitting a straight line

and measuring δα2δxA2δyA2

ZL Arbitrary point on the left side of the linear guideway Z, used for fitting a straight line

and measuring δα3δxA3δyA3

ZR Arbitrary point on the right side of the linear guideway Z, used for fitting a straight line

and measuring δα3δxA3δyA3

B1 The endpoint of the linkage on the driving slider used for measuring L2-1

C1 The endpoint of the linkage on the moving platform used for measuring L2-1

B2 The endpoint of the linkage on the driving slider used for measuring L2-2

C2 The endpoint of the linkage on the moving platform used for measuring L2-2

B3 The endpoint of the linkage on the driving slider used for measuring L2-3

C3 The endpoint of the linkage on the moving platform used for measuring L2-3

P The end-effector point used for measuring L3-1L3-2,L3-3δβ1, δβ2δβ3

set. Considering each chain respectively, it can be
rewritten as dimensionality reduction form of

⎡
⎢⎢⎢⎣
Aii 1

Aii 2
...

Aii N

⎤
⎥⎥⎥⎦

−1

N×7

⎡
⎢⎢⎢⎣
J1 R(i) 1δX1

J1 R(i) 2δX2
...

J1 R(i) NδXN

⎤
⎥⎥⎥⎦

N×1

= δdi , (14)

where δX1, . . . , δXN are the measured end-effector
errors; J1 R(i) represent the ith row of J1, (i =1, 2, 3).

Based on the principle of pseudo-inverse of matrix,
Eq. 14 can be used to calculate the least squares

solution of δdi (i = 1, 2, 3) then the error sources of
each chain can be identified.

For a calculation example, assuming the angle
errors are all specified as 0.01◦ and the length errors
are all 0.01 mm The other parameters are described
previously. Simulation of the errors distribution with
equidistant points is carried out. The points mapping
scheme is defined in Fig. 7.

Substituting δd into the error model (7), and cal-
culating the errors of the end-effector at each point
of Fig. 7, the error distribution in whole workspace is
obtained and shown in Fig. 8.

Table 5 The assistant measurement points of simulation

Points B1 B2 B3 C1 C2 C3 O P XL XR YL YR ZL ZR

X/ mm −40.39 114.54 −60.64 4.03 20.43 27.29 0.00 −0.94 −181.86 181.86 181.86 0.00 0.00 −181.86

Y/ mm −105.00 11.60 104.95 −21.02 24.61 16.00 0.00 6.53 −105.00 −105.00 −105.00 210.00 210.00 −105.00
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Table 6 The simulation results of the assistant measurement

Parameters (i =X or Y or Z) Joint X Joint Y Joint Z

αi/
◦ 0.00 120.00 240.00

di/ mm 131.81 131.81 131.81

βi/
◦ 29.99 30.00 30.00

L3-i/ mm 28.00 28.00 28.00

xAi/ mm −181.86 181.86 0.00

yAi/ mm −105.00 −105.00 210.00

L2-i/ mm 94.99 95.00 95.00

Figure 8 shows the errors distribution of this 3PRR
positioning system in whole workspace. The distribu-
tions of δxp and δyp are not symmetrical and present-
ing the monotone decreasing feature. The tendency

of the errors
√

δx2
p + δy2

p is the same as that of δxp

and δyp. The distribution of δθp is symmetrical and
the error is minimum in original point. At the origi-
nal point, there are about 0.01 mm positioning error in
both δxp and δyp. Comparing with the Figs. 6 and 8,
the tendency of the error mappings (δxpδyp, δθp) are
all consistent. But the value in Fig. 8 is bigger than
that in Fig. 6, because more errors are introduced in
Figs. 8 than Fig. 6. The δαi are the main error sources,
and influence the end-effector errors greatly. It can be
found that the range of δxp and δyp in Fig. 8 is about
−0.01 mm to 0.03 mm If only introduce δαi = 0.01◦
into the system, the range of δxp and δyp in Fig. 6
become s −0.01 mm to 0.01 mm, it is account for
a large part of the end-effector errors, which proving
that δαi is the main error sources. In Figs. 6 and 8, the

Fig. 12 Construction of 3PRR parallel mechanism

tendency of the error
√

δx2
p + δy2

p mappings is con-

sistent too. But the minimum point in Fig. 6 is near
the origin point, while the minimum point in Fig. 8
translates for a distance, and the mapping outside the
workspace is not being plot in Fig. 8.

In order to verify the identify model, substituting
δxpδyp and δθp back into Eq. 14, the calculation results
are shown as Fig. 9.

