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Abstract We provide a novel framework based on a systematic treatment of data inconsis-
tency and the related concept of data reliability in integrated databases. Our main contribution
is the formalization of reliability assessment for historical data where redundancy and incon-
sistency are common. We discover data inconsistency through the analysis of relationships
between existing reports in the integrated database. We present a new approach by defining
properties (rules) that a good measure of reliability should satisfy. We then propose such
measures and show which properties they satisfy. We also report on a simulation-based study
of the introduced framework.
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1 Introduction

Continued research on Data Integration Systems aims to provide users with uniform data
access and efficient data sharing. The ability to share data is particularly important for
interdisciplinary research, where a comprehensive picture of the subject requires large amounts
of historical data from disparate data sources from a variety of disciplines. For example,
epidemiological data analysis often relies upon knowledge of population dynamics, climate
change, migration of biological species, drug development, etc. As another example, consider
the task of exploring long-term and short-term social changes, which requires consolidation of
a comprehensive set of data on social-scientific, health, and environmental dynamics.

Nowadays, there are numerous historical data sets available from various groups worldwide
such as the Institute for Quantitative Social Science and the Center for Geographic Analysis at
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Harvard, Great Britain Historical GIS at Portsmouth, the International Institute of Social
History in Amsterdam, the CLIO World Tables at Boston University, and World-Historical
Dataverse at the University of Pittsburgh. Notable prior campaigns of data collection and
analysis include the Integrated Public Use Microdata Series (IPUMS, at Minnesota), Electronic
Cultural Atlas Initiative (ECAI), the Alexandria Digital Library (ADL), and others.

While the aforementioned initiatives indicate a considerable effort to utilize diverse histor-
ical data sources, researchers are nowhere near to having a global historical data repository
against which to perform comprehensive socio-scientific analysis and to test emerging large-
scale theories. The existing data sources are principally oriented toward regional comparative
efforts rather than global applications. They vary widely both in content and format. Scalable
methods for integration of the existing and emerging historical data sources would considerably
advance global data utilization. In addition to resolving data heterogeneity, such methods
should support efficient data curation strategies based on data reliability assessment.
Historical data sources may have different levels of reliability for many reasons, e.g., issues
with the primary sources of information, faulty data collection methodology, etc. Integration of
the historical data sources may also face data redundancy. It is common to havemultiple reports
about the same event within overlapping time intervals. For example, wemay have hundreds of
reports from different authorities about cases of measles in Los Angeles in 1900. We may also
have multiple reports on historical statistics for overlapping locations. A cumulative report on
the total number of measles cases for the entire state of California may differ considerably from
the available reports on the total number of measles cases in individual California cities.
Another challenge is overlapping names: evolving concepts may be reported under different
names and categories co-existing at different time intervals. For example, many 19th century
reports on yellow fever were actually referring to cases of hepatitis. Note that historical data
redundancy does not necessarily imply data inconsistency. But even if the overlapping histor-
ical reports are accurate, data redundancy prevents researchers from obtaining reliable aggre-
gate query results. Meanwhile, data inconsistency is caused by inaccurate reports.

In this paper we provide a systematic treatment of data redundancy and inconsistency and the
related concept of data reliability. We explore how data inconsistency can be utilized for data
reliability assessment. We consider an approach to discover data inconsistency through the analysis
of relationships between existing reports in an integrated database. We present a new approach by
defining rules that a good measure of reliability should satisfy. We then propose such measures and
showwhich rules they satisfy. Ourmain contribution is the formalization of reliability assessment for
historical data where redundancy and inconsistency are common. But actually, these issues reoccur
in data fusion for any type of data. Hence we believe that our approach has wide applicability.

The plan of the paper is as follows. Section 2 reviews related works with a brief background
on inconsistency measurement. In Section 3 we provide a motivating example of historical
data redundancy and inconsistency. Section 4 presents our formalization. In Section 5 we
introduce our measures of reliability and some desirable rules that any measure of reliability
should satisfy. Section 6 contains our simulation-based study illustrating the behavior of our
reliability measures. We conclude the paper in Section 7.

