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Abstract Antirandom testing is a variation of pure
random testing, which is the process of generating
random patterns and applying it to a system under
test (both software systems and hardware systems).
However, research studies have shown that pure ran-
dom testing is relatively less effective at fault detection
than other testing techniques. Antirandom testing im-
proves the fault-detection capability of random testing
by employing the location information of previously
executed test cases. In antirandom testing we select
test case such that it is as different as possible from
all the previous executed test cases. Unfortunately, this
method essentially requires enumeration of the input
space and computation of each input pattern when used
on an arbitrary set of existing test data. This avoids
scale-up to large test sets and (or) long input vectors.
The objective of this paper is to find a more efficient
method of the test generation which does not need any
computation. The key idea of proposed approach is
an iterative application of the short antirandom tests
where the first test vector in each iteration is generated
randomly. Moreover, we propose a new metric the
Maximal Minimal Hamming Distance (MMHD) which
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allows us to define an optimal antirandom test with
restricted number of patterns. Experimental results are
given to evaluate the performance of the new approach.
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1 Introduction

Efficient test patterns and methods of their generation
play still crucial role in both hardware and software
testing. In case of systems with limited number of in-
puts we can use exhaustive testing. Exhaustive testing
generally means to verify the functionality of the cir-
cuit under test [1]. In case of combinational circuits
it needs 2V different N-bit patterns, where N is the
number of inputs. The exponential growth of the test
length restricts the concept of the exhaustive testing to
circuits with a limited number of inputs [1, 23]. Lo-
cally exhaustive [4] or pseudo exhaustive [7] testing
is a concept to avoid the restricted number of inputs
of the circuit under test. These approaches are the
real alternatives to exhaustive testing. They allow for
sufficiently reducing the number of the test vectors. It is
possible by taking advantage of the fact that often many
or all output variables depend only on a small subset
of input variables [4, 10, 11]. A set T(N, k) of pseudo
exhaustive test patterns in a binary N-space, exhaus-
tively covers all specified k-subspaces if the projection
of T(N, k) onto those k-subspaces contains all 2% dis-
tinct binary vectors in each specified k-subspace [23].
The main advantage of pseudo exhaustive testing is
the sufficiently lower test complexity O(T(N, k)) (the
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number of test patterns). It can be bounded by the fol-
lowing inequality 2¥ < O(T(N, k)) < 2V. For example,
the pseudo exhaustive test 7(6,2) = {000000, 000011,
011100, 101101, 110110, 111011} contains only six test
patterns. Therefore the complexity of this test equals to
O(T(N, k)) = O(T(6,2)) =6 and is much lower than
the upper bound 2V = 2° = 64 [10].

Further development and active research of the
pseudo exhaustive testing have been done for complex
computer systems and software applications within the
framework of so called Combination Testing Strategies
[6]. This strategy can be applied for a general case
when black box testing environment is used. In this
case the set of parameters is divided into subsets for
which all combinations of input values are generated.
To construct all combination the Covering Arrays may
be used [9].

As a good approximation of exhaustive and pseudo
exhaustive testing the random testing have been widely
used [16, 21, 22]. In this case by the definition the each
test pattern is selected randomly, regardless of the pre-
vious test patterns applied. The advantages of random
testing include its low cost of implementation, ability to
generate numerous test cases automatically, generation
of test cases in the absence of the object specification
and apart from these, it brings randomness into the
testing process. Moreover random testing typically uses
test patterns which are produced by a pseudo-random
number generator with a specific seed value so that
any system failures can be reproduced [18]. Random
testing and its variations have been extensively used
and studied for both hardware testing and software test-
ing [15, 18, 20, 27, 28]. Available evidence suggests that
random testing may be reasonable choice for obtaining
a moderate degree of confidence.

Random testing does not exploit some information
that is available in black box testing environment. This
information consists of the previous tests applied [14].
Therefore the new approach called Antirandom Test-
ing (AT) was proposed. In this case each test pattern
is chosen such that its total distance from all previous
patterns is maximum [14, 25, 26]. Distance is a measure
of how different two test patterns 7; and 7 are [14].
So, to achieve higher fault coverage, one should choose
test patterns that are as different as possible from the
patterns previously generated. The assumption is that
similar input to a system will expose similar types of
faults, and therefore an input set that contains values
that are very different from each other has a higher
likelihood of exposing faults in a object under test.

For antirandom testing the Hamming Distance (HD)
and Cartesian Distance (CD) have been used to mea-
sure the differences between two patterns [14, 25].
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Therefore the new test pattern is chosen such that max-
imise these distances. This approach has proved more
efficient than random testing [14, 26]. Unfortunately
the basic antirandom method essentially requires enu-
meration of the input space and computation of dis-
tances for each potential input pattern [14]. Even for
improved version of the method, computations become
too expensive for real dimension N of the test pat-
terns [17]. Therefore many modification of antirandom
tests have been proposed to simplify the process of
generating of antirandom test patterns. As an example
Partial Antirandom Testing [18], Adaptive Random
Testing [2, 3] Orderly Random testinh [29] or Scalable
Test Pattern Generation [33] can be mentioned.

The objective of this paper is to find a more efficient
method of the test patterns generation which does not
need any computation. A new solution is based on
iterative application of antirandom tests with a small
number of patterns. As more efficient the new metric
the Maximal Minimal Hamming Distance (MMHD)
between two test patterns 7; and T is used instead of
Hamming Distance or Cartesian Distance. This allows
to construct optimal antirandom test with restricted
number of patterns.

