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Abstract In this paper we address automatic vehicle and engine identification based on
audio information. Such data depend on many factors, including vehicle type, tires, speed
and its change, as well as road type. In our previous research we designed a feature set for
selected vehicle classes, discriminating pairs of classes. Later, we decided to expand the
feature vector and find the best feature set (mainly based on spectral descriptors), possi-
bly representative for each investigated vehicle category, which can be applied to a bigger
data set, with more classes. The experiments were performed first on on-road recordings,
and then continued with test bench (dyno) recordings. The paper also shows problems
related to vehicles classification, which is detailed in official documents by national author-
ity for issues related to the national road system, but simplified for automatic identification
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purposes. Experiments on audio-based vehicle type and engine type identification are
presented and conclusions are shown.

Keywords Intelligent transport system - Vehicle classification - Audio signal analysis

1 Introduction

The traffic we experience every day in the roads generates a lot of noise. Many countries
measure this traffic and monitor its density. Such monitoring generates data (audio, video,
etc.) that can be analyzed to estimate how the roads are used, introduce noise prevention etc.
The audio data from the traffic monitoring are the subject of research presented in this paper.
The reason of choosing the audio is that audio data require less storage space than video,
are cheaper to obtain, and can be recorded at night or at other low visibility conditions, for
instance during bad weather, etc. The audio recorders are easier to install, also in a way
that is not visible for drivers, so they are less distractive. In the case of video cameras, the
drivers are expecting a radar device, and change their behavior, so audio only recording can
be even preferred. Also, audio data can be used to classify vehicles according to the noise
produced, into classes approximately uniform with respect to how annoying the noise is.
Still, extracting information from the audio data is not simple.

Audio data representing vehicles passing by are very complex, as they depend on many
factors. The noise generated by vehicles depends on the vehicle type, speed, traffic intensity,
how old the vehicles are, technical parameters, engine type, tires, exhaust system, air intake
system, and other factors (Iwao and Yamazaki 1996). If different vehicles have the same
type of engine, they sound very similar. On the other hand, the same vehicle sounds different
when traveling upwards, downwards, with uniform speed or accelerating/decelerating. Also,
the noise generated by old vehicles in very bad condition will be raised by a few dB. Diesel
engine is up to 5 dB louder than gasoline engine, whereas electric motor produces very little
noise. At very low speed, below 30 km/h, electric motors are hardly audible. This actually is
dangerous for pedestrians, as in this case they do not hear the vehicle approaching. At higher
speed, tire friction makes these vehicles audible. Also, the road surface is an important
factor of vehicle noise, and the difference can be about 5 dB.

In order to assess the road traffic in Poland, measurements are performed on various
designated roads, at specified dates through the observed year, in day time (6am - 10pm), at
night (10pm - 6am), and additionally between 8am and 4pm for trucks. The measurements
are taken through week days, on Saturdays, Sundays and holidays (General Directorate
for National Roads and Motorways 2014). Measurements can be done automatically, semi-
automatically, or manually. In other countries, data about traffic are also collected. European
Union also issued a directive on the framework for the deployment of Intelligent Transport
Systems (Directive 2010/40/Eu of the European Parliament 2010), with the purpose (among
others) of the facilitation of the electronic data exchange between urban control centers for
public or private transport. The United States also prepared a strategic plan for Intelligent
Transport Systems (ITS) (ITS 2015).

1.1 Content of the paper
This paper is an extended version of the paper (Wieczorkowska et al. 2016), where on-

road recordings were used in experiments. For the purpose of this paper, we also prepared
test bench recordings (dyno) of vehicles representing car and van classes. These classes are
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difficult to discern, and also only these vehicles can be recorded using the dyno test bench
at the University of Life Sciences in Lublin. This is because motorcycles require a special
adapter, not available at this test bench, and bigger vehicles cannot enter the test bench, as its
capacity is limited to 3.5 t. For our on-road data, we performed multi-label classification for
data representing both single and multiple vehicles, as well as multi-class classification for
single-label data. These experiments were performed for 7 classes, but we also performed
experiments with 3 classes only, in order to compare results with other researchers. For
the dyno data, binary classification was performed. Apart from van vs. car classification,
we also performed engine type classification, i.e. Diesel vs. gasoline engine. Vehicle type
classification can be performed from video data as well, but engine type classification can
be only performed for audio data. The data representing various classes of vehicles can be
applied for noise assessment purposes.

1.2 Related work

The research on audio-based automatic classification of vehicles has already been per-
formed, for varying number of classes. Such research is usually performed for low sampling
rate, 8—11.025 kHz, or downsampled for faster processing, and the analyzing window is
usually short, 10-50 ms. In our research, we decided to use 48 kHz/24 bit recordings, as
this is the standard in modern audio recorders. Also, we decided to use longer analyzing
frame, 330ms, to have high resolution spectrum, and longer frames yielded better results in
our previous research, with a smaller feature set (Kubera et al. 2015).

Various classifiers have already been applied for audio-based vehicle classification, often
with feature selection; extensive literature review on this subject is presented in Erb (2007).
In George et al. (2013), artificial neural network (ANN) was applied for 3 car classes (and
horn as the 4th class). The authors in Johnstone and Woodward (2013) also applied ANN,
as well as a naive Bayesian classifier, but for 3 vehicles only. Erb (2007) applied SVM
(support vector machines) and feature selection with linear prediction for 3 classes: car,
truck, and van. He obtained 87% correctness for vehicles traveling at low speed, and 83%
for higher vehicle speeds. For traffic without given probabilities, the best result reached
80%, and increased to 83% if class probabilities matched those from the training data (Erb
2007). Alexandre et al. in Alexandre et al. (2015) applied multi-layer perceptrons combined
with feature selection based on a genetic algorithm, for another 3 classes: car, motorcycle,
and truck. Features included mel-frequency cepstral coefficients (MFCC), and zero cross-
ing rate, yielding 93% correctness for 22 features and 75% for 66 features (Alexandre et al.
2015). Four target classes were investigated in Mayvan et al. (2015): bus, car, motor, and
truck. The authors used quadratic and linear discriminant analysis, and also k-nearest neigh-
bors method (k-NN) and SVM. Feature vector included, among others, short time energy,
average zero crossing rate, and pitch frequency of periodic segments of signals, yielding
80% correctness for SVM with 12 Mel coefficients (Mayvan et al. 2015). Generally, such
research usually aims at recognizing 3-4 classes, for various vehicles, including military
ones (see Duarte and Hu (2004)).

2 Data collection and description
All our data were collected in Poland, and they represent a variety of vehicle classes,

recorded according to two different scenarios. Namely, we collected on-road data, and test
bench data.
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2.1 Vehicle classes

The vehicles can be classified in various ways. In Poland, according to the General Direc-
torate for National Roads and Motorways, the vehicles are classified into the following
classes: bicycles, motorcycles (including scooters), cars (including minibuses), vans (light
trucks, up to 3.5 t), small trucks (above 3.5 t), big trucks (above 3.5 t with trailers or semi-
trailers), buses, and tractors (including rollers, excavators etc.) (General Directorate for
National Roads and Motorways 2014). Detailed specification is also prepared for tax and
customs purposes (Wydawnictwo Podatkowe GOFIN 2013). Modern vehicle classification
techniques that can be used for vehicle type recognition are based on image/video data sets
of vehicle outlines.