2 Related work

The problems of data redundancy and inconsistency considered in this paper are of general
applicability to large-scale Data Integration Systems. Data Integration Systems must address
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two major challenges: (1) heterogeneous data and (2) conflicting data. Resolving data
heterogeneities has been the focus of active research and development for more than two
decades (Brodie 2010; Haas 2007). There are numerous tools for efficient mapping of data
sources in a homogenous schema with proper data cleaning (eliminating typos, misspellings,
and formatting errors), standardization of names, conversion of data types, duplicate elimina-
tion, etc. A separate body of research deals with Web data integration and wrapper/mediator
architectures, which includes our work on accessing heterogeneous Web data sources
(Zadorozhny et al. 2005, 2008; Zadorozhny and Raschid 2007).

The amount of research in the area of data conflict resolution and querying inconsistent data
is also considerable. (Dong and Naumann 2009; Bleiholder and Naumann 2009) and (Bertossi
2006; Bertossi and Chomicki 2003) provide a comprehensive review of the current state of the
art. Early research on handling inconsistencies was mostly theoretical and did not relate this
problem directly to data integration (Imelinski and Lipski 1984). Data inconsistency as a
key integrity constraint violation was considered in (Agarwal et al. 1995). Consistent query
answering that ignores inconsistent data, thereby violating integrity constraints, was introduced
in (Bry 1997). This approach is related to more recent research on query transformation
for consistent query answering (Wijsen 2009). An alternative approach is based on
inconsistent database repair, producing a minimally different—yet consistent—database
that satisfies integrity constraints (Staworko and Chomicki 2010; Bohannon et al.
2005; Wijsen 2005). Our work on information integration based on crowdsourcing and
conflict-aware data fusion represent a new research direction in this area (Zadorozhny et al.
2013; Zadorozhny and Hsu 2011).

The idea that a set of formulas may be considered more inconsistent than another set was
introduced in the pioneering paper (Grant 1978). This work was then taken up again in the
1990s as the handling of inconsistency became an important issue in databases. In particular,
the work was recast as the problem of assigning an inconsistency measure to a set of formulas,
a knowledge base. Over the last 20 years researchers have proposed numerous inconsistency
measures for knowledge bases. A good review of the research up to 2005 appears in (Hunter
and Konieczny 2005). Since then both additional inconsistency measures as well as properties
that such an inconsistency measure should satisfy have been studied. The following are some
of the important papers in this field: (Grant and Hunter 2006, 2011; Hunter and Konieczny
2010; Mu et al. 2011a, b), and (Grant and Hunter 2013). For our purpose there is no need to
give the details of these papers.

In this section we briefly summarize some of this work, using primarily (Grant and Hunter
2011) as the reference. An important conclusion of that paper is that there is no single
definition of inconsistency measure that is best in all circumstances. Although this previous
inconsistency measure work deals primarily with symbolic, rather than numeric data, its
conclusion is applicable to our case as well; namely, that we cannot expect to have a single
definition for inconsistency, and hence reliability, that is always best.

A knowledge base is usually represented as a finite set of formulas in some appropriate
language such as propositional logic. Let DB={a1, …, an} be a knowledge base. An
inconsistent subset of DB is any subset S of DB that is inconsistent in classical 2-valued
logic. A minimal inconsistent subset S is one that has no proper inconsistent subset. The free
formulas of DB are all the formulas that are not in any minimal inconsistent subset. Intuitively
this means that a free formula does not participate in any inconsistency. For a very simple
example, let DB={a, b, ~a ∨~b, b ∨ c}. Then S={a, b, ~a ∨~b} is a minimal inconsistent
subset and Free(DB)={b ∨ c}.
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Before defining some inconsistency measures, let us consider what properties such a measure
should satisfy. Clearly, an inconsistency measure should be a function that assigns a nonnegative
real number to every knowledge base. A consistent knowledge base should be assigned the
measure 0 and an inconsistent knowledge base a measure greater than 0. We would like a
knowledge base DB that is more inconsistent (whatever that means) than DB’ to have a higher
measure. The problem is to determine what it means for DB to be more inconsistent than DB’.

