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Abstract This paper presents an RMS based ripple sensor
for testing of fully integrated voltage regulators. A DC
signal which is proportional to the input ripple amplitude
is generated. Final digital pass/fail signal is obtained with
a clocked comparator. The sensor can detect a peak-to-
peak ripple voltage of up to 50 millivolts on the 1.2 V
supply rail and has 220 MHz bandwidth. The sensor is
designed using IBM 90 nm CMOS technology and its
functionality is verified in Cadence Virtuoso simulation
environment.
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1 Introduction

Switching voltage regulators form the main building
blocks of power management circuits in any contempo-
rary system on chip (SOC) design due to their high cur-
rent density and efficiency. However, the presence of out-
put voltage ripple associated with continuous switching is
a serious concern. Though this problem can be mitigated

through the use of large, off-chip capacitors or by utiliz-
ing hybrid systems, it remains a key parameter that should
be monitored, especially as supply voltages continue to be
reduced [6, 9].

More importantly, there is an emerging trend toward
integrating voltage regulators with SOC die/packages to
improve efficiency and form factor [2]. This necessitates
the use of metal-insulator-metal capacitors and package
inductors for signal filtering which suffer from high effec-
tive series resistances and DC resistances. Designers are
also forced to use small inductor and capacitor values to
reduce the resulting footprint. Furthermore, performance
of on-chip passive elements is greatly susceptible to pro-
cess variations. Finally, voltage regulators are required to
keep ripple at reasonable levels under a wide range of
load conditions due to the development of sophisticated
power management units (PMU). As a result, testing of
SOCs in terms of supply ripple is becoming more and
more important.

Supply ripple can have detrimental effects on the per-
formance of various blocks in an SOC including but not
limited to; noise and distortion in analog circuits [6, 9],
conversion errors in high performance analog to digital
converters [9], and jitter in high speed clock and data
recovery circuits [14]. Hence, low supply ripple is crucial
for all types of circuits and testing of PMUs in terms of
ripple is significant.

BThe proportion of test time and diagnosis effort for analog
circuitry as a part of total test cost is now much more than the
proportion of analog circuit area on entire SOCs^ [8].
Measurements done off-chip are time consuming and prone
to error due to the inductive and capacitive properties of sens-
ing instruments. Ripple also requires special care in order to
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avoid coupling of external disturbances. As an analog compo-
nent, voltage regulators require built-in self-tests (BIST) to
increase testing accuracy, accelerate time tomarket and reduce
test costs.

This work proposes a BIST RMS ripple sensor in IBM
90 nm CMOS technology with 1.2 V supply voltage. The
RMS sensor is designed to detect 10 to 50 mV peak-to-peak
steady state ripple on main supply voltage with a frequency of
200 MHz. The ripple is emulated by a sinusoid superimposed
on the supply line. The circuit generates a digital output pro-
viding a pass or fail signal based on external DC reference input
[12, 13]. The sensor can be integrated on-chip and used during
test mode or during normal operation of the SOC due to its low
area overhead. The organization of the paper is as follows:
Section 2 details the inception of the idea in conjunction with
the design specifications. Individual component blocks are pre-
sented and elaborated in Section 3 and finally, simulation results
and conclusion are present in Sections 4 and 5, respectively.

2 Methodology and Design Specifications

Supply ripple is characterized by low voltage swing and its
frequency is directly correlated with the regulator switching
frequency. RMS and peak detection are two parameters that

can be targeted for amplitude detection. The RMS detection
method, which is implemented in this work, has been used in
RFICs to test transceiver input and output power levels. The
basic idea, given also in Fig. 1, is to amplify, rectify and filter
out the ripple signal to obtain a DC output which is propor-
tional to the input amplitude [1, 16]. This method is applied to
the ripple on 1.2 V main supply level of IBM 90 nm CMOS
technology. To determine the amplifier gain, average ripple
levels on integrated voltage regulators are used as reference.
Many of the reported ripples range between 14 and 45 mV
peak-to-peak [2, 3, 17]. In the light of this data, upper limit for
the input ripple is set to 50 mV. A similar search on converter
switching frequencies was performed to decide on bandwidth
and operating frequency was set to 200 MHz. Low transistor
count and total area were prioritized to reduce footprint.

3 Implementation

3.1 Amplifier

Amplification forms the first part of the RMS detector.
Due to the low swing and noise resistance of the input

Fig. 1 Block diagram of the ripple detector

Fig. 2 Common source and source follower stages
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signal, this stage was designed with a differential topolo-
gy. Figure 2 shows common source and source follower
amplifier stages operating with equal gain and output bias
levels. They are used to obtain two out of phase inputs for
the differential amplifiers [5, 10]. The reason for includ-
ing the source follower stage is to ensure both signals
experience identical latency at 200 MHz, leading to a
180° phase difference. It also shifts the signal bias down
to the same level as common source output for proper
operation of the differential amplifiers. Note that supply
voltage constitutes both the input and VDD of these
stages. This made it necessary to use the diode connected
transistors M3 and M4 as source degeneration resistors to
reduce the overdrive voltages of M1 and M2, forcing
them into saturation. The final stages of the amplifier
shown in Fig. 3 are the two identical, PMOS driven,
current-mirror loaded differential pairs for amplification
and to provide a differential output for full-wave rectifi-
cation [5, 10]. PMOS drivers were chosen for their better
noise performance and immunity to body effect when
separate wells are used for the two drivers.