In the next Section 2 we will introduce the basic con-
cepts of the antirandom tests. The formal definitions
of antirandom tests and main measures are presented
there. In this section one can find definitions of two new
metrics called absolute criteria for the next test pattern
(ACT) and absolute criteria for the set of patterns
(ACS) too. In the Section 3 an optimal short antiran-
dom test with g = 2, 3 and 4 patterns will be generated.
The optimality of the antirandom tests with a small
number of patterns will be examined with respect to
different metrics. The new metric the Maximal Minimal
Hamming Distance (MMHD) will be proposed too.
Section 4 presents the analyzes of the short antirandom
tests coverage. These analyzes have been done with
respect to absolute criteria ACS. The main concepts
of iterative antirandom testing are proposed and ana-
lyzed in the Section 5. Experimental results to evaluate
coverage of the iterative testing procedure are given in
the Section 6. Finally, the conclusion of this paper is
presented in the Section 7.

2 Antirandom Testing

Antirandom testing technique is a variant of random
testing. It was proposed by Malayia [14]. As in the
case of random testing it is a black-box strategy. This
means that it assumes no information about the internal
implementation of the object under test. Antirandom
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testing is based on the idea that test cases have to be
selected to have maximum distance from each other. In
this approach, there is using the hypothesis that if two
test patterns have only a small distance between them,
then the sets of faults encountered by the two are likely
to have a number of faults in common. Conversely, if
the distance between two test patterns is large, then the
set of faults detected by one is likely to contain only
a few of the faults detected by the other [14]. As a
measure of distance Malaiya proposes to use Hamming
distance or Cartesian distance. Therefore the inputs of
the object under test are encoded by a binary pattern
and each value from the input domain is represented
by one or more binary patterns. So, antirandom means
that each new test pattern in a test sequence lies as far
from all previous test patterns in the sequence as possi-
ble. The set of test patterns is generated in such a way
that each new test pattern added to the test set is the
test case which is the most different from the test cases
currently in the test set.

Now we give the formal definitions of the crucial
terms relating to the antirandom testing.

Definition 1 Antirandom test 7T = {Ty, T4, T>, ...,
T,-1} (AT) is a test containing a test pattern 7;, i €
{0,1,2,...,q — 1}, where T; is chosen such that it sat-
isfies to some criterion with respect to all test patterns

To, Ty, Ts, ..., Ti_; have been obtained before and
T, = iN—1>iN—2, s Lo, Bi15 Lio (fOI' binary case l‘i,]‘ c

Definition 2 The Hamming Distance HD(T;,7’;) (HD)
between two binary test patterns 7; and 7' is calculated
as a weight w(7; ® T;) (number of ones) of pattern
T, ® T]'.

Definition 3 The Cartesian Distance CD(7;, T;) (CD)
between two binary patterns 7; and 7 is given by:

CD(T;, T))

= \/(li,o—lj,o)2+(li,1—tj,l)2 +.o4 o1 —tiN-1)?

= ltio — tjol + |ti1 — 1l + oo+ ltin—1 — tjn-1l

= JHD(T;, T)). 1)

As an example consider a pair of patterns: A = (0000)
and B = (1010). Then HD(A, B) =2 and CD(A,
B) =42

Definition 4 Total Hamming distance (THD) for any
pattern is the sum of its Hamming distances with re-
spect to all previous patterns. We refer to the total dis-
tance when Hamming and Cartesian distances are used
by THD(T;) and TCD(T;), respectively.

Definition 5 Maximal Distance Antirandom Test
(MDAT) is a test with maximal value of some function
F with the distances as arguments.

For example, in [14, 17, 26] HD and CD have been
used to construct the functions F;(HD) and F,(CD).
Both functions are used as a fitness functions for con-
secutive test patterns generations. The next 7; pattern
is generated to make the total distance between T;
and each of Ty, T4, ..., T;_; maximal one. The total di-
stances are calculated as

i—1

Fi(HD) = ) "HD(T;, T)), ©)
j=0
i—1

F,(CD) = » CD(T;. T)). 3)
j=0

Definition 6 Maximal Hamming Distance Antirandom
Test MDAT(HD) is the MDAT that uses Hamming
distance as the distance measure for consecutive test
patterns according to the Eq. 2. Maximal Cartesian
Distance Antirandom Test MDAT(CD) is the MDAT
that uses Cartesian distance as the distance measure for
consecutive test patterns according to the Eq. 3 [14].

Definition 7 Absolute Criteria for the next 7; test pat-
tern (ACT) is the maximal number F3(T;) = maxC(T;
(N, k)) of additional binary combinations (with respect
to the test patterns already chosen) for arbitrary k out
of N bits generated by the pattern 7;.

Definition 8 Absolute Criteria for the set T = {Ty, T,
Ty, ..., Ti_y, T;} of the test patterns (ACS) is the maxi-
mal number Fy(T) = maxC(T (N, k)) of binary combi-
nations for arbitrary k out of N bits generated by the
set Ty, Ty, Ts,... , Ti—1, T; including the pattern 7.

To illustrate the Absolute Criteria let us consider
the test T which contains two patterns: T = {Ty, 71} =
{00000, 11111}. Assume that two other patterns {01111}
and {00111} are the candidates for the third pattern 7,
of the test 7 and we have to evaluate them in respect
of Absolute Criteria with k = 3. All the details of the
evaluation are shown in the Table 1. All the 3-bit pat-
terns generated by {01111} and {00111} which are new
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Table 1 Absolute criteria example

T; ={bob1b2b3bs} bobiba bobibs bobibs bobabs bobabs bobsby bibobs bibaby bibsby brbsby F3(Ty) Fa(T)
To = 00000 000 000 000 000 000 000 000 000 000 000 10 10
T, =11111 111 111 111 111 111 111 111 111 111 111 10 20
T, =01111 011 011 011 011 011 011 111 111 111 111 6 26
T, =00111 001 001 001 001 011 011 011 011 011 111 9 29

compared to 3-bits patterns generated by T and 7, are
in bold. We observe that {00111} allows us to generate
nine new 3-bit patterns compared to six new 3-bit pat-
terns generated by {01111}. Therefore 7, = {00111} is
better candidate for the third pattern of the test T in
respect of Absolute Criteria.

It should be noted that due to the high complexity of
the ACT and ACS estimation it is not practical to use
them for real application with real value of N and q.