Inconsistency measures can be defined in different ways. One approach gives an absolute
inconsistency value to each knowledge base, while another approach provides an inconsisten-
cy value that is relative to the size of the knowledge base. Consider the following situation. A
database DB is inconsistent and has measure i. Suppose now that we add a formula a that does
not cause any new inconsistency, that is a is free in DB ∪ {a}. Both DB and DB ∪ {a} should
have the same inconsistency measure because in absolute terms the inconsistency of the
database does not change. But the addition of a increases the size of the knowledge base;
hence relative to the size of the knowledge base the inconsistency of DB union {a} should be
less than the inconsistency of DB. Most research on inconsistency measures uses the absolute
approach, but if we are interested in calculating the reliability of a database, the relative
approach, where the database size is taken into consideration, is a better way to go. It seems
reasonable to consider a large database with a few inconsistencies to be more reliable than a
small database with the same number of inconsistencies.

In this brief review we can only mention a few concepts from the general theory of
inconsistency measures that are particularly relevant to our situation. The concept of minimal
inconsistent subset is particularly important. Such sets capture the essence of the inconsis-
tencies. One common measure counts the number of minimal inconsistent subsets. But that is
an absolute inconsistency measure. Note how this measure does not change the inconsistency
when a free formula is added.

The reviewed work does not carry over precisely to our situation because we are interested
not so much in the inconsistency of a DB but in the inconsistency of a formula within the DB.
However, we will use some of the concepts in our framework with the caveat that measuring
inconsistency in a historical database with summary numeric values presents challenges that
are different from measuring the inconsistency of a set of propositional logic formulas.

3 Historical data redundancy and inconsistency: a motivating example

Historical data reports on events occurring within various time intervals. As a result, it may
include data redundancy that prevents researchers from obtaining the correct answers to
queries on an integrated historical database. Basically, there are three major types of redun-
dancy that may occur between the historical reports: (1) temporal redundancy, (2) spatial
redundancy, and (3) naming redundancy. We use the following examples for illustration
purposes only. They do not represent any actual disease occurrences.

Temporal Redundancy. It is possible to have multiple concurrent reports about the same
disease in the same location within overlapping time intervals. Figure 1 shows an
example of a historical epidemiological database including data references for the total
number of cases of measles in NYC (tuples t1, t4). We cannot simply add the numbers of
t1 and t4 to find the total number of cases of measles from 1900 to 1930, because t1 and
t4 have overlapping time intervals. There is a temporal redundancy between t1 and t4.
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Spatial Redundancy. We may also have multiple reports on disease statistics for overlap-
ping locations. Figure 1 also shows an example of two data references for the total number
of cases of smallpox in the state of NewYork (tuple t2), and the corresponding total cases of
smallpox in New York City (tuple t3). Although the time intervals of t2 and t3 do not
overlap, we cannot simply add up their corresponding numbers to obtain the total number
of smallpox cases in the state of New York. Tuple t2 refers to the total number of smallpox
cases reported for the state of New York. Meanwhile, it is unknown if this includes all New
York City cases reported in t3. In any case, t3 does not include smallpox cases in NewYork
State outside of New York City. There is a spatial redundancy between t2 and t3.
Naming Redundancy. Evolving concepts may be reported under different names and
categories co-existing at different time intervals. For example, many 19th century reports
on yellow fever were actually referring to cases of hepatitis. Beginning in 1947, viral
hepatitis was classified as hepatitis A and hepatitis B; that distinction was not immediately
reflected in the epidemiological records.

Historical data redundancy does not necessarily imply inconsistency. Data inconsistency is
caused by inaccurate reports. Analyzing relationships between existing reports in the redun-
dant database can discover such inconsistency. For example, several reports may reflect
different numbers of diseases for the same location and time interval. Another case of
inconsistency is illustrated in Fig. 2a. Here, report R1 reflects a larger number of measles

Fig. 1 Example of temporal and spatial redundancy

Fig. 2 Redundant and inconsistent databases
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cases in NYC (700) for a smaller time interval than report R2 (reporting only 500 cases).
Discovering inconsistency may be challenging in a large-scale historical database. Figure 2b
illustrates a more complex case of inconsistency within four reports as shown below. The total
number of R1 and R3 (550) should not be greater than the number reported in R2 (500). The
number reported in R3 (250) should also be smaller than the number or R4 (200).