Example 1 Let us imagine that we observe vehicles passing by a selected point on the
shoulder of a given road; assume 1-minute observation of a 30 m portion of the road, in
both directions. During this one minute we can observe, for instance a bicycle, a big truck,
several compact cars, an ER ambulance (using a siren) passing another several cars, 2 small
trucks, and a bus. We can observe multiple vehicles passing by our observation point at the
same time, i.e. a car coming from the left, and a small truck from the right hand side of
the observation point. We can record both audio and video (if the visibility is good) data to
store our observation. Next, we can label the audio segments according to the vehicles we
can see and hear in this segments. Some of the segments will have multiple labels, as they
represent multiple vehicle classes.

Vehicle categories include various types of vehicles, differing in the noise produced;
also, similar vehicles can vary in the noise they generate. For instance, scooters differ from
motorcycles with respect to the noise generated. Cars include vehicles for up to 9 passen-
gers, including the driver. Off-road vehicle fall into this category, and they can produce
more noise if all terrain tires are used. Emergency vehicle also produce different sounds
when using audible warning devices. Therefore, to obtain relatively uniform representation
of each class, we decided to use most typical vehicles for the following 7 classes:

bus,

small truck (without trailer),

big truck (tractor unit with semitrailer),
van,

motorcycle, excluding scooters,

car,

tractor.

Nowunhs LD -

Minibuses, scooters, and emergency vehicles using audible warning devices were
excluded from our research. Also bicycles were excluded, as they produce almost no sound
(we recorded several examples). Tractor units without trailers or semitrailers were also
excluded.

2.2 On-road data

The audio and video recordings of on-road data were made in a suburban area near Lublin,
Poland, on weekdays in the Fall 2012 (12 November; tractors) and the Spring 2015 (5&10
June; other vehicles), at day time and at good weather, together about 1.5 hour of continuous
recording. The position of the audio recorder is shown in Fig. 1. Video data were recorded
separately, on another device, placed a bit further away from the main road, in order to see
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Fig. 1 The position of data acquisition in on-road recordings

the passing vehicles a bit longer. The road is approximately flat and straight here (bending
by five degrees 200 meters away from the recording position, and going a bit uphill nearby).
The video was used to mark ground truth data, whereas the audio was used for further
investigations. Our goal was to parameterize the audio data for the automatic recognition of
the vehicle type. In order to make sure the data are properly labeled, we selected segments
where the vehicles can be seen and heard (at the distance of about 30 meters), as labeling
the segments where the vehicles can be hardly heard would be problematic. Such segments
can be as short as 600 ms for motorcycles, which were very fast, and as long as 1.4 s for
buses. Tractors were separately recorded and these vehicles were very slow, so a segment
for each tractor was 4 s long. We discarded the segments where we had doubts regarding
which vehicles are audible, to assure correct ground-truth labeling. 330 ms frames were
taken for parametrization and classification, each frame representing vehicle(s) marked in
ground-truth labeling; details about amount of frames in each class are given in Section 5.1.

Example 1.1 (Ex. 1 continued) After having our observation recorded, we search for
audio segments with the data corresponding to our target classes, i.e. representing the sounds
of the target vehicle classes. This means that we can ignore for now the ambulance siren,
which is very loud and masks other sounds, and the bicycle (it also produces audible data),
as they do not represent any of the target classes, as well as the segments with no vehicles
recorded at all. We look for segments representing positive and negative examples for each
target class. Next, we divide the selected segments into 330 ms frames, without overlapping.
In our example, we will have positive examples for car, small truck, big truck, and bus:

— If in the first second of the remaining segmented recording we have only the bus
recorded, we will have 3 frames (3 x 330 ms = 990 ms) of positive examples for bus.
The remaining 10 ms will be discarded.

— If in the next segment, say from 04.670 s to 05.630 s, i.e. 960 ms, we have two cars, one
following the other one, so we will have 2 frames (2 x 330 ms = 660 ms) of positive
examples for car, and the remaining 300 ms will be ignored. These positive examples
can be used as negative examples for other classes, as we know that they are not present
here.
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— If in the next segment, say from 10.630 s to 12.710 s, i.e. 2080 ms, we have a car one
coming from the left and a small truck coming a bit later (say 0.350 s later it is certainly
audible) from the right, then we will have 6 frames of positive example for car. These
examples could be negative for other classes except small truck, because we are not
sure whether it is present or not in this segment. The remaining 100 ms will be ignored.

— If in the next segment, say from 21.020 s to 22.510 s we have a car, but we are not sure
whether other approaching vehicles are audible, we can use data from this segment as
positive examples for car, but we cannot use it as negative examples for other classes.

- Etc.

2.3 Test bench data

Test bench recordings were performed in May and June 2016, at the University of Life
Sciences in Lublin. The position of the audio recorder is shown in Fig. 2. Nine vehicles
were recorded:

—  Smart ForFour - car, fuel: gasoline,

—  Ford Focus - car, fuel: gasoline and LPG (liquid petroleum gas),

— Renault Espace - car, fuel: gasoline and LPG

— Hyundai i30 - car, Diesel engine,

— Toyota Corolla Verso - car, Diesel engine,

— Daewoo Lublin - van, Diesel engine,

—  Fiat Ducato - van, Diesel engine,

—  Volkswagen (VW) Transporters, 2004 and 2007 - van class, Diesel engine.

For each vehicle, we recorded accelerating from O to 110 km/h (maintaining speed at 30,
50, 70, 90, and 110 km/h), with the exception of Lublin (to 90 km/h only), and then slowing
down to stop. Only recordings within 70—110 km/h range were used in further experiments,
as we wanted to have speeds comparable to on-road recordings. All vehicles had manual
transmission, and slowing down was performed in two versions: at fifth gear, and at neutral
gear. Less than ten minutes of audio and video data were recorded for each car. Ford Focus

Fig. 2 Test bench data recording
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was recorded in two versions, with engine running on gasoline and when running on LPG.
In the test bench setting we also recorded OBD (on-board diagnostics) data when available.
These data include vehicle speed, rpm (revolutions per minute), and other data.

Example 2 Let us imagine that we observe a vehicle on the dyno test bench for one minute.
In this case, we only have vehicles of interest in our observation, and only one vehicle
observed at a time, say Fiat Ducato. If we record our observation, we may have just a
single vehicle recorded in our data, or background noises (from outside, people talking,
birds singing etc.), which we discard for now before further processing. Since we decided
to have 70-110 km/h range, we also remove the parts of recording before the 70 km/h speed
is reached, and after the vehicle slows down below this speed. Since we have data recorded
in a controlled setting, this can be done easily, as we have access to the OBD data and the
speed is known. Subsequently, now we have, say, 37 seconds left. Class labeling is also easy
in this case, and we have additional information available, e.g. the engine type. As a result,
we have all 112 frames of 330 ms length (non-overlapping, 112 x 330 ms = 36.960 s)
labeled as van, and the remaining 40 ms are ignored.