To construct of a MDAT a procedure based on
exhaustive search is proposed in [14].

1. For each of N input variables, assign an arbitrarily
chosen value to obtain the first test pattern.

2. To obtain each new pattern, evaluate the THD
(TCD) for each of the remaining combinations with
respect to the combinations already chosen and
choose one that gives maximal distance. Add it to
the set of selected patterns.

3. Repeat Step 2 until all 2" combinations have been
used, or until the desired number of test patterns
have been generated.

To illustrate the process of generating MDAT, the
generation of a test set which contains four antirandom
3-bit inputs will be considered in an Example 1. Graphi-
cally this process is illustrated in Fig. 1 using a cube with
each node representing one pattern.

Example I MDAT(HD) generating process in case of
system with three binary inputs

010 011 010 011

110 111 110 111

001 001
000 000

100 101 100 101

(a) (b)

Fig. 1 Construction of 3-bit MDAT(HD) [25]

@ Springer

The complete input domain for a system with three
binary inputs is:

:000 4 : 100
: 001 5:101
:0106:110
:0117:111

W N = O

Let us start with the first test pattern {0, 0, 0} and
add it to the test set. The initial antirandom test set
was empty and first pattern could be arbitrarily selected
from the input domain and added to the test set. Arbi-
trarily selection does not result in any loss of generality
as the procedure can easily be used for sequences start-
ing with any pattern [14]. The next input to be added to
the antirandom test set is the pattern from the domain
space which is most different from the current inputs in
the test set. In case of MDAT(HD) the next pattern T}
is obviously {1, 1, 1} with THD(T}) = 3. It is shown in
Fig. 1a, where the input combinations already chosen
are marked. Now a symmetrical situation exists. Any
pattern chosen would have HD = 1 from one of the
past chosen patterns and HD = 2 from the others. Let
us assume that value {0,0,1} is picked from the input
domain and added to the antirandom test set so the
set contains {0,0,0}, {1,1,1}, and {0,0,1}. Which pattern
is chosen as the fourth member of the test set depends
upon the difference function used. If we use Hamming
distance as the difference function then the sum of
the Hamming differences between each of the three
current members of the antirandom test set and the five
other patterns from the input domain are:

000 111 001
010 1 + 2 + 2 =5
011 2 + 1 + =4
100 1 + 2 + 2 =5
101 2 + 1 + 1 =
110 2 + 1 + 3 =6

Base upon the above results we can say that {1,1,0}
is the most different from the existing members of
the antirandom test set and it should be added to the
test set. This fact is illustrated in the Fig. 1b too. The
selected pattern lies at the opposite corner of the cube
to the corner with {0,0,1} pattern.
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The Example 1 points out that pure antirandom test
patterns generation requires enumeration of the input
space and computation of distances for each potential
input pattern. Even in case of improved procedure of
generating of the antirandom test patterns [14] we need
computations which are possible for systems with a
relatively small input domain.

Adaptive Random Testing is one of the another test-
ing method that uses a related concept of “distance” to
generate test cases. The first algorithm of this class, the
Fixed Size Candidate Set ART algorithm (FSCS-ART)
was published in [3]. There are many enhancements of
this approach too [5, 13, 24, 34]. The idea of FSCS-ART
is presented in Algorithm 1. The algorithm of choosing
a new test case can be divided into two steps:

— First, a set of k candidates ¢; is randomly generated

— Second, one test case from the set of candidates is
selected and the other are discarded. Selection is
based on the distance between previously executed
tests cases 7T and candidates. For each candidate
¢; we find the minimal distance d;, between c¢;
and previously executed tests 7. The candidate ¢;
with the largest dpin is selected, executed and added
toT.

The algorithm of choosing a new test case in FSCS-
ART for k =4 is illustrated in Fig. 2 [2]. Previously
executed test cases, 77, T, T3 denoted by dots and
randomly generated candidates ¢y, c3, ¢3 and ¢, denoted
by squares are in the Fig. 2a. Figure 2b shows the
process of calculating distances between the candidate
c; and all previously executed test cases. We must do
it for each test candidate ¢;. The minimal distances dpin

Algorithm 1 FSCS-ART algorithm [2]
T ={} /* T is the set of previously executed test cases */
randomly generate an input ¢
addrto T
while stopping criteria not reached do
D=0
randomly generate next k candidates cy, ¢y, ..., Ck
for each candidate c¢; do
calculate the minimum distance d; from T

if d; > D then
D =d;
t=c¢;
end if
end for
addtto T
test the system using ¢ as a test case
end while

305
Cq Cy
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G P S Ty
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Fig. 2 Choosing a new test case in FSCS-ART

between candidates and test cases previously executed
are depicted in Fig. 2c. Then we choose the test case ¢;
with the largest dyi, and treat it as a new test case. In
the example c; is candidate with the largest dp;,. It is
shown in Fig. 2d.

From the above example we can note, that Adaptive
Random Testing allows us to skip the enumeration
of the whole input space. Unfortunately this method
needs still a lot of computations of distances for each
potential test pattern.

Another approach to generate antirandom tests was
presented in [33]. It is called as Scalable Test Pattern
Generation (STPG). Unlike pure antirandom method
of the test generations authors in [33] introduced scal-
able generation method of antirandom tests. The test
pattern generation in this algorithm is as follows [33]:

1. Initialize the input value and assign an adding
factor

2. To obtain a maximum distance between two test
patterns, Ty and 7T}, complement the first pattern,
Ty, to become the second test pattern, 77.

3. To obtain third test pattern, 75, use the assigned
adding factor and add it to the first test pattern, 7y,
to generate third sequence, 7.

4. Repeat step 2 and step 3 to generate T3, T4, etc.
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The illustration of this algorithm is given in the
Table 2. Let us initialize the input 7, = {000}. The
best way to obtain the next pattern 77 with maximum
distance between T, and T, obviously is by comple-
menting 7y = {000}. According to Table 2, 7, = {010}
is generated by adding an adding factor {010} to Ty. By
using adding operation we obtain new test pattern so
that the complementing process can be continued. The
complete test sequences is given in Table 2.