In order to utilize the integrated historical data properly we will have to perform efficient
data reliability assessment. Such assessment is based on an analysis of data inconsistency. In
the next section we elaborate on our approach to discover and measure data inconsistency.

4 Formalization of inconsistency

We now define formally the concepts needed to assess reliability via inconsistency. We start by
defining the types of tuples we consider. In this framework we proceed to define an important
case of inconsistency. We will be dealing with a set of objects that belong to some category,
such as Disease, named regions of space, time intervals and real numbers (values).

Category. A category contains a partially ordered set of names of concepts within the
category. Consider the category to be Disease. The names then are specific diseases such
as flu, stomach ulcer, GI disease, etc. We write stomach ulcer≤GI disease because every
stomach ulcer is a GI disease; this is the basis of the partial ordering. We extend the≤
relation to sets of names as follows: IfG andH are sets of names then we writeG≤H if for
every name g ∈ G there is a name h ∈ H such that g≤h.
Space. Space S consists of a finite set of points; every subset R of S is a region but we will
use names for the regions such as Pittsburgh, New York City, Pennsylvania. The partial
ordering here is the subset relation: Pittsburgh ⊆ Pennsylvania.
Time.We fix a temporal reference system T to consist of nonnegative numbers in a range
[0,M]. A time point t ∈ T and a time interval [s,e]={t ∈ T | s≤t≤e}. The subset ordering
on time intervals is as follows: [s1,e1] ⊆ [s2,e2] if s2≤s1 and e1≤e2. This means that every
time point in [s1,e1] is also in [s2,e2].

This subset ordering can be extended to unions of intervals. Let I1 and I2 be such
unions. Then I1≤I2 if every point in an interval in I1 is in an interval in I2.
Value. All real numbers.

Next we define the concept of a database that contains specific types of tuples using
the object types just given. In order to simplify notation we restrict the concept of tuple to
a specific type of 4-tuple.
Tuple. A tuple is a 4-tuple <category name, region, time interval, value>. For example:

id1 ¼< measles;NYC; 1900; 1920½ �; 700 > is a tuple:

We will sometimes use identifiers to identify tuples, as shown above. We will also
identify tuple components by writing abbreviations for the names of components: id[cat],
id[reg], id[int], id[val]. Hence id1[reg]=NYC.
Database. A database is a finite set of tuples.

For the semantics we define the consistency of a database. We start with the consis-
tency of a pair of tuples.

414 J Intell Inf Syst (2016) 46:409–424



Pairwise tuple consistency. A pair of tuples id1=<c1, r1, i1, v1> and id2=<c2, r2,
i2, v2> is (tuple) consistent if the following condition is satisfied:

For 1≤ j≠k≤2 if cj≤ck; r j⊆rk; and i j⊆ik then vj≤vk:

Pairwise database consistency. If every pair of tuples is consistent in DB then we say that
DB is pairwise consistent.

While pairwise database consistency is a useful concept that can be checked relatively
fast, it is not the whole story about the consistency of a database. The problem is that
inconsistency may occur when multiple tuples are taken together. Consider the following
simple example.

Example 1 DB1: id1=<c,r,[2,4],20>, id2=<c,r,[5,7],30>, and id3=<c,r,[1,8],40>.
This DB contains just three tuples where c and r are fixed values. It is pairwise

consistent but intuitively it is not consistent because taken together 20+30>40,
even though [2,4] ∪ [5,7] ⊆ [1,8].

Note how the category and region values are the same for all three tuples.
Suppose we change a region so that the new database, DB2 contains a new
region r′ where r ⊆ r′.