3 Feature set

Our audio data were parameterized, i.e. features describing signal properties were extracted.
No pre-processing was applied to the audio signal (no pre-emphasis, filtering etc.). Based on
our previous research (Kubera et al. 2015), our features are based on 330 ms audio segments
(frames), Hamming windowed for FFT (Fast Fourier Transform) spectrum calculation. Dis-
crete Hamming window w(n] is defined as w(n) = 0.5(1 + cos(zﬁ,’[’il )) forn = —M,....M.
Infinite length is assumed, so n = 0 behind [— M, M]. Windowing corresponds to multi-
plication of the data points x[n], i.e. discrete sound representation, by the window function
w[n], so the windowed signal s[n] = x[n] x w[n], n = — M,...,M, for the frame length N =
2M + 1. As a result of windowing, the original audio signal values are tapered to zero at
both ends of the frame. Windowing is a standard procedure performed before spectrum cal-
culation in order to minimize spectral leakage (and increase spectrum sensitivity), which is
unavoidable when cutting out a data frame from the audio signal and introducing discontinu-
ities at the frame border. More information about windowing, window functions and signal
processing can be found in the literature, see Madisetti and Williams (1999) for example.

FFT requires the frame length to be a power of two, so the data were zero-padded to
the nearest power of two before calculating FFT. Most of the features are spectral, plus
zero crossing rate - a temporal feature. The feature vector includes standard features used
in audio classification, plus additional features designed to discern objects representing our
target classes. The features applied are:

— Audio Spectrum Envelope - 33 features, SEO, ..., SE32 (The Moving Picture Experts
Group 2004),

—  SUM_SE - sum of the spectrum envelope values,

— MAX_SE_V, MAX_SE_IND - value/index of spectrum envelope maximum,

—  FO0ACor, FO_LMLA - fundamental frequency calculated from the autocorrelation func-
tion, and through maximum likelihood algorithm (Zhang et al. 2007),

—  EnAb4kHz - proportion of the spectral energy above 4kHz to the entire spectrum energy;

—  Energy - energy of the entire spectrum;
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—  Audio Spectrum Centroid (SC) - the power weighted average of the frequency bins in
the power spectrum. Coefficients were scaled to an octave scale anchored at 1 kHz (The
Moving Picture Experts Group 2004);

— Audio Spectrum Spread (SS) - RMS (root mean square) of the deviation of the log
frequency power spectrum wrt. Audio Spectrum Centroid (The Moving Picture Experts
Group 2004);

—  Zero Crossing Rate (ZCR) in the time-domain of the sound wave; a zero-crossing is a
point where the sign of the function changes;

—  RollOff - the frequency below which 85% (experimentally chosen threshold) of the
accumulated magnitudes of the spectrum is concentrated,

— Al4, A4l, AlS5, AS1, Al6, A61, Al7, A71, A24, A42, A52, A26, A62, A72, A34, A43,
A35, A53, A63, A73, A45, A54, A47, A74, A56, A6S, A57, A75, A67, A76 - normalized
(with respect to the spectrum energy) energies Axy in the spectral ranges determined
in such a way that the energy of this frequency range separates classes x and y, i.e. the
class x shows higher energy values than the class y in this range; detailed ranges are
shown in Table 1. These ranges were automatically found, using twelve 1-second sin-
gle sounds (without accompanying other vehicles) for each class and 330 ms analyzing
frame without overlapping (i.e. 3 frames per second). For the available spectrum reso-
lution, all possible frequency ranges were tested, to find such a range [ Ry, Ryp] that
the energy in it is between [min,, max,] for class x and [miny, maxy] for class y; if
miny, > maxy, then [Rjoy, Ryp]is chosen as the range maximizing the margin between
objects of x and y. Margin is calculated as (miny — maxy)/(max, —miny). Not for all
pairs of classes such discerning ranges were found;

— Bl4, Bi15, Bi6, Bl7, B24, B26, B34, B35, B45, B47, B56, B57, B67 - proportion of
energies between the indicated spectral ranges, Bxy = Axy/Ayx,

—  BW_10dB, BW_20dB, BW_30dB - bandwidth of the frequency band comprising the
spectrum maximum (in dB scale) and the level drop by 10, 20 and 30 dB, respectively,
towards both lower and upper frequencies,

—  f-bus, fsmallTruck, f-bigTruck, f-van, f-motorcycle, f_car, f-tractor - features discerning
a particular class from all other classes, obtained through multiplication of all available
Bxy values; the value for the target class should exceed those for other classes (at least
this is the case for the data used to determine the frequency ranges Axy).

Altogether, the feature set consists of 97 features. Some of these features were used in
our previous research on vehicle classification (Kubera et al. 2015). New features added in
this paper include Audio Spectrum Envelope, SUM_SE, MAX_SE_V, MAX_SE_IND, FO_ACor,
FOMLA, BW_10dB, BW_20dB, BW_30dB, and f.bus, f_smallTruck, f_bigTruck, f_van,
f-motorcycle, f-car, f-tractor. Features Axy and Bxy were calculated in the same way as in
(Kubera et al. 2015) but for 7 classes and for different audio data (only tractor recordings
were the same).

The data for experiments were recorded in stereo, with 48 kHz sampling rate and 24 bit
resolution. The average of both channels was used for calculating features, in order to have
one-channel data, rather than two separate audio channels.

For each audio frame, the obtained feature vector can be used as input to classifiers. We
decided to use binary classifiers, as this allows recognition of plural vehicles per segment,
i.e. all recognized target classes (for instance, big truck and car).

Example 1.2 (Ex. 1.1 continued) All the audio frames we labeled in Example 1.1 are
now processed. For each 330 ms stereo audio frame, having 48000 samples per second per
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Table 1 Spectral ranges Axy:

the energy of this frequency Axy lower limit [Hz] upper limit [Hz]

range separates classes x and y,

i.e. the class x shows higher Al4 91 724

energy values than the class y in AlS 18 38

this range Al6 3 797
Al7 26 47
A41 1799 1822
AS1 3275 3278
A61 938 1055
AT1 3369 3419
A24 32 1116
A26 23 750
A42 1986 2071
A52 117 290
A62 1002 1298
AT2 4210 4213
A34 50 1184
A35 384 1128
A43 2555 2590
AS3 117 375
A63 4283 4310
A73 3844 3850
A45 732 1125
A47 691 1374
A54 117 571
A74 299 325
AS56 111 542
AS57 88 138
A65 1069 1397
AT5 867 896
A67 771 1403
A76 316 516

audio channel (0.33 x 48000 = 15840 samples per frame), representing sound amplitude,
we calculate average of the two channels. Now we calculate Zero Crossing Rate for this
frame. Next, we multiply each data point by the Hamming window. This function aims at
flattening the data near the frame borders, as then spectrum leaks are diminished. Next, 544
samples of value zero are added to our sequence of samples in the frame, i.e. zero-padding is
performed. Now we have a frame of 16384 = 2!4 samples, and we calculate all the spectral
features. Afterwards, we represent each frame of our audio segment through the calculated
feature vector. We do this for each frame labeled in Example 1.1.

3.1 Feature selection

After designing the feature set and performing experiments on this set, we also applied
feature selection (based on feature importance estimated in random forests), as our feature
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vector is relatively large, so such a procedure is recommended in this case (Hastie et al.
2009). For each of the classifiers investigated, 3-fold cross validation (CV-3) procedure was
applied, with folds manually selected, in order to avoid frames from one segment (i.e. the
same vehicle) in different folds, so no training data were present in tests in CV-3. Therefore,
we also performed feature selection in folds, to avoid selection bias. Next, we tested 2
versions of feature selection: with constant number of features to be selected (10 features;
number arbitrarily chosen), and with feature importance above a selected threshold (0.5
mean decrease of Gini criterion; threshold arbitrarily chosen, based on the observation of
feature importance for all classes).