The proposed STPG method is easier to scale up
then standard antirandom algorithm. Very important
role in this algorithm plays the add factor. Unfortu-
nately the authors of the algorithm don’t give instruc-
tions on how to determine this factor in order to achieve
maximum fault coverage.

Based on random testing the concept of orderly
random testing has been proposed in [29]. The first
step in direction of ordering the random patterns was
Semi-Maximum Distance Testing Sequences (SMDTS)
in which every test pattern has its own complement
version. For example, T = {000, 111,010, 101} is an
SMDTS, since {000, 111} and {010, 101} are comple-
ment each other. For semi-maximum distance testing
new metrics, compare with THD and TCD, have been
proposed [30].

Definition 9 Total Hamming Distance for the Set of
Patterns 7 (THD) and Total Cartesian Distance for the
Set of Patterns T (TCD) for any T = {Ty, Ty, T», ...,
Tq—1} is the sum of its Hamming HD(T;, T;) and
Cartesian CD(T;, T)) distances for all i# j;i,je

0,1,...,q— 1}
qg—1 i—1

THD(T)=Y»_ > HD(T;. T)),
i=1 j=0
q—1 i—1

TCD(T) =Y Y CD(T;. T) 4)
i=1 j=0

Table 2 STPG 3-bit test sequence generation example

T; Test pattern Add Complement
To 000

T, 111 T3

T 010 To + 010

Ts 101 T3

Ty 100 T> + 010

Ts 011 T

Te 110 T4+ 010

T, 001 T

The procedure of generation of SMDTS with 2k, k =
1,2, 3, ... patterns consists of randomly generated all
even number of patterns, i.e. Ty, 75, ... is selected ran-
domly, while each odd number of pattern is obtained
by simply bit-wise complementing its previous one. Ac-
cording to this procedure the orderly random test can
be obtained. The total distance THD for the set of pat-
terns T = Ty, Ty, Ta, . .., Tak—2, Tok—1, selected by the
procedure, has been proved to be k> N [30]. For above
presented example of SMDTS T = {000, 111, 010, 101},
k=2 and N =3 the total distance THD = k>N =
223 = 12, what satisfies to the Eq. 4. Due to the only
half of test patterns can reach their maximal distance
such a type of distances has been called as Semi-
Maximum Distance Testing Sequences.

As the further development of orderly random
testing the Total Maximum Distance Test Sequences
(TMDTS) have been proposed and analyzed in [29].
According to the definition of TMDTS both THD and
TCD must be taking into account for the test con-
struction. Then TMDTS is generated according to the
Algorithm 2 [29].

To simplify the step 3 due to their computational
complexity in [29] Pre-Determined Distance Test Se-
quences (PDDTS) have been proposed. The procedure
for PDDTS generation is different with previous one
only in step 3, which now can be formulated as follows.

To obtain each new i-th pattern Ty, 7>,
Ts, ..., T, ..., Tor_o, with even number of sub-
script i € {0, 2,4, ...,2k — 2} from the remain-
ing combinations, chose 7; with CD(T;, T))
distances for all j € {0, 2,4, ...,i — 2} equals at
least any preset value.

Algorithm 2 Construction of TMDTS for g = 2k

1. Randomly chosen N bits pattern to be the first
pattern termed as T

2. To obtained each new i-th pattern T, T, Ts, . ..,
T>x—1 with odd number of subscript, simply bit-wise
complementing the previous even pattern should
be done, then THD takes the maximum value
equals toi x N.

3. To obtain each new pattern with even number of
subscript T», T4, Ts, ..., Tox—> from the remaining
combinations chose one that gives the maximum
TCD with respect to the combinations already
chosen.

4. Repeat steps 2 and 3 until all g patterns have been
chosen.
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The main disadvantageous of TMDTS and PDDTS
is related to the length of test sequence. This is be-
cause the larger the minimal distance minCD(T;, T))
between two patterns 7; and T is, the smaller the
number of patterns Q could be available, what fol-
lows from the sphere-packing bound or Hamming
bound [8]. This bound for minHD(T;, T}) = 2r + 1 and
minCD(T;, Tj) = +/2r + 1 can be expressed as the next
inequality:

2N 5
QS% )

=0

For example, in a case of N =15 and minHD(T;,
T;) =5=2x2+1 the Cartesian distance should sat-
isfies to inequality CD(T;, T)) > V/5. Therefore, at most

Q< 215 215
T2 /15\ (15 () (15
Z(l) 0 1 2
1=0
215 0
= ——=x2I0%2
I+ 15+105

test patterns is available with Cartesian distance
CD(T;, T)) greater than or equal to /5 . Then, calcu-
lating the complement patterns, as well, the PDDTS of
length ¢ = 2° can be generated. However, the raising
Cartesian distance for example up to /7 drastically
reduces the length g of PDDTS to 2° = 64 patterns.

To sum up, we can say that there are many methods
allowing for generating antirandom like patterns, but
most of them need strong pre-calculation process.

3 Generation of Antirandom Tests with Restricted
Number of Patterns

For optimal AT generation with a small number g of
patterns Ty, T, 1>, ..., Ty—1, let us step by step generate
sets of patterns for g = 2, 3, 4. Set of patterns should
cover maximal number of patterns out of all possible
binary patterns in k out of N bits. Optimally it should
exhaustively covers all k-subspaces simultaneously i.e.,
the projections of N-dimensional patterns in the test
set onto any input subset of a specified size k should
contain all possible patterns of k-tuples. In this context
100% coverage means all 2% binary combinations for
all k-subspace in N dimensional space for some k. For
example, pseudo exhaustive test 7(6,2) = {000000,
000011, 011100, 101101, 110110, 111011}  exhaustively

covers all possible k=2-bit subspaces because the
projection of T(6,2) test patterns onto 2-bit subsets
contains all possible patterns of 2-tuples (00, 01, 10 and
11). That is why, for the following investigation, the
metrics ACT (Definition 7) and ACS (Definition 8)
will play the crucial role. For different applications of
exhaustive, pseudo exhaustive, random, pseudo ran-
dom and antirandom tests there is the restriction that
k << N [1,11]. In further analyzes we will keep it what
would allow us to simplify the numerical evaluations.