Figure 9 shows the identified results of 21 error
sources. The results show that some of the parame-
ters values are near 0.01, which verify the assumption,
but some of the parameters values are near 0, which
means that these parameters are difficult to be identi-
fied by using the decoupling error model. The reason
why this phenomenon happens is dependent on the
model structure of the identified model. The simpli-
fied model is irreversible and the exact solution cannot

(a) Every part of the experimental system; (b) The 3PRR positioning system;

Fig. 11 Photographs of the experimental setups
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Fig. 13 The block diagram of the 3PRR positioning system

be obtained by using the overdetermined equation set,
which limited the accuracy of identification.

According to the GESI distribution, the most sen-
sitive error sources are δαi(i = 1, 2, 3). However,
the simulation results of the identification show that
δαi(i = 1, 2, 3) is identified inaccurately. In spite
of the other errors are identified accurately, the cal-
ibration results are not ideal, and the other assistant
measurements are needed.

3.2 The Assistant Measurements for Calibration

Based on the error model, there are 21 error sources.
Some of the error sources are easy to be identified by
utilizing the error model, others are difficult. Thus, the
assistant measurement is needed to improve the cali-
bration. In the designing process, some of the points
using for calibration are designed, corresponding to
the 21 error sources. The assistant measurement points
are shown as Fig. 10.

Fig. 14 The design of the assistant measurement points

Figure 10 shows 16 assistant measurement points
applied to calibrate the system. Three joints have been
defined as joint X, joint Y, and joint Z around the ori-
gin point in counter-clockwise direction (Table 3). The
functions of these points are list in Table 4.

In the design process, there are three points named
Wcs o, Wcs x and Wcs y locating on the static platform
used for creating the reference coordinate system, and
the subsequent measurements are based on it. The
measurement points defined in Table 4 are able to
compensate for uncertainty from the identified model.
If these points are able to be measured, the geometrical
relationship like the length and the angle of the system
parameters are easy to be calculated, and the equations
are listed in Table 3. The symbol 〈A,B〉 represents
the angle between vectors A and B. The symbol |A|
represents the norm of vectorA.

The simulation measurement points are list in
Table 5, they are corresponding to the assistant mea-
surement points in Fig. 10. Calculating the points
listed in Table 5, the parameters of the 3PRR are
obtained and listed in Table 6. The results show that
the assistant measurement can identify the parameters
while the error model cannot. However, the assis-
tant measurements will introduce the measuring error,
like the manufacturing errors. Although these errors

Table 7 The measured value of the main error sources

Values / ◦ α1 α2 α3 β1 β2 β3

Theoretical 360.00 120.00 240.00 30.00 30.00 30.00

Measure 1 360.02 119.97 239.92 30.27 30.05 29.68

Measure 2 359.90 119.91 239.96 29.96 30.16 29.88

Measure 3 359.98 119.95 239.97 29.96 30.13 29.91

Measure 4 359.98 119.98 239.99 30.29 30.00 29.71

Average 359.95 119.95 239.96 30.12 30.08 29.79
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affect the absolute position measurement, they do not
affect the relative positioning measurement. Like the
fitting of the linear guideway, αi(i = 1, 2, 3) can be
identified accurately.

4 Experiments

Experiments are conducted to verify the calibration
method with assistant measurement. The 3PRR posi-
tioning system driven by ultrasonic linear motors is
constructed. Experimental results of the calibration
method are presented

4.1 Experimental System Description

The experimental apparatus of the experimental
setup is depicted in Fig. 11a. The ultrasonic linear

motor driving 3PRR positioning system is shown in
Fig. 11b. The calibration of this experimental appa-
ratus includes the measurement part and the 3PRR
positioning system. The Leica laser tracker measure-
ment system (AT901-B) is used and it has capabil-
ity to measure the position of the single point in
Cartesian coordinate with the 0.01 μm resolution
and 10 μm precision, with the tracking length up to
50 m. The AT901-B measurement system can sat-
isfy the measurement requirements. The 3PRR posi-
tioning system includes the mechanical part and the
electronic part. The mechanical part of the 3PRR
positioning system has three uniform branched chains
(Fig. 12). Each chain is composed of the motor
stands, linear slider and the ultrasonic linear motor.
The moving platform is connected to three chains
with three linkages. The electronic part of the sys-
tem comprises three linear encoders six limit switches,
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three motor drive units, a PC and the motion control
card.