Our experiments were performed first on on-road recordings (7 vehicle classes), and then
for test bench recordings (car and van only). For on-road data, hierarchical classification was
also performed. Since better results were obtained for these data in the case of threshold-
based feature selection, we decided to choose this feature selection scheme in hierarchical
classification.

We also performed multi-class classification in further experiments, and for comparison
with the related research we performed experiments on the data limited to 3 classes only.
Feature selection was performed separately for these experiments, using rfcv function from
the randomForest package in The R Foundation (2017) to indicate the number of features
to be left in the feature set. The top 12 features were left in the 3-class classification.

4 Classifiers

In our experiments we applied SVM, random forests (RF, (Breiman 2001)), and deep learn-
ing (DL) architecture (neural network), using R and packages: h2o0, randomForest, and
e1071 (Package "h20’ 2017; The R Foundation 2017). In each case, we trained a binary
classifier for each target class, to recognize automatically whether a target vehicle sound
is present in the analyzed audio data (positive answer of the classifier) or not (negative
answer). This is because multiple vehicles can be recorded in the same audio frame, and
such a frame represents multi-label data. A set of binary classifiers can perform multi-label
classification, identifying each vehicle present in the analyzed audio frame. This implements
one of the approaches to multi-label classification, namely binary relevance (Dembczyriski
2013; Zhang and Zhou 2014). In this approach, the training takes examples representing
plural classes as positive examples (and not as negative examples) for each class correspond-
ing to these classes (Wieczorkowska et al. 2006). Therefore, the problem transformation is
applied, with fitting the data to the algorithm (Zhang and Zhou 2014). In this case, the task
of multi-label learning is transformed into the task of binary classification. Other popular
approaches include classifier chains, and label powerset, where each combination of labels
constitutes a new class (Dembczyniski 2013; Zhang and Zhou 2014). However, in the label
powerset approach the number of classes becomes very large, then the data become sparse,
and some classes may have very few training examples. Multi-label classification can be
also performed through algorithm adaptation approaches, namely through fitting the algo-
rithms to the data, i.e. adapting classifiers to work directly with multi-label data. We decided
to follow the binary relevance approach, as then we could use existing classifiers, and avoid
the drawbacks of the label powerset approach.

Support vector machines SVM looks for a decision surface (hyperplane) that maximizes
the margin around the decision boundary. The decision hyperplane should be maximally
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away from the training data points, called support vectors. Data that is not linearly sep-
arable is projected into a higher dimensional space where it is linearly separable. This
mapping is done by using kernel functions. In our case, we used kernels in form of linear
kernel, quadratic kernel, and radial basis functions (RBF). Linear kernel has one parame-
ter, quadratic kernel has two parameters, and RBF also has 2 parameters, ¢ and y, which
require tuning for best performance. We applied automatic tuning available in R package
(tune.svm).

Random forests RF is a set of decision trees, constructed with minimizing bias and cor-
relations between the trees. Each tree is built without pruning to the largest possible extent,
using a different N-element bootstrap sample of the N-element training set, i.e. obtained
through drawing with replacement. For a K -element feature vector, k features are randomly
selected (k < K, often k = +/K) for each node of any tree. The best split on these k fea-
tures is used to split the data in the node, and Gini impurity criterion is minimized to choose
the split. The Gini criterion measures of how often an element would be incorrectly labeled
if labeled randomly, according to the distribution of labels in the subset. This procedure is
repeated M times, to obtain M trees; M=500 in our first experiments (standard setting in R;
this setting was next tuned in further experiments). Classification of is performed by simple
voting of all trees in RF.

Deep learning DL architecture is composed of multiple levels of non-linear operations.
DL neural network architecture is a multi-layer neural net, with many hidden layers. This
algorithm is implemented in h2o0 as feedforward neural net, with automatic data standard-
ization. Training is performed through back propagation, with adaptive learning. Weights
of connections between neurons are iteratively updated in so-called epochs. Standard set-
ting of DL in h20 were used in our first experiments, and DL tuning was performed for
multi-class experiments (see Section 5.2.1), with grid-search of the parameter space. H20
parameters include the number of hidden layers of the network and the number of neurons
per layer, the shape of the activation function in neurons, large weight penalization and
drop-out regularization, i.e. ignoring a random fraction of neuron inputs.

5 Experiments: on-road data

Continuous recordings contain audio data representing background noise and sounds of
vehicles approaching the microphone (and camera) from the left and the right hand side,
passing by, and then receding. We selected sections which we could clearly label as posi-
tive or negative examples for each target class. Video data were used to guide this manual
selection.

5.1 Data

The on-road data used in our experiments contained carefully selected examples represent-
ing the target classes. Each positive example represents a 330 ms long segment of audio data
with a vehicle from the target class passing by in front of the microphone, possibly accom-
panied by another vehicle. Negative examples may contain audio material of a vehicle or
vehicles from classes other than the target class (or background noise); negative examples
outnumber the positive ones for each class. Ground-truth labeling is a demanding task, as
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Fig. 3 F-measure and classification error (binary relevance approach) for the on-road data

we must take into account the vehicles that are not visible, but can be heard in each seg-
ment. Video information is used for ground-truth labeling only, whereas each 330 ms audio
frame is used for calculating the feature vector, which is next used in further experiments.
The data contain:

— for bus class: 21 positive examples, 158 negative examples,

—  for small truck class: 26 positive examples, 270 negative examples,
—  for big truck class: 39 positive examples, 322 negative examples,

— for van class: 33 positive examples, 309 negative examples,

— for motorcycle class: 15 positive examples, 268 negative examples,
—  for car class: 33 positive examples, 160 negative examples,

—  for tractor class: 18 positive examples, 271 negative examples.

Actually, we had much more samples at our disposal, especially for the car class. How-
ever, since we had only a few seconds of recordings for tractors and motorcycles, we decided
to limit other data, in order to have comparable amounts of positive examples for each class.

The data were divided into 3 folds, with different vehicles data used for training and for
testing, in 3-fold cross-validation (CV-3; approximately 2/3 for training and 1/3 for testing in
each validation run). The data representing each particular vehicle were always put together
in the same fold. The audio data represented sound of a single vehicle, or multiple vehicles.
Positive examples contained sounds of the target class (possibly accompanied with other
sounds), and negative examples represented any other classes (single or multiple vehicles),
or background noise.
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Example 1.3 (Ex. 1.1 continued) Now we can perform training of classifiers on our
data from Example 1.2. The frames representing positive examples for car, small truck, big
truck, and bus in Example 1.1 are now used as positive examples in training classifiers for
car, small truck, big truck, and bus, respectively. Segments where we are sure that we have
car only are taken as negative examples for big truck, small truck, and bus. The segments
ignored in Example 1.1 with no vehicles recorded can now be used as negative examples
for all 4 classes. Therefore, the frames representing ER ambulance with siren, and bicycle
as well, can be used as negative examples, if no other vehicles are present in these data.