It should be noted that in [14, 17, 25, 26] for the
next 7; pattern generation two metrics HD and CD
have been chosen. These quite general metrics were
used as arguments for the fitness functions F;(H D)
and F,(CD) for estimation how 7T; was different from
previously generated patterns Ty, T4, 7>,... ,Ti—;. Later
it will be shown that this approach is not sufficient in
terms of maximal total number of binary combination
generated in k out of N bits.

As the first pattern T of antirandom test any N-bit
pattern can be used. For example, let us start with Ty =
{000...0}. This does not result in any loss of generality.
The same procedure can easily be used in the case of
the test starting with any pattern out of 2V possible
patterns [14]. As an example, let us consider the case
of the set of N = 6 bits test patterns T = Ty, T}, T>,...,
with Ty = {000000}.

As the next pattern T of the MDAT(HD) and
MDAT(CD) we should choose the one with maximal
values of fitness functions F;(H D) and F,(C D). In case
of Ty = {000...0} the maximal values of fitness functions
obviously we achieve for the pattern 7; = {111...1}
with Fi(HD) = N and F>(CD) = +/N. For our exam-
ple Ty = {111111} and F,(HD) =6, F,(CD) = 2.449.
It should be emphasised that for any k out of N bits
the pattern 7', generates new binary code, namely the
k-bit code with all ones. So, two patterns AT generate
for any k position exactly two binary codes. That is why
regardless on any metrics, the optimal second antiran-
dom pattern 7 is the negation of the first pattern 7y.
Then, for the general case an optimal antirandom test
with two patterns (q=2) is a test:

To=1t;N—1,liN=2, s L2, i1, Ti

Ty =tin-1, iN-2s - L2, li1, i (6)

As the first pattern Ty any random N-bit pattern can
be used with ;. € {0, 1},c € {0, 1, 2, ..., N — 1}, then the
second one 77 is the negation of Ty.

On the third step the pattern 7, should be gener-
ated. As can be seen, symmetrical situation exists now.
Any next pattern 7, with z zeros (ones) and N — z ones
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(zeros), or vice versa, will be optimal in terms of fitness
function F;(H D). Really, for any pattern 7, Fi(HD) =
HD(T,, Ty) +HD(T,, T\)=N — z + z = N. Our aim is
to cover maximal number of binary patterns out of all
possible patterns in k out of N bits. If we use F,(H D)
as the fitness function then the set of three test patterns
for N =6 and T, = {000000} can be generated as
{000000, 111111, 100000} or {000000, 111111, 110000} or
{000000, 111111, 111000} etc. In all these cases F;(H D)
for the third pattern equals 6. At the same time, the
coverage of k — subspaces in N = 6-dimensional space
by these sets of patterns is different. For Kk =3 in
respect of ACT F3(100000) = 10, F5(110000) = 16 and
F5(111000) = 18. Therefore, at this step of analyzes of
the third pattern 75, we can delete the metric F,(H D)
in our further investigations. It does not allow to
choose the most optimal (in terms of maximal coverage
of k-subspaces in binary N-dimensional space) set of
three patterns.

In a case of function F,(CD) for the next pat-
tern T, with z zeros (ones) and N — z ones (zeros)
F>,(CD) =CD(T2, To) + CD(T2, T)) = /N — 2+ /z.
Then, max F>(C D) can be achieved as the solution z =
N/2 of the next equation: §(v'N — z 4+ /2)/8(z) = 0.
For further investigation suppose that N is even num-
ber and divisible by 3. In our example N = 6 satisfies to
above mentioned conditions. Now we can evaluate the
pattern T, on the bases of absolute criteria ACT.

Two previous patterns 7y = {000...0} and T, =
{111...1} generate two distinct patterns for any arbitrary
k out of N bits. They are consisting of all zero k-bit
code and all ones k-bit code. According to the absolute
criteria ACT the total number F3(7Ty) and F5(T)) of
different combinations generated by two patterns T
and T (taking into account that N is a big integer num-
ber, for which k << Nand N — k ~ N) is calculated as:

N! Nk

“ ook w0

F5(To) = F3(Th) = (Z)
Only the pattern with N/2 zeros and N/2 ones as the
third pattern 7, allows getting maximal number of new
k-bit patterns calculated according to the Eq. 8, what
agrees with the maximising of the Cartesian distance
F,(CD).

k—1

N/2\(N/2\ 1 & N
=3 (L) (V) xS atom ©
i=1

i=1

For our previous example with N = 6 and k = 2, ac-
cording to Eq. 7 F5(Ty) = F5(Ty) = N!/((N — k)!k!) =
6!/(4! x 21) = 15. The pattern 7, with N/2 =3 zeros
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and N/2 =3 ones generates additional new binary
combinations. The number of these combinations is
calculated according to Eq. 8. For the same exam-
ple (N =6 and k = 2) it gives us F3(T>) = (3!/((3 —
D!'x 1) x@!l/(1!'x 3—1)!) =9 new combinations.
For our example the entire amount of two-bit binary
codes within the N =6 bits patterns T, = {000000},
T, = {111111} and T, = {000111} is F3(To) + F5(T)) +
F3(Tp) =15+ 1549 =39.