Example 2 DB2: id1=<c,r,[2,4],20>, id2=<c,r,[5,7],30>, and id3=<c,r′,[1,8],40>.
DB2 is still inconsistent. But if r is not a subset of r′ then DB2 becomes

consistent because we cannot compare the values for different regions.
Hence to completely characterize consistency we need to consider all

dimensions: category, region, and time interval. Finding all cases of in-
consistency is a complex task. In this paper we define only the type of
inconsistency that appears to be the most common one in applications,
namely the case where the category and region values are the same for all
tuples and the consistency issue involves time intervals only. To simplify
matters we also avoid a certain kind of overlap on time intervals that we
explain later.

We start with some definitions. Let t1 = <cat1,reg1,int1,val1> and t2 =
<cat2,reg2,int2,val2> be 2 tuples.

Pairwise non-time overlapping. A set of tuples is pairwise non-time overlapping if
for every pair of tuples t1 and t2, int1 ∩ int2 = ∅.
Time-included. Let A and B be sets of tuples. A is time-included in B if

∪ n
i¼1 inta i ⊆ ∪ m

j¼1 intb j

Now we define a special type of inconsistency using the concepts just given.
There are other types of inconsistencies as we will discuss later. However, this is the
only type of inconsistency that we will deal with; so for the purpose of this paper that
is what we define as an inconsistency.
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Inconsistent DB. DB is inconsistent if there exist two pairwise non-time overlapping
sets of tuples in DB, A and B, such that A is time-included in B, and
∑i=1

n va_i>∑j=1
m vb_j,.

This is exactly the kind of situation we had in DB2. Now, given such an
A and B, we say that the pair <A, B> is an inconsistent pair. We call <A,B>
a minimal inconsistent pair if there are no sets A′ and B′ such that <A,B> ≠
<A′,B′>, <A′,B′> is an inconsistent pair, A′ ⊆ A and B′ ⊆ B. We say that
<A,B> is a mip. We say id is a member of a mip <A,B> ( we use the
notation id ϵ<A,B>) to mean that either id ϵ A or id ϵ B for such a minimal
inconsistent pair of sets. For a set of ids C, C ⊆ <A, B> if for every id ϵ C,
id ϵ<A,B>.

A crude measure of inconsistency is to count the number of minimal
inconsistent subsets of DB. If we are interested in the sizes of the sets A
and B the appropriate measure is to count ∑<A,B> ∈ MI(DB) 1/|A ∪ B|, so that
if inconsistencies require larger sets of tuples their measure is diminished.

We conclude with an example of an inconsistency involving time intervals
that is not covered by our definition.

Example 3 DB3: id1=<c,r,[2,4],20>, id2=<c,r,[3,7],30>, and id3=<c,r,[2,7],60>.
Intuitively, DB3 is inconsistent because according to the first two

tuples, the maximum value for the interval [2,7] cannot be greater than
50. But the first two tuples are time-overlapping; hence our definition
of inconsistency does not apply. Note that we also did not consider the
case where there are differences in the category or region. A complete
analysis of all possible inconsistencies is beyond the scope of this paper
where our interest is in finding typical inconsistencies in historical
databases and using them to define reliability.

5 Reliability

In this section we define ways of measuring the reliability of tuples in a database. As
our measure involves the presence of inconsistencies, it is more convenient to define a
measure for the unreliability of a tuple. This will not be a problem because unreli-
ability will be normalized to a value between 0 and 1. Hence writing r(id) (resp.
u(id)) for the reliability (resp. unreliability) of a tuple id, knowing u(id) we simply
assign r(id)=1-u(id).

We start dealing with reliability by devising properties that a reasonable definition of
reliability should satisfy. Then we will give a definition for reliability (actually many defini-
tions on account of parameters) that satisfies some of these properties. As mentioned in
Section 4 the relevant concept of inconsistency is the mip which is what we will use.

5.1 Properties of (un)reliability

In our setup we have a database DB and a tuple id. The first property deals with the extreme
cases: when a tuple is completely reliable or completely unreliable.
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P1(a). u(id)=0 if and only if id ∉ mip for any mip of DB.
Thus internally we consider a tuple completely reliable if and only if it is not in any

inconsistency.
P1(b). u(id)=1 if and only if id ∈ mip for every mip of DB.