5.2 Classification results

The error and F-measure for our data using the binary relevance approach are shown in
Fig. 3. The classification error is defined as the number of incorrectly classified instances
divided by the number of all classified instances. SVM with RBF kernel was applied in
this experiment. F-measure in 2 cases could not be calculated, as no positive examples
were indicated, or precision and recall were both equal to zero. The error is usually small,
with the highest error for car classification using SVM, but still much better than random
choice.

We used RF to estimate the importance of the proposed features, for each of the folds
in CV-3. As examples, we present feature importance plots for car, motorcycle and tractor
in Fig. 4. MeanDecreaseGini in R is used here, which is a measure of feature importance
based on the Gini impurity index used for the calculation of splits during RF training (The
R Foundation 2017). As we can see, our proposed features are of high importance in these
cases. Other important features are related to spectral envelope, also in plots not presented
in this paper.

We also performed clustering experiments, in order to check how the proposed feature
set is grouping vehicle objects (Struyf et al. 1997). These experiments were performed on
the limited feature set, namely f-bus, f_smallTruck, f_-bigTruck, f-van, f-motorcycle, f-car,

motorcycle tractor
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f_car EnAb4kHz SE32 [
B16 RollOff B47 o
f_bus o B35 SE31 o
B34 o B57 f_bigTruck o
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T
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Fig. 4 Importance plot for car, motorcycle, and tractor classes
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S-tractor. Clustering into 7 clusters was performed for single sounds only (representing only
one vehicle), taking approximately 12 seconds of sounds for each class; we had about 36
frames of 330 ms length per class (the number of frames may differ for particular classes,
as these 12 seconds might be taken as one segment, or as several segments). Analysis was
performed without overlapping of the analyzing frames. Exemplary clustering is presented
in Table 2. As we can see, data are a bit mixed in clusters. For example, tractor examples
are together with motorcycle data, which can be surprising. This can be caused by the fact
that both tractors and motorcycles are noisy vehicles and they use mufflers of similar con-
struction. Still, usually most of the objects are located in one cluster. Only cars and vans
are together in one cluster, but these vehicles are similar with respect to produced sound
anyway. The obtained clustering shows that our feature set describes vehicle sounds quite
well, and explains good results of the classification performed on these data. We should also
remember that audio data depend on many factors, including tires, speed, acceleration etc.,
and these factors can be additionally investigated in further research.

Since our data are imbalanced, we also decided to balance the data when training clas-
sifiers. This can be done through downsampling the negative examples for each binary
classifiers, or upsampling the examples of each target class (Chen et al. 2004). In our exper-
iments, we decided to perform upsampling, i.e. replicating randomly the target class frames,
until the number of the positive examples equals the number of negative examples for a
given class. The upsampling, classification and feature selection experiments were per-
formed in 3-fold crossvalidation for each classifier, i.e. repeating the procedure three times.
Features of importance exceeding 0.5 threshold of mean decrease of Gini index were kept in
the final feature set. The following features were present in each fold for the target classes:

— bus: SE6-8, SE10-11, SE21-23, SE25, SC, A14, A15, A51, Al6, A17, A71,B17, A24,
A26, A34, A35, A73, A54, B45, A74, B47, A56, A57, B67, f_bus;

— small truck: SEO, SE4, SE7, SE11, SE14-16, SE30, SUM_SE, MAX_SE_V, Energy,
Al4, A16, A61, A24, A52, A26, A34, A35, A53, B35, A45, A54, B45, A47, A56, A67,
A76;

—  big truck: SEO-1, SE3, SES, SE9-15, SUM_SE, FO_Acor, Al4, A16, A61, A24, B24,
A52, A26, A34, A35, A53, A63, A45, AS4, Ad7, A74,B47, A56, A57, A75, A67, AT6;

— van: SEO, SE7-11, SE13, SE16, SE20, SE23, SE26-32, SUM_SE, FO_Acor, EnAb4kHz,
SC, SS, ZCR, RollOff, Al4, A41, Al15, A16, A61, B16, Al7, A24, A52, A26,
A62, B26, A34, A43, A53, A54, B45, A74, B47, A56, A65, B56, A67, A76, f bus,
f_smallTruck, f_bigTruck, f_van, f_motorcycle, f_car;

— motorcycle: SE1, SE4, SE6-7, SE13, SE15, SE22, SE25-32, EnAb4kHz, RollOff, B15,
A61, A52, B35, A45, B45, A47, B47, A75, f bigTruck, f_motocycle;

Table 2 Hierarchical Ward’s
clustering with Euclidean metrics cluster no.: 1 2 3 4 5 6 7
for our data

bus 12 1 0 0 0 0

small truck 3 3 1 0 3 0 3
big truck 4 7 2 0 0 0 0
van 0 0 0 0 0 10 0
motorcycle 0 0 0 2 6 0 0
car 0 0 0 0 0 10 0
tractor 0 0 0 10 8 0 0
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— car: SE19-21, SE29-30, SUM_SE, MAX_SE_V, BW_30dB, FO_Acor, SC, SS, ZCR,
B14,B16, B24, A52, B26, A43, B34, A53, B56, f_smallTruck, f_bigTruck, f_van, f_car;

— tractor: SE1, SE7, SE9, SE22-24, SE28-29, SE31-32, A71, B17, A73, B45, A74, B47,
f_bigTruck, f_motorcycle, f_tractor.

As we can see, the features designed to identify the target classes, or to discern between
pairs of classes, are of high importance and are kept in the feature set after the feature
selection procedure.

Classification error and F-measure after feature selection for balanced data are shown in
Fig. 5. As we can see, classification error decreased after feature selection in most cases, and
deep learning classifiers yield best results. We performed experiments with top 10 features
as well, but the results were worse than for features above the threshold. We believe that this
is because more features are left in the feature vector, and 10 features for 7 classes might not
be sufficient, especially in the case of difficult data, i.e. car and van. The number of features
left after threshold-based selection varied from 35 (to discern tractor from other classes) to
80 (for van).

5.2.1 Multi-class classification
Apart from binary relevance multi-label classification approach, we also performed multi-

class classification, i.e. single 7-class classifiers were trained. CV-3 scheme was applied,
with data manually selected for each fold in such a way that frames from one segment (i.e.
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Fig. 5 F-measure and classification error (binary relevance approach) after feature selection, for features
above threshold
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the same vehicle) were always in the same fold, so no training data were present in tests
in CV-3. Only data representing single vehicles were used (frames with multiple vehicles
were discarded), as we needed single-label only for each data item. Both channels of stereo
audio data were used separately. We used the same base classifiers as before, and also SVM
with linear and quadratic kernel. Additionally, we performed tuning of the parameters of
these classifiers, using tuneRF from the randomForest package in R for RF tuning, tune.svm
from the e1071 package for SVM tuning, and h20.grid from the h20 package for DL tuning
(Package "'h20’ 2017; The R Foundation 2017). Additionally, since our feature selection so
far was performed with arbitrarily selected number of features or threshold, we decided to
apply the rfcv function from the randomForest package to estimate the number of features
to be left in the feature set. As a result, no feature selection was applied for 7-class classi-
fication, as the best results of the rfcv function were obtained in this case. The following
accuracy was obtained:

— RF: 64.1% (300 trees, 5 variables randomly sampled as candidates at each split),

—  SVM with linear kernel (¢ = 2): 54.5%,

—  SVM with quadratic kernel, with parameters (2, 0.0625): 37.2%,

— SVM with RBF kernel, with parameters (4, 0.03125): 51.3%,

— DL with 2 hidden layers, 50 neurons each, activation function: tanh, dropout = 0.05,
regularization: 11 = 0.000066, 12 = 0.00001: 74.4%.