In Fig. 2 VCS represents the output of the common
source amplifier formed by M1, M3. Its gain is given
by:

AVCS ¼ R
1

gm3
þ 1

gm1

ð1Þ

While VSF is the output of the source follower amplifier
formed by M2, M4 and the gain is given by:

AVSF ¼
1

gm4
1

gm2
þ 1

gm4

ð2Þ

Most of amplification is done through the differential am-
plifier, its gain is given by

AV ¼ gm8;12 ro8;12 ==ro10;14
� � ð3Þ

3.2 Full-Wave Rectifier

The second component is comprised of a full-wave rectifier
that is driven by the previously described amplifier. Full-wave
was preferred over half-wave rectification for several reasons.
First, full-wave significantly decreases detection time. In a
full-wave rectifier, the frequency of the output signal is twice
that of the input and, as a result, the filter at the output stage is
expected to settle to a DC level in a shorter period.

Correspondingly, filtering can be achieved by smaller pas-
sive elements, which is crucial for low BIST area overhead.
The rectifier, which is shown in Fig. 4, consists of a diode
connected PMOS (M17) and a driver NMOS pair (M15,
M16) operating between weak and strong inversion [7, 16,
18]. The nonlinear behavior of the MOSFETs at this bias
condition makes rectification possible. In common mode, all
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Fig. 7 Response of the ripple
detector for varying input ripple
amplitudes

Fig. 8 Filter output, reference
and pass/fail signal for 10 mV
ripple

Fig. 9 Transient response of the
ripple detector

Fig. 10 AC Simulation results of
the ripple detector
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the three MOSFETs operate at weak inversion. However, dif-
ferential inputs (Vo1 and Vo2) force one NMOS (M15 or
M16) and the PMOS (M17) to a strong inversion. This creates
a rectified current signal passing through M17 and it is mir-
rored to M18 for filtering.

3.3 Filter

Figure 4 shows the filter stage which includes M18-M19
and a capacitor [16]. Rectified current supplied by M17 is
sampled through a mirror transistor, M18. Current divi-
sion technique is used with low mirroring ratios to yield
better filter performance [15]. At the same time, low
mirroring ratios decrease the gain of the system whereas
high ratios cause higher ripple on the DC output. The
ratio is chosen by considering these limitations. Diode
connected transistor M19 acts as a resistor and together

with the capacitor they create an RC filter. The dimen-
sions of M19 are adjusted to yield higher gate to source
voltage, and thus higher DC bias voltage at the output.
This is to ensure proper operation of the comparator stage
which employs variable MOSFET capacitors where the
bias point is crucial. Finally, a smooth DC signal is sup-
plied to the comparator stage.

3.4 Clocked Comparator

The purpose of this stage is to compare the DC output of
the filter stage with a reference voltage and generate a
pass/fail signal. A clocked, Varicap Threshold Logic
(VcTL) topology [4, 11] is used for its simplicity, low
transistor count and digital output. These factors were
chosen due to their importance in built-in sensor design.
The basic design includes two cross-coupled inverters

Fig. 11 A step down voltage
regulator

Fig. 12 Voltage ripple of LT1976 Fig. 13 Output of ripple detector for LT1976
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(M20-M23) and two capacitor arrays (M24, M25) as
shown in Figs. 5 and 6. The variable capacitor arrays
are implemented using NMOS transistors. Operation of
the clocked comparator includes two phases, namely
pre-charge and evaluation. When CLK is at logic 0, both
outputs are pre-charged to VDD through the M26 and
M27 transistors. As the CLK signal transitions to logic
1, the outputs start to go to valid states depending on
the relationship between input voltage (Vout of the filter)
and reference voltage (Vref). This relationship determines
the difference between equivalent MOSFET capacitances
seen at the output nodes. The node with the higher capac-
itance discharges slower than the other through M21 or
M23. With the positive feedback, output which is denoted
by P/F Out is pulled to VDD or ground.

4 Simulation Results and a Test Case

Figure 7 shows a parametric sweep demonstrating the be-
havior of the sensor at a range of 10 to 50 mV input
ripple. After nearly a 100 ns charging period, all outputs
settle at DC levels with equal 100 mV separation between
adjacent ones. This perfect linearity can be seen more
clearly in Fig. 6 which essentially shows input ripple ver-
sus DC output for the same range. Figure 8 shows the
final digital pass/fail signals coming out of the comparator
together with filter outputs and reference signals. After
filter outputs exceed reference values, the comparator
starts to generate logic 0 at its evaluation phase which
represents a fail. Apparently, detection time is dependent
on both reference and input ripple levels. Based on the
worst case scenario where reference voltage is highest,
and input ripple are at lowest level, detection time can
be written as 90 ns Figs. 9 and 10.

For a purpose of testing voltage ripple of a voltage
regulator, a LT1976 is employed. Some specifications
provided by Linear Technology as follows: input voltage
range from 3.3 to 60 V, 1.25 A peak switch current,
200 kHz switching frequency, 1.25 V feedback reference
voltage. A circuit is built to step down voltage from 12 to
1.25 V, then output voltage ripple will be fed to ripple
detector and tested. Figure 11 is the circuit and Fig. 12
illustrates the 30 mVpp ripple of output voltage. Figure 13
shows the DC output of the ripple detector, which is pro-
portional to the 30 mv ripple.

5 Conclusion

A CMOS RMS detector system for on-chip supply ripple
testing is proposed. The results demonstrated perfect linearity
at the targeted range of 10 to 50 mV peak-to-peak ripple. To

show the possibility of sensor in both test and normal opera-
tionmodes, transient response with changing ripple is given in
Fig. 9. It demands a clock and an external DC reference input.
Detection time, which is dependent on ripple level and refer-
ence, is less than 90 ns. It is also proven that the circuit can
operate with high linearity within a 220 MHz bandwidth as
shown in Fig. 10. Consequently, the technique proves to be
promising, especially in regards to fully integrated voltage
regulators at high switching frequencies. For future work, it
is targeted to add programmability and measure ripple on
multiple voltage domains.
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