A tuple that is a part of every inconsistency has a maximal (normalized) unreliability.
For the following three properties we consider what happens to a tuple id in DB when

a new tuple id′ is added to DB to obtain DB′. We write u′(id) for the unreliability of id in
DB′.
P2. If id′ ∉ mip for any mip of DB’ then u(id)=u′(id).

Thus the reliability of a tuple does not change when a new tuple is added that is
consistent with DB.
P3(a). If id′ ∈ <A,B> for some mip of DB′ but {id,id′} ⊄ mip for every mip of DB′ then
u(id)=u′(id).

Here the new tuple is inconsistent with DB but no mip of DB′ contains both id and id′.
So the inconsistency is not directly related to id. In this case the reliability of the tuple
does not change.
P3(b). If id′ ∈ <A,B> for some mip of DB′ but {id,id′} ⊄ mip for every mip of DB′ then
u(id)>u′(id) unless u(id)=0 in which case u′(id)=0.

In this case the unreliability of the tuple decreases relative to the whole database that
has just become more inconsistent.

Clearly, P3(a) and P3(b) are incompatible.
P3(c) If there exists id″ such that {id,id″} ⊆ <A,B> for some mip of DB, and {id′,id″} ⊆
<A′,B′> for some mip of DB′ and {id,id′} ⊄ mip for any mip of DB′ then u(id)>u′(id).

In this case the inconsistency relationship between id and id′ is due to a third
tuple in an indirect way. In a sense P3(c) is between P3(a) and P3(b). It states
that the unreliability of a tuple decreases in this type of indirect inconsistency
between id and id′.
P4. If {id,id′} ⊆ <A,B> for some mip of DB′ then u(id)<u′(id) unless u(id)=1 in which
case u′(id)=1.

So if the inconsistency of a new tuple is related to id then the unreliability of id
increases.
P5. The order in which the tuples are inserted makes no difference in the calculation of
unreliability.

As we introduce a measure for unreliability we wish to give the user choices
about how to do the calculation. Those choices are based on application require-
ments. For example, a tuple may be a member of several mips; the more mips
there are the higher the unreliability should be. However, we may want to count
not just the number of mips but also the amount of inconsistency in each mip.
Consider, for example the DB1 introduced in Example 1. The inconsistency is
due to the fact that

id1 val½ � þ id2 val½ � ¼ 50 > id3 val½ � ¼ 40:

Suppose we replace id3 by id4=<c,r,[1,8],35> and let DB′={id1, id2, id4}.
In the same way as before, choosing A′={id1,id2} and B′={id4} produces the
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minimal inconsistent pair <A′,B′>, but now id1[val]+id2[val]=50>id3[val] =35.
The difference, 50–35, is bigger than the difference, 50–40. So, intuitively, the
inconsistency of <A′,B′> should be greater than the inconsistency of <A,B> even
though there is only a single mip in both cases. . Recall now that an inconsis-
tency is caused by the condition that ∑i=1

n va_i - ∑j=1
m vb_j>0. We will use the

notation shorthand A-B for this difference and we call it the size of the incon-
sistency for that mip.

5.2 Methods to calculate unreliability

We now suggest several different ways of calculating the unreliability of a tuple. We use the
following notation:

TotalMips the number of mips in DB
idTotMip the number of mips of which id is a member
MIP is a user-defined maximal value for the number of mips;
TotalDiffs the sum of the sizes of the mips in DB
idTotDiff the sum of the sizes of the mips for id
DIFF is a user-defined maximum value for the sum of all sizes of the inconsistencies of

the mips.

In general we allow the user to determine the relative importance of the number of mips that
a tuple participates in and the sizes of the inconsistencies by choosing two nonnegative
parameters α and β such α+β=1.

Method 1 User defined maximal values.
Consider a tuple id. We define

u idð Þ ¼ αmin 1; idTotMip=MIPð ÞÞ þ β min 1; idTotDiff =DIFFð Þð Þ: ð1Þ

Next we show that this definition satisfies some of the rules given above.