As we can see, the results are worse than in the case of any binary classifier in the binary
relevance approach, although these results are not directly comparable because of different
number of classes and different data (single vehicles only). The best accuracy in multi-class
classification was obtained for DL, at a level of 74.4%. This 74.4% accuracy obtained for 7
classes is comparable with the results obtained in Alexandre et al. (2015) for 3 classes only
(75% for 66 features), which is encouraging. Therefore, we also decided to perform multi-
class classification experiments for our features designed especially for this research, i.e.
for 7 features only: f_bus, f_smallTruck, f_-bigTruck, f-van, f-motorcycle, f-car, f-tractor. We
obtained the following accuracy in this experiments:

— RF:46.2%,

—  SVM with linear kernel: 50.6%,

—  SVM with quadratic kernel: 29.5%.
— SVM with RBF kernel: 43.6%,

—  DL: 60.0%.

Obviously, the results are worse, but for 7 classes quite encouraging. This shows that
these features are properly designed.

5.3 Comparison with other research

Research on vehicle identification based on audio data, as described in Section 1.2 (Related
Work), has been performed so far, but for varying number of classes, and for various sets of
classes. Therefore, direct comparison of our results for 7 classes with other results for 3-4
classes (most common setting) would be difficult. In order to compare our results with other
research directly, we decided to perform a limited experiments for 3 classes, as this is the
most common case. For the purpose of the comparison experiments, we trained single multi-
class classifiers (DL, SVM, RF) instead of a set of binary classifiers. Again, we limited the
data to single-label items, as we did in multi-class classification with 7 classes, and both
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channels of stereo audio data were used separately. Feature selection was performed for this
classification, as the rfcv function from the RF indicated the lowest error for 12 features.
The features were selected based on the feature importance from RF.

First, we limited the data set to 3 following classes: big truck, car, and van. This set of
classes was used in Erb (2007), with reporting car and van as difficult to discern, which was
also the case in our experiments. The features selected in this case were: A45, SE14, A57,
EnAb4kHz, A53, Se26, SE11, RollOff, SE10, A26, SE15, and A16. As we can see, features
for discerning classes 3 (big truck), 4 (van), and 6 (car) are of high importance. We did not
have a feature discerning between car and van, as no such spectral range was found, but our
features were designed to discern between 7 class. Still, the features indicated as of high
importance can be applied to discern these 3 classes. The multi-class classification for big
truck, car and van yielded the following accuracy:

— RF: 88.38%,

—  SVM with linear kernel: 92.90%,

—  SVM with quadratic kernel: 83.78%,
— SVM with RBF kernel: 89.59%

— DL: 88.88%.

The experiments in Erb (2007) were performed 50 times with 50% data randomly taken
for learning and the rest for testing, we performed our experiments also 50 times, in CV-
2 setting. Since the discernment between car and van classes is difficult, we decided to
perform the tuning of the classifiers again for this experiment. The best result, i.e. 92.90%
accuracy was obtained for SVM with linear kernel, for ¢ = 32, and the worst result was
83.78%, for SVM with quadratic kernel. This compares favorably to Erb (2007), where 83%
correctness was obtained for similar data, i.e. car, truck, and van at high speed, 50-70 km/h,
also for SVM.

Next, we selected the subset of our 7-class data to represent the following classes: big
truck, car, and motorcycle. These classes are much easier to discern, as in Alexandre et al.
(2015) the authors reported 93% correctness for their best setting for car, motorcycle, and
truck classes. The authors in Alexandre et al. (2015) do not report what vehicles are classi-
fied as truck, so we chose big track class, as we did for comparison with Erb (2007). The
features selected in this case were: Al4, A76, RollOff, SE11, B35, A34, SE14, A45, A26,
A35, EnAb4kHz, and B67. As we can see, features for discerning classes 3 (big truck), 5
(motorcycle), and 6 (car) are of high importance, as well as EnAb4kHz, also indicated for
big truck vs. car vs. van setting. We did not repeat classifier tuning for the purpose of this
experiment, and used the settings of the classifiers found in the tuning for multi-class classi-
fication for 7 classes, see Section 5.2.1. We obtained the following results for the multi-class
classifiers for big truck, car, and motorcycle:

—  RF:96.90%,

—  SVM with linear kernel: 98.14%,

—  SVM with quadratic kernel: 68.90%,
—  SVM with RBF kernel: 97.52%

— DL: 97.45%.

We performed our experiments 50 times with 66/33 random split of the data into the training
and testing part, as the authors in Alexandre et al. (2015) followed this setting. Our worst
result was again obtained for SVM with quadratic kernel. The best result, 98.14%, was
obtained again for SVM with linear kernel. This compares favorably to 93% obtained in
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Alexandre et al. (2015), for vehicles forced to drive at 50km/h, without gear change. In our
case, the speed was not controlled, but since our vehicles were recorded at a highway, in
rural area, we assume the speed was similar, or higher.

The results of comparison with other research show that our feature set works well, and
the features designed for the purpose of vehicle identification are well constructed.

5.4 Hierarchical classification

We continued the experiments with binary relevance approach to multi-label classification,
described in Section 5.2, and we performed hierarchical classification of our data. We again
worked on the data described in Section 5.1, so each item could represent single or plu-
ral classes. Since our experiments are based on audio data, we decided to group the data
into supergroups according to criterion that can be heard. Namely, the vehicle classes were
grouped into the following 3 groups according to the typical rotational speed of an engine:

— LowRot, low rotational speed - tractors, buses, small trucks, big trucks; this class was
further subdivided into 2 subclasses:

—  Bus + Truck, big trucks, small trucks, and buses - as these vehicles have
similar engines,
— Tractor, tractors;

—  MedRot, medium rotational speed - cars and vans,
—  HiRot, high rotational speed - motorcycles.

Each of our 7 classes constituted a leaf in this hierarchical classification. All classi-
fiers in this scheme are binary, trained using positive and negative examples for a target
class. We used again RF, DL and SVM with RBF kernel, as in experiments described in
Section 5.2. The data in training here were balanced through upsampling in the case of
unbalanced classes; in most cases positive examples were replicated. At each level, the
training was performed using examples representing siblings in this hierarchy. For instance,
negative examples for car were taken from van, taking only examples where car was absent,

Table 3 Precision and recall of each binary classifier in hierarchical classification for on-road data, using
10 best features in feature selection

Class DL RF SVM
precision recall precision recall precision recall
HiRot 75.0% 80.0% 58.3% 46.7% 66.7% 40.0%
MedRot 94.1% 97.0% 92.3% 90.9% 93.7% 89.4%
Car 61.4% 85.0% 67.2% 68.3% 56.7% 63.3%
Van 88.9% 77.4% 68.6% 77.4% 65.9% 87.1%
LowRot 81.7% 96.9% 80.9% 78.4% 81.1% 79.4%
Bus+Truck 100.0% 100.0% 66.7% 100.0% 66.7% 100.0%
Bus 94.4% 81.0% 100.0% 71.4% 92.3% 57.1%
Small truck 58.5% 92.3% 67.9% 73.1% 45.2% 53.8%
Big truck 73.5% 92.3% 60.9% 71.8% 62.8% 69.2%
Tractor 100.0% 100.0% 100.0% 66.7% 100.0% 66.7%
Average 82.8% 90.2% 76.3% 74.5% 73.1% 70.6%
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Fig. 6 F-measure and classification error for each binary classifier in hierarchical classification, using 10
best features in feature selection

and negative examples for van were taken from car, taking only examples where van was
absent. Negative examples for bus were taken from small truck and big truck (where bus
was absent), negative examples for small truck were taken from big truck and bus (where