The 3PRR positioning system is a semi closed-
looped system with the actuated joint feedback only.
The PI U-264 ultrasonic linear motor receives the
ultrasonic drive voltage from the PI C-872 motor
drive unit. Then, the motor will move in a specific
velocity carrying the Renishaw Tonic linear encoder
(resolution 0.05 μm). The encoder can measure the
actual displacement and velocity used as feedback sig-
nals. The feedback signals are sent to the incremental
encoder interface of the Galil DMC1846 motion con-
trol card. The DMC1846 motion control card receives
the displacement signal and sends it to the self-
designed secondary development software interface
which is programmed by C# language. The control
command value is calculated through the specific
algorithm, and the command value will be converted
to an analog voltage and sent through the D/A con-
verter interface (16 bits, −10 V ˜+10 V DC) of
DMC1846 to the motor drive unit. The motor drive
unit will amplify and convert the DC reference sig-
nal to the high frequency (160 kHz), high amplitude
(up to 200V) AC drive voltage to the PZT inside the
motor case. Thus, the motor adjusts the displacement
and velocity in real time. The Omron photoelectric
switches are used as the limit switch. The flow chart
of the signals is shown in Fig. 13.

Table 8 Identified parameters

Chain 1 Chain 2 Chain 3

αi/rad 0.00134 2.09692 4.18866

di/ mm 0.00232 −0.00026 0.00095

βi/rad 0.45858 2.62522 4.68567

L3-i/ mm 29.06804 27.84005 28.29452

xAi/ mm −181.86300 182.00400 0.25459

yAi/ mm −103.93200 −104.92000 209.85190

L2-i/ mm 92.07273 95.12092 94.09782

The whole positioning system has three uniform
actuated joints. When the system begins to move, the
desired goal position of the workspace is converted
into the targeted joints position via the inverse kine-
matics equation. If the parameters of the 3PRR system
can be identified accurately, the positioning of the
system will be precision.

4.2 Calibration experiments

The calibration experiments are based on the identi-
fication. The experimental procedure is described as:
Positioning the end-effector with the designed param-
eters; measuring the end-effector errors; identifying
the parameters through the identified model; and then
the parameters of the system can be calculated. Using
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the identified parameters to calibrate the system the
positioning accuracy and errors of the system can be
obtained.

Since the identified model cannot be used to iden-
tify the main error sources, the main error sources
are obtained through the assistant measurement. The
design of the assistant measurement points is shown
in Fig. 14. Using the Leica laser tracker to measure
these points, the values of αi(i = 1, 2, 3) and βi(i =
1, 2, 3) can be calculated and shown in Table 7.

The values of αi(i = 1, 2, 3) and βi(i = 1, 2, 3)
are used to compensate for the unidentified values by
the identified model. Before calibration, the error dis-
tributions are measured by utilizing the laser tracker
(shown in Fig. 15), using the points mapping plan
illustrated in Fig. 7.

Figure 15 shows that the measurement error dis-
tributions are similar with the simulation results of
Fig. 8. It is demonstrated that the error model con-
forms to the actual performance. Plotted the errors
curves in Fig. 16, one knows that the positioning error
δxp and δyp are up to 0.05 mm, and the orientation
error δθpis up to 0.05◦. Substituting the measure-
ment errors into the identified model, the identified
parameters are obtained and list in Table 8.

Table 8 shows the identified parameters calculated
by the identified model. The αi(i = 1, 2, 3) and
βi(i = 1, 2, 3) are identified not so accurate. There-
fore, the angles αi(i = 1, 2, 3) and βi(i = 1, 2, 3)
in Table 8 are being replace with the assistant mea-
surement value in Table 8. So the system parameters
have been calibrated Then, the calibrated parameters
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are being applied to the system. The error distribu-
tions are plotted in Fig. 17, and the curve are plotted
in Fig. 18.

The experimental results shows that the position-
ing errors reduce to about ±10 μm and the orientation
errors reduce to about 0.05◦ after calibration. Because
the accuracy degree of the AT901-B laser tracker
is 10 μm, the measurement data displayed zero not
means the errors is zero actually. In fact it means the
absolute errors are less than ±5 μm. After calibra-
tion, the errors distributions become a bowl shape,
and appear the better positioning performance near the
origin point. This phenomenon conforms to the prop-
erties of the parallel mechanism. The end-effector will
be near the singular boundary of the workspace when
it is far away from the origin point, and the error trans-
fer will become more and larger when the end-effector
is near the singular boundary.

5 Conclusions

This paper proposes a new calibration method for a
3PRR parallel manipulator. Firstly, a kind of directly
driven 3PRR positioning system is presented and con-
structed. The error modeling and error analysis of
the 3PRR positioning system are investigated. After
analyzing the errors, it can be found that the angle

errors of the guideway are the main error sources in
this 3PRR positioning system. The parameters iden-
tification model has also been derived. The simula-
tion results demonstrate that it is not so ideal for
parameters identification, because some parameters
are unable to be identified accurately via the general
calibration method. Therefore, the assistant measure-
ment method is proposed to compensate for this disad-
vantage. The experiment results demonstrate that this
new calibration method based on the assistant mea-
surement can exert satisfactory positioning effect, and
meet the requirements of micron grade positioning.
Furthermore, the calibration accuracy is relative to the
measurement accuracy.
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