Theorem 1 The definition of unreliability given in (1) satisfies the properties P1(a), P2, P3(a),
P4, and P5 independently of the chosen parameters.

Proof P1(a). Clearly, u(id)=0 if and only if idTotMip=0 and idTotDiff =0 which is the
case only if id ∉ mip for any mip.

P2. Adding an id′ ∉ mip for any mip of DB′ does not change any value in (1).
P3(a). If id′ ∈ <A,B> for some mip of DB′ but {id,id′} ⊄ mip for any mip of DB′ again, no
value changes in (1).
P4. If {id,id′} ⊆ <A,B> for some mip of DB′ then both idTotMip and idTotDiff increase
when u′(id) is calculated, hence u(id)<u′(id).
P5. Clear from the definition.

The previous method requires the user to choose maximum values. There is no such
requirement for the other method.
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Method 2 The values for the number of mips and the size of each are used separately.
This method is similar to Method 1; however, we use the maximal values from the DB

itself. The formula corresponding to (1) is

u idð Þ ¼ α idTotMip=TotalMipsð Þ þ β idTotDiff =TotalDiffð Þ: ð2Þ

This is a normalized definition. Now we show which rules are satisfied by this definition.

Theorem 2 The definition of unreliability given in (2) satisfies the rules P1(a), P1(b), P2,
P3(b), and P5 independently of the chosen parameters.

Proof:

P1(a). Same as for Method 1.
P1(b). Both fractions equal 1 and α+β=1.
P2. Similar to the proof for Method 1.
P3(b). If id′ ∈ <A,B> for some mip of DB′ but {id,id′} ⊄ mip for any mip of DB′, then both

TotalMips and TotalDiffs increase.
P5. Same as for Method 1.

Note that P4 need not hold because the new tuple may be in several newmips, in addition to
the one with id, so TotalMips and TotalDiffs may increase substantially. Figure 3 shows an
example of unreliability assessment using Method 2 for a simple inconsistent database with
three tuples R1, R2 and R3.

5.3 Internal versus external reliability

In general, we may consider two types of reliability: internal and external. The latter deals with
issues outside of the database, such as prior knowledge concerning the reliability of the source
providing the tuple. In this paper we deal only with internal reliability: how a tuple is involved
in inconsistencies. Here we outline how both internal and external reliabilities could be used. If

Fig. 3 An example of unreliability evaluation
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the external reliabilities for the tuples are predefined, then again we may allow a user to
determine the importance of each. By using both reliabilities and nonnegative parameters γ
and δ such that γ+δ =1, we define

comb u idð Þ ¼ γ int u idð Þð Þ þ δ ext u idð Þð Þ:
In fact, if the external reliabilities are given first, these values may be used to compute the

internal reliabilities, as long as it is made clear that this is not “pure” internal reliability. The
way to use external reliabilities in this sense is to apply them in the computation of idTotDiff .
We demonstrate how this can be done in the example DB1 of Example 1. Suppose that the
external unreliabilities are as follows: eu(id1)=.1, eu(id2)=.5, eu(id3)=.9. So id1 is more
reliable than id2 which is more reliable than id3. Then when we compute the size of a mip for
a tuple, we multiply it by the external unreliability of the tuple. So for id1 the size will be .1×
10=1, but for id2 the size will be .5×10=5, and for id3 the size will be .9×10=9.

A thorough study of the proper utilization of external reliability is outside of the scope of this paper.