Table 4 Precision and recall of each binary classifier in hierarchical classification, using features above the
threshold (0.5 mean decrease of Gini criterion) in feature selection

Class DL RF SVM
precision recall precision recall precision recall
HiRot 82.4% 93.3% 76.9% 66.7% 53.8% 46.7%
MedRot 95.5% 97.0% 92.3% 90.9% 92.4% 92.4%
Car 73.3% 73.3% 66.7% 60.0% 58.9% 55.0%
Van 78.4% 93.5% 67.7% 67.7% 71.4% 80.6%
LowRot 91.6% 89.7% 89.4% 86.6% 90.2% 85.6%
Bus+Truck 100.0% 100.0% 61.1% 100.0% 66.7% 100.0%
Bus 89.5% 81.0% 94.1% 76.2% 69.6% 76.2%
Small truck 64.7% 84.6% 67.9% 73.1% 54.8% 65.4%
Big truck 71.7% 97.4% 63.4% 66.7% 66.7% 71.8%
Tractor 100.0% 100.0% 100.0% 61.1% 100.0% 66.7%
Average 84.7% 91.0% 78.0% 74.9% 72.5% 74.0%
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Fig. 7 F-measure and classification error for each binary classifier in hierarchical classification, using
features above the threshold in feature selection

small truck was absent), negative examples for big truck were taken from bus and small
truck (where big truck was absent). Feature selection was applied before these experiments,
with 2 options as before: for 10 best features, and for features above the threshold (0.5 mean
decrease of Gini criterion). The results for 10 best features are shown in Table 3 and Fig. 6,
and the results for features above the threshold are shown in Table 4 and Fig. 7. The results
were estimated locally, as we have no full list of labels for each data item, i.e. in some cases
we cannot exclude classes other than the target class, so we cannot put such data through
hierarchical classification directly; this can be done only for fully labeled data, which is
very difficult because of incoming traffic.

As we can see, better results are obtained again for features above the threshold, and
the results are better at higher levels of the hierarchy. For the hierarchical classification, the
number of features left after threshold-based selection varied from 3 to 49; 3 features were
sufficient to discern bus from other classes from the bus+truck group, whereas 49 features
were needed to motorcycles from other classes.

5.5 Multi-label classification using WEKA-based frameworks
5.5.1 Problem transformation approach: MEKA

Apart from our experiments on multi-label classification using the binary relevance
approach and next hierarchical classification, we also performed multi-label classification
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Table 5 Accuracy of the multi-label classification using MEKA for our data, using binary relevance
approach (STruck - small truck, BTruck - big truck, MCycle - motorcycle)

Classifier Accuracy Accuracy per label

Bus STruck BTruck Van MCycle Car Tractor
RF 40.5% 75.3% 70.0% 75.5% 70.4% 75.1% 71.2% 78.6%
SVM-lin 35.9% 65.0% 63.8% 64.6% 69.8% 72.0% 66.8% 75.0%
SVM-quad 39.0% 68.1% 65.9% 67.3% 72.1% 74.5% 65.0% 72.4%
SVM-RBF 34.8% 72.9% 66.4% 68.4% 72.0% 74.9% 67.4% 77.2%
MLP 33.7% 71.5% 69.7% 63.6% 68.2% 75.3% 65.9% 72.4%

with MEKA (Read et al. 2016), which is a multi-label extension to WEKA (Frank et al.
2016). Because of difficulties with labeling the data for plural vehicles, we decided to take
single vehicle sounds and prepare mixes, calculated as the sample-by-sample average of the
two frames taken for mixing, separately for each stereo channel of these two frames. Such
a mix represented the classes taken for mixing (or one class, if both frames were from the
same class). Mixing was performed within each fold separately in CV-3. CV-3 scheme was
followed, as described in Section 5.2.1, with data for each particulary vehicle always put in
the same fold. Both channels of stereo audio data were used separately.

We used similar base classifiers as in our earlier experiments with binary relevance
approach, plus SVM with linear and quadratic kernel, with classifiers’ settings as obtained
from tuning performed in Section 5.2.1. Therefore, we had RF (with 300 trees), SVM with
linear, quadratic, and RBF kernel, and neural networks (multi-layer perceptron, MLP, with
2 hidden layers, 50 neurons each). Both binary relevance and label powerset approaches
were tested. The classification results are shown in Tables 5 and 6.

5.5.2 Algorithm adaptation approach: MULAN

We also decided to test the algorithm adaptation approach, available in MULAN library for
multi-label learning (Tsoumakas et al. 2011). We chose MLKNN algorithm, based on k-NN,
just to compare algorithm adaptation approach with problem transformation approach. We
obtained the following results:

— accuracy: 36.1%,

Table 6 Accuracy of the multi-label classification using MEKA for our data, using label powerset approach
(STruck - small truck, BTruck - big truck, MCycle - motorcycle)

Classifier Accuracy Accuracy per label

Bus STruck BTruck Van MCycle Car Tractor
RF 41.0% 72.6% 66.9% 71.2% 65.2% 74.5% 73.7% 79.7%
SVM-lin 39.3% 69.9% 67.3% 67.4% 68.7% 76.3% 72.2% 77.0%
SVM-quad 37.9% 71.9% 65.8% 67.2% 66.9% 75.5% 70.5% 75.9%
SVM-RBF 38.1% 68.0% 66.5% 69.2% 64.2% 78.6% 70.7% 75.7%
MLP 36.2% 68.2% 68.1% 64.2% 64.4% 71.9% 71.8% 74.4%
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— accuracy per label: bus 66.8%, small truck 66.9%, big truck 66.0%, van 70.7%,
motorcycle 71.0%, car 73.4%, tractor 75.7%.

As we can see, the results are similar to the outcomes of the problem transformation
approach.

6 Experiments: test bench data

The test bench recordings were altogether shorter than on-road data, but in this case we had
audio data with no accompanying other vehicles, so more audio frames were used. Also, in
on-road recordings we only had short segments of data per vehicle, as they were passing
quickly in front of the recorder, whereas here we had long continuous recordings for each
vehicle. The new recordings represent car and van data, which were difficult to discern for
on-road recordings. This is why we decided to perform recordings in controlled conditions.

6.1 Data

The test bench data used in our experiments contained 3853 frames representing the car
class, and 2222 frames for the van class:

—  Ford Focus: 1469 frames, car, engine: gasoline and LPG,

— Hyundai: 288 frames, car, Diesel engine,

— Renault Espace: 491 frames, car, engine: gasoline and LPG,
—  Smart ForFour: 885 frames, car, gasoline engine,

— Toyota Corolla Verso: 720 frames, car, Diesel engine,

— Daewoo Lublin: 187 frames, van, Diesel engine,

— VW Transporter, 2004 year: 556 frames, van, Diesel engine,
— VW Transporter 2007 year: 867 frames, van, Diesel engine
— Fiat Ducato: 612 frames, van, Diesel engine.