It is easy to show that for the same example N =6
bits, the maximal number of two bit patterns (k = 2)
can be obtained for the next three patterns 7, =
{000000}, 77 = {111100} and 7, = {001111}. Really, the
entire number of 2—bit combinations will be calculated
as  Fy(To, Th, Tr) = F3(To) + F5(Th) + F3(T2) = 15+
14 + 13 = 42. This value satisfies to the absolute criteria
ACS for the set of patterns. For this criteria the number
q of antirandom patterns is the key input information
for the optimal set of patterns generation, rather
than previously generated patterns Ty, T, T», ..., Ti—1,
like in approaches have been used and described in
[14, 17, 25, 26]. 1t should be noted that for the patterns
{000000, 111111, 000111} the minimal HD between any
two patterns is H D(000000,000111) = HD(111111,
000111) = 3 and for the last set of patterns {000000,
111100, 001111} minimal HD is H D (000000, 111100) =
H D(000000,001111) = HD(111100,001111) = 4.

These examples can be generalized for three pat-
terns (¢ = 3) antirandom tests. The first test can be
constructed as:

To =t N—1, liN=2, --s LiNJ2, L Nj2—15 oos 2, Bi 15 B0
Ty =t N_1,liN=2, s LiNj2, L Nj2—15 ooos 2, B 15 B0
Ty =t N1, liN=2, s N2 tiNj2= 15 s L2, Bils 0. (9)

Minimal HD for above presented antirandom test
with ¢ = 3 patterns equals to N/2. At the same time
the second test can be constructed as:

To=1i Nty ooy LiaN/3> Li2N/3—1s oo Bi N3 L N/3-1s o Bi 15 B0

Ty =1 Nty ooy L2N3> L2N/3—1s oo B N3 T NJ3-Ls o Bi 1 B0

To=ti Nty oo LiaN/3s TaN/3 15 ooos GiNJ3s BN/31 s oo Bt B0
(10)

Minimal HD for this test 10 equals to 2N/3. Therefore
as the more efficient metric the Maximal Minimal Ham-
ming Distance (MMHD) can be used to construct an-
tirandom test 7' = {7y, 11, T>, ..., T4—1} with restricted
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number ¢ of patterns. As have been shown in [32] the b7e T P e o anirancom e

following statement is true. Test tip.tir.tio Fi(HD) Fy(CD) F3(T) =  Fa(T) =
(7 C(Ti(3,2) C(T@G,2)
To 000 - - 3 12

St.atemen.t 1 Thf_: .test set T = {_To, T, T, .., Ty} T, 110 ) 1730 3

with maximal minimal Hamming distance HD(T;, T)), 7, 01l 4 28084 3

where i # j€{0,1,2,...,q — 1}, allows to get maximal 7, 101 6 42426 3

value of C(T(N,k)) for any & <« N with given N and gq.

This statement satisfies to absolute criteria ACS for
the set of g test patterns, which allows getting maximal
number of binary combinations for arbitrary k£ out of
N bits.

In [19] the optimal set of test patterns have been
obtained for ¢ = 3 and g = 4. Both these sets can be
regarded as the algorithm for antirandom tests genera-
tion with small number g of patterns. For three patterns
(¢ = 3) this algorithm can be described by Eq. 9 with
the random pattern 7| at the input. The algorithm for
q = 4 is shown below [19].

To =t N—1y oo LaN/3s Bi2N/31s oos L NJ3s B NJ315 oo Bi 15 B0
Ty =t Nty s G2N/3s Bi2N/31s oes L NJ3s BN 315 oo B 15 B0
T = tiNcts ooos iaN/30 LON/3 s ooos GiNJ3s BN/3 s os Bt i)
T35 =GNty oo BiaN/30 LON/3t s coos GiNJ3s N3 s s Bt i)

11)

Based on the above presented algorithm and starting
from the pattern 7, = {000000}, the antirandom test
with four patterns will be obtained as T = {7y, T, T>,
T3} = {000000, 111100, 001111, 110011}.

To compare all previously used metrics for antiran-
dom test generation, let us consider an example have
been used in several papers [14, 17, 25, 26] for illus-
tration of antirandom test generation with N = 3. For
q = 4 this test includes patterns {000, 111, 010, 101}. As
an alternative for comparison the optimal antirandom
test with the patterns {000, 110,011, 101} generated
according to Eq. 11 is chosen. Both tests with their
metrics for k = 2 are shown in Tables 3 and 4. In these
examples it is easy to see that the Statement 1 allows
formulating the condition for the optimal short antiran-
dom test. For the maximal minimal hamming distance

Table 3 Standard three bit antirandom test

Test tip.ti1.tio Fi(HD) F(CD) F(T)=  Fy1) =
(T) C(T;(3,2)) C(T(3,2)
To 000 - - 3 10

T 111 3 1.7320 3

T, 110 3 2.4142 2

Ts 101 6 4.1460 2

case the antirandom test generates maximal number
maxC(T(3,2)) = 12 of binary combinations for arbi-
trary k = 2 out of N = 3 bits.

4 Short Antirandom Tests Coverage Analyzes

The previous part of the paper gives the clear evidence
that for analysis of coverage of antirandom tests, the
most important information is the amount C(T (N, k))
of binary combinations for arbitrary k out of N bits
generated by the test. Further based on this charac-
teristic the weighted value of combinations P(T (N, k))
will be used as result of division C(T(N, k)) by number
Q(N, k) of all possible combinations within arbitrary k
out of N bits calculated as

N!

(N —k)k)’ (12)

N
O(N, k) = 2k<k> =2k
The weighted value P(T(N, k)) for the first short
antirandom test 72 including two patterns Ty and 7
generated according to Eq. 6 can be calculated as

C (T (N, k) _ F5(Ty) + F5(Th)
O(N, k)

Q(N, k)
1

= o (13)

P(T%(N, k) =

For the next short antirandom test 75, C(T3 (N, k))
is obtained as the sum of three values F5(Ty), F5(T})
and F5(T»), where Ty, T; and T, is generated according
to the algorithm (10). F5(T)) is presented as Eq. 7 and
the rest is given below.