6 Simulation-based study

We performed a simulation-based study to explore the behavior of the inconsistency and
unreliability measures introduced in previous sections. For this study we used MATLAB 2014
running on MacBook Pro with 2.7 Ghz Intel Core i7 and 16GB 1600 MHz DDR3 memory.
Figure 4 explains the study set up. We used report redundancy configuration with full
subsumption, i.e., assuming that in the case of overlapping reports, the time interval of one
report lies within the time interval of another report. Figure 4 (upper left part) shows an
example of such a configuration with a report R1 subsuming reports R2 and R3. This
configuration can be represented as a subsumption tree with the root at the bottom to follow
the report configuration, as shown in Fig. 4 (upper right part). It is a binary tree (fanout =2)
with one layer of non-root nodes. For each report corresponding to a root node in a
subsumption tree (R1 in our example) we set a base reported value (700 in Fig. 4). Values
of the subsumed reports (R2 and R3 in Fig. 4) were set as base value plus a step value; for
example, the step value for R2 is 750–700=50. While performing the experiments we

Fig. 4 Explanation of configurations for experiments
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generated base and step values for different redundancy configurations using a normal
distribution. Figure 4 (lower part) shows the parameters of the normal distributions that we
used in our experiments.

Altogether we used the three redundancy configurations (subsumption trees) shown in
Fig. 5. Each of the configurations is a report (tuple) subsumption tree with different fanouts
and number of layers. Each root tuple was assigned a normally distributed value with mean of
100 and standard deviation of 10. Values of non-root tuples were generated adding a step value

Fig. 5 Redundancy configurations for experiments

Fig. 6 Aggregate database inconsistency dynamics
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to the root value. Step values were also distributed normally with mean ranging from 1 to 10 to
100 and with standard deviation 5. This way we introduced different probabilities of incon-
sistencies among the tuples: a larger step increases the probability of an inconsistency to occur.
For each setting we ran 100 experiments to assess aggregate system dynamics.

Figure 6 shows the behavior of TotalMips and TotalDiffs measures for different configura-
tions from Fig. 5 and different step distributions. As we observe from the percentile plots, the
first configuration (fanout=12) demonstrates very stable behavior for step=100. This can be
credited to the fact that each subsumed report combined with the root report forms a mip. Thus,
practically each random run resulted in 12 mips. For smaller steps we observe a higher number
of mips due to various combinations of reports contributing to longer mips. Similar trends are
observed for the other two configurations with a more stable behavior for step =10, which
indicates that shorter mips are generated due to step accumulation via several layers in the
subsumption tree. This trend is consistent with TotalDiffs dynamics reflecting the impact of
larger steps and multiple layers in the tuple subsumption hierarchy on the distribution of mip
sizes.

Figure 7 illustrates the behavior of the two unreliability measures (Method 1 and Method 2
from Section 5.1) versus α and β parameters (α+β=1) for different configurations and step
distributions. For Method 1 (upper three plots) as we increase α (i.e., increasing the impact of
the number of mips and reducing the impact of their sizes) for configuration 1 (fanout=12) we
observe a sharp increase of unreliability for the smaller steps, which is consistent with our
observations in Fig. 7, since smaller steps contribute a higher number of mips due to a larger

Fig. 7 Unreliability dynamics
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number of reports involved in a higher number of longer mips. Meanwhile, this trend is
opposite for step=100, which becomes even more obvious in configurations with a larger
number of layers. For Method 2 (lower three plots) the trends are quite different. Besides, the
unreliability values are also smaller, leading to the conclusion that Method 2 is more tolerant of
inconsistency and can be used in less sensitive unreliability scenarios. In future work we will
explore the applicability limits of different unreliability assessment methods in more detail.

7 Conclusion

We formalized reliability assessment for historical data where redundancy and inconsistency
are common. We performed integrated data reliability analysis exploring data redundancy and
to discover data inconsistencies so as to provide automatic reliability assessment. We intro-
duced a new approach to discover data inconsistency through the analysis of relationships
between reports in the integrated database. First, we defined properties that a good measure of
reliability should satisfy. We then proposed such measures and showed which properties they
satisfy.

Our simulation-based study demonstrated trends in the behavior of different unreliability
and inconsistency measures. We observed that different methods can be used and tuned up for
application scenarios that vary with respect to their tolerance to data inconsistency and
unreliability in an integrated information repository. We plan to explore the applicability limits
of different unreliability assessment methods.

In future work we also plan to extend the proposed framework to handle more general cases
of inconsistency and unreliability. This, in particular, includes situations with the subsumption
of overlapping reports, as well as overlaps in other categories (such as any combination of
time, space and names).
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