Again, each frame consisted of 330 ms of audio data. Video and OBD data were used for
ground-truth labeling.

For these data we performed binary classification for car and van classes, i.e. we trained
one classifier of each type (DL, RF, SVM), discerning between van and car. Additionally,
since these data represent vehicles with two types of engine, Diesel engine and gasoline
engine, we also decided to experiment with binary classification for the classes correspond-
ing to the engine type. Therefore, we again trained one classifier of each type (DL, RF,
SVM), discerning between Diesel and gasoline engine classes. We would like to emphasize
that audio data are a proper basis to perform such a classification, and this classification is
not feasible from video on-road data.

In these experiments again one frame constitutes one example, labeled as either car or
van, and also labeled as either Diesel engine or gasoline engine. The prediction error was
estimated through CV-9, with training and testing performed in such a way that the test-
ing examples represented one vehicle which was excluded from the training, i.e. data were
divided into nine folds, representing nine vehicles. Therefore, we could observe which
particular vehicles are easy or difficult to classify.

Example 2.1 (Ex. 2 continued) Let us imagine that we want to use the 37 seconds of the
dyno recordings we have from Example 2. All the 112 frames are already labeled as van. For
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the purpose of engine classification, the data need new labeling, namely as Diesel engine.
For the engine classification purposes we do not need van/car labeling, so we can simply
ignore this information when processing the data, and consider each frame as single-label
data item, representing Diesel engine.

6.2 Classification results

Car vs. van classification For the test bench data, we first performed classification for
classes van and car. This time we only needed one classifier to discern between these two
classes, i.e. a binary classifier with 2 classes: car and van. Again, RF, SVM (with RBF
kernel) and DL classifiers were applied. However, the results for RF and SVM were not
satisfactory. F-measure obtained for van vs. car classification, without feature selection, was
at a level of 60% for RF and even less for SVM; feature selection improved the results for
RF if features above the 0.5 threshold were used, but only by 2 percent points, and taking
10 best features even decreased the results (but improved for SVM, however they were
still below 60%). Therefore, these results are comparable with random choice. This is not
surprising, as these classes are very similar, and even the border between these classes can
be discussed.
The results for car vs. van classification for DL are as follows:

—  without feature selection:

— car: precision 100%, recall 96.4%, F-measure 98.2%,
— van: precision 94.2%, recall 100%, F-measure 97%,

— for top 10 features:

— car: precision 100%, recall 62.5%, F-measure 76.9%,
— van: precision 60.6%, recall 100%, F-measure 75.5%,

—  for features above 0.5 threshold:

— car: precision 100%, recall 94%, F-measure 97%,
— van: precision 90.6% recall 100%, F-measure 95.1%.

The corresponding confusion matrices for DL are shown in Table 7. These results show
that DL classifier works very well with such data, and feature selection only decreases the
results, especially when only 10 best features are kept. Apparently the data are too com-
plicated (and difficult to discern) to use a small set of features. Also, the background noise
coming from the roller drums drive may influence the recording, and alter the data. Still,

Table 7 Confusion matrices for

car vs. van classification for DL no feature selection car van
car 3715 138
van 0 2222

top 10 features
car 2409 1444
van 0 2222

features above 0.5
car 3623 230
van 0 2222
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Table 8 Confusion matrices for

engine type classification for DL no feature selection Diesel gasoline
Diesel 2994 236
gasoline 0 2845
top 10 features
Diesel 2911 319
gasoline 0 2845
features above 0.5
Diesel 2845 385
gasoline 0 2845

van examples are always correctly identified. Incorrectly classified examples represented
Ford Focus (104 out of 1469 examples classified as van), Renault Espace (22 out of 491
examples classified as van), and Smart ForFour (12 out of 885 examples classified as van)
for best classification results, i.e. without feature selection.

Diesel engine vs. gasoline engine classification For the test bench data we also per-
formed experiments on engine type classification. We only needed one classifier to discern
between Diesel and gasoline engines, i.e. a binary classifier with 2 classes: Diesel and gaso-
line. Again, RF, SVM results were low, comparable with random choice or even worse for
gasoline engine identification. DL classifier again performed very well, and the results for
this classification are as follows:

—  without feature selection:

— Diesel engine: precision 100%, recall 92.7%, F-measure 96.2%,
— gasoline engine: precision 92.3%, recall 100%, F-measure 96%,

—  for top 10 features:

— Diesel engine: precision 100%, recall 90.1%, F-measure 94.8%,
— gasoline engine: precision 89.9%, recall 100%, F-measure 94.7%,

—  for features above 0.5 threshold:

— Diesel engine: precision 100%, recall 88.1%, F-measure 93.7%,
— gasoline engine: precision 88.1%, recall 100%, F-measure 93.7%.

Detailed confusion matrices are shown in Table 8. Misclassified examples represented
Hyundai i30 (21 examples), Toyota Corolla Verso (139 examples) Daewoo Lublin (24
examples), and VW Transporter 2007 (52 examples), all having Diesel engines classified
incorrectly as gasoline engines. All gasoline engines were classified correctly.

As we can see, the results for engine classification are very good. Feature selection
decreases the results in both cases, but only by a few percent points. This illustrates that DL
can discern engines, and this is what we actually expected, as the difference between the
Diesel engine and the gasoline engine can be heard by a listener, too.

7 Summary and conclusions

The features proposed in this paper for audio-based classification of vehicle type yield good
results, as the error is below 15% for binary classifiers in most cases (with the exception
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of car) for on-road data, and in many cases improves after feature selection (below 5%,
except bus for SVM and DL, and van for SVM), for 7 classes. This compares favorably with
other research, performed for 3-4 classes for similar data. We applied the binary relevance
strategy, which allows classification of multi-label data we used, i.e. representing multiple
vehicles in a single audio frame. Best results were obtained for deep learning neural net-
work, and hierarchical classification improves the results at higher hierarchy levels. We also
performed research on data limited to 3 classes, using multi-class approach for single-label
data. The comparison of our results and the results obtained by other researchers for com-
parable sets of classes shows that our feature set works better in classification tasks. Still,
our results can be improved, and we hope to get better results when more data are collected.
Also, taking Doppler effect into account may further improve the results, see Berdnikova
et al. (2012), where data were compared with prerecorded sounds.

The results obtained for test bench recordings show very good discernment between car
and van classes for these data (much better than car vs. van discernment in hierarchical
classification of the on-road data), and also showed good discernment of engine type using
DL. We would like to underline that engine type classification cannot be performed from
video data, and it can be useful in noise assessment tasks.

For test bench recordings, feature selection only decreases the results, and if only ten best
features are kept, the discernment between car and van classes deteriorates to a great extent.
This illustrates that these classes are indeed difficult to discern, and the set of features must
be big enough to catch the small differences between these classes.

In future research, we can also include subclasses not investigated in this research (scoot-
ers, emergency vehicles etc.). Other factors than vehicle type can also be taken into account,
including vehicle speed, acceleration, tires, etc. Also, video data can be used together with
audio data in the vehicle classification task, as video-based vehicle classification is quite a
mature domain (see Advanced Driver Assistance Systems (ADAS) (2016) and Hadi et al.
(2014)), if video-based classification is applicable.
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