- CLEEC) o
F3(Ty) = ( ) N kgi (ZN/3) (N/3)
+k 11 <’iV/31) <N/3> (15)

=
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With the same assumption as in Eq. 7 (N is a big
integer number, for which k < N and N — k ~ N) the
C(T3 (N, k)) can be calculated as

C (T (N, k)) = F5(Ty) + F5(T)) + F5(T»)

1 1 2k
~ k[ - i
~ RN (k! 300 T 3

| & 1
+§;(k—i)zxi!

2 k=1 2k—i
+?;(k—i)!xi!>' (16)

For simplification of the last equation we will make
use of the following equality:

k—1

kKo
;m_z —2. (17)
Then
P(T%(N, k) = CTAN. b
(AN 0)="0(N
_ Fs(Ty) + F5(T)) + F3(Ty)
O(N, k)
1 2 1 2 Ak
ity gt 22 ()

(18)

The value of C( Tj(N , k)) for the last short antiran-
dom test can be obtained as the sum of four arguments:
F3(Ty), F5(T)), F5(T,) and F5(T3). The first three ar-
guments have been estimated before (7, 7) and T,
for algorithm (10) and (11) are the same). The fourth
argument is calculated as

- (E(2)(7)

B0 e

@ Springer

Taking into account previously adopted assumption,
the weighted value of C (T;“ (N, k)) is equal to

C(T4(N. k)
O(N, k)
F5(To) + F5(Ty) + F5(Ty) + F5(T3)
O(N, k)

1 1 1 1
o 2k3k71 + 2k3k71

k-l .
x ; k=i (’f) (20)

The weighted number of combinations 13, 18 and 20
within arbitrary k out of N bits of short antirandom
test can be regarded as the measure of their coverage.
It may be interpreted as the probability, due to the
random value of 7| for all above presented algorithms.

P(T4(N,k)) =

2
|
+

5 Iterative Antirandom Tests

Exhaustive and pseudo exhaustive testing of an object
(hardware and software) have several attractive fea-
tures. In addition to the fact that test patterns usually
can be generated quite easily, the process and its fault
(errors) coverage are no longer dependent directly on
either the model of faulty behavior or on the specific
object under test. The crucial problem, however, is
how to provide exhaustive input patterns simultane-
ously with respect to many outputs associated with the
same object under test. In the past several methods
have been developed for this problem [1, 23]. While
these methods give test sets which, due to simplicity of
the mathematical structure, can be implemented quite
easily, the coverage of such sets is not always high.
This seems to imply that exhaustive pattern testing
would be impractical unless sufficient object under test
partitioning is exercised at the design stage [12].

One of the constructive solution of the problem is
the near exhaustive and near pseudo exhaustive testing
based on standard test patterns [11, 23, 31]. As the set
of standard patterns, which satisfies the Statement 1,
is Ts(N, k) ={Ty, Ty, T>, ..., Tq_l} with HD(T;, T]) =
N/2,wherei # je {0,1,2,...,qg — 1}. The number g of
patterns is constant and equals to 2([loga N + 1). Their
structure and generation procedure are described in
[31]. If N =2" then g =2(m+ 1). As an example
let us use the set of standard patterns Tg(8, k) for
m =3 (see Table 5). The coverage of described set of
patterns Ts(N, k), consisting on [/ =log, N1 + 1 pairs
of patterns (T(), Tl), (Tg, T3), ey (Tz[, T2[+1), taking the
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Table 5 Standard set of patterns 7'S(8, k)
T;
Ty
Ty
T,
T3
Ty
Ts
T
17

ons
=

12

ons
w
ons
~
=
I
ons
=N
ons
~

i,0

— O, ORFR OO
OSRr PR OR O R~O
[ R T e S S S o S S S )
(=2 el =R o
_ o = O 0o~ OoIs
SO =R P OO = =O
_ O Ok O~ oIS
O =R O O = oIS

same assumptions as before (k « N and N — k ~ N),
can be estimated according to the next equation [31]:

Zk_l 1 [loga N1+1
—> 100%.

FC(Ts(N, k) = (1 - ( e

eay

The last equation can be regarded as the weighted
value in percent of all combinations within any k out
of N bits generated by the standard test Ts(N, k). For
N = 2" and k € {2, 3, 4} the coverage FC(Ts(N, k)) of
the T's(N, k) is given in Table 6 [31].

Brief analyzes of above presented data shows that
with standard tests 7's(N, k) we can achieve very high
level of coverage. For example, with g =2(m + 1) =
2(30 4+ 1) = 62 iterations of Tg(N, k) and k =3 the
level of coverage is equal to FC(Ts(N, k)) = 99.98%.
Moreover the complexity O(Ts(N, k)) of Ts(N, k) with
N =2"1is 2(m + 1) and it is the minimal one for such
type of tests [9, 23]. At the same time, FC(Ts(N, k))
is the decreasing function with the growing k. For
limited values of N the limited values of C(Ts(N, k))
are achieved too. These values cannot be increased by
the test Ts(N, k).

As a good approximation of exhaustive and pseudo
exhaustive testing the random testing have been widely
used [16, 21]. In comparison with deterministic tests,
like Ts(N, k), the random tests Tx(N, k) allow to
achieve the unlimited value of FC(Tg(N, k)), as closed
to 100%, as possible. It can be done by increasing

The weighted value in percent FC(Tg(N, k)) of all
combinations within any k out of N bits generated by
the random test Tx(N, k) can be obtained from the
Eq. 22 [16, 21, 31].

!
FC(Tr(N, k)) = (1 — (1 — 21—k> ) 100%.

It is obviously that maximal value of FC(Tr(N, k))
equals to 100% can be achieved for / = oo only. Real
values close to 100% for big values of [ — oo, are
shown in Table 7 [31]. All the data presented in Table 7
are obtained for the same values of N and the same
| = 2(m + 1) number of iterations as in case of results
presented in Table 6. It allows to make the comparison
and conclusions. The comparative analyzes shows that
for fixed value of iterations / we achieve the higher
coverage in case of the deterministic tests like 7s(NV, k)
compare to random tests Tr(N, k).

Random tests Tr(N, k) ={Ty, Ty, T», ..., T;_1}, can
be regarded as iterative tests, with one (¢ = 1) pattern
per iteration. In all iterations the random pattern 7; =
(ti,N—h tiN—2, ..., tio, ti1, tio), 1€{0,1,2,..., [ — 1} with
t;j € {0, 1} is selected regardless of the patterns previ-
ously applied.

The key idea of the short iterative antirandom tests
T;’(N ,k) is to increase the size (¢ > 1) of the one
iteration of the standard random tests. The first pattern
for all iterations is a random vector, like in random
tests, but the rest of iteration is constructed according
to above presented algorithms (9), (10) and (11). The
simplest solution is the iterative test with two patterns
per iteration. The first pattern 7 is the random one and
the second pattern 7 is the negation of the Tj.

The coverage P(T?(N, k)) expressed as a weighted
value of binary combinations generated during one iter-
ation is presented in Section 4 as an coverage of optimal
antirandom test P( TqA(N, k)). It should be noted that
0 < P(T% (N, k)) < 1. The coverage FC(T(N, k)) of
arbitrary antirandom tests T (N, k) with [ = rq itera-
tions can be estimated as:

(22)

FC(TY{(N.k)) = (1 - (1— P(T4(N, k)))") 100%.

complexity O(Tg(N, k)) of the test. (23)

Table 6 Standard test N =om 75 510 915 520 25 230 935

Ts(N, k) coverage

FC(Ts(N, k)) estimation k=2 98.44 99.95 99.99 99.99 99.99 99.99 99.99
k=3 82.20 95.77 98.99 99.76 99.92 99.98 99.99
k=4 63.87 76.98 88.19 93.94 96.89 98,40 99,18
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Table 7 Random test N = om 25 10 215 720 25 230 935

TRr(N, k) coverage

FC(TR(N, k)) estimations k=2 96.83 99.82 99.98 99.99 99.99 99.99 99.99
k=3 79.85 94.70 98.60 99.63 99.90 99.97 99.99
k=4 63.87 76.98 88.19 93.94 96.89 98,40 99.18

To compare the coverage of iterative antirandom
test with the random one the next differences can be
analyzed:

A = FC(TY(N, k)) — FC(Tg(N, k))

- ((1 — P(T%(N, k)))"" - <1 -

(24)

The value of (1 — P(T% (N, k))) — ((1—1/2k)9),
where r=1I/q, (1-1/25)% < 1 and (1 — P(T% (N, k))) <
1 with the growing value r is going to zero. It allows
to make the conclusion that iterative antirandom tests
are more coverage compare to the random one for
reasonable (small) number of iterations. At the same
time, increasing the size g of one iteration, leads to
decreasing the coverage of one iteration of antirandom
test compare to the random test with the same num-
ber of patterns. Then, as the optimal numbers of the
patterns within one iteration we can choose g = 2,3
and 4.

6 Experimental and Comparative Results

To confirm the presented ideas we have compared
the coverage of several antirandom like tests strategy
(iterative antirandom, pure antirandom, STPG) and
random one in terms of number of generated binary
combinations for all arbitrary k out of N bits. By the
iterative antirandom test in this experiment we mean
iterative antirandom tests based on optimal vectors.
In each iteration of such tests we apply four patterns
where the first of them is a random one and the rest
are generated according to Eq. 11. The experiments
have been done for k = 2 and k = 3. Each experimental
run consists of the iterative application test patterns
generated by different test strategies.

Due to the fact that the authors of STPG algorithm
have not indicated how to determine the adding fac-
tors [33], a random value was used in our experiments.
Moreover, as have been shown before, in the case of
pure AR tests, we can’t use Hamming distance as the
fitness function. It does not allow to get the right answer
for choosing the optimal test vectors for antirandom

Fig. 3 The weighted number
of binary combinations for all
arbitrary k = 2 out of N = 15 100 — ——— e
bits generated with different = _ - B
test methods 94+ 0 e
80 1
70 1+
9
o 60
E
%’ sod 4 Pure ?ntiran.dom
o iterative antirandom
o — —
o404 random
— — — STPG
30 1+
20+
10 +
0o +—+—+—+—+—+—++++"+F+FFFF"F"F"F"F
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
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test. Therefore, for this purpose a Cartesian distance
was used as the fitness function.

The obtained results for k =2 are shown in the
Fig. 3. The x-axis represents the number of the test pat-
terns, and the y-axis — the weighted number of binary
combinations for all arbitrary k = 2 out of N = 15 bits.
For Fig. 3, we observe that all coverages curves rise
sharply and exhibits a smooth behavior. We observe
too that for small number of iterations pure antiran-
dom, pure random and STPG antirandom tests sig-
nificantly lag in performance compared with iterative
antirandom tests what agree with analytical investiga-
tion (see Eq. 24). In this case iterative antirandom test
pattern generation scheme can obtain a high coverage
with significantly fewer test patterns compared to other
tested schemes.

The results for k = 3 are shown in the Fig. 4. The x-
axis represents the number of the test patterns, and the
y-axis — the weighted number of binary combinations
for all arbitrary &k = 3 out of N = 15 bits. For Fig. 4, we
observe that iterative antirandom tests obtain similar
coverage to pure antirandom tests. The results show
that both of them generally provide higher coverage
than pure-random and STPG tests schemes.

In the next experiment we have compared the cover-
age of the iterative antirandom tests with other iterative
methods known from the literature. In this experiment
three different iterative antirandom tests and random

Fig. 4 The weighted number
of binary combinations for all
arbitrary k = 3 outof N = 15 100 -
bits generated with different
test methods 90 +
30 4 random
STPG
70 1+
S
% 60+
3)
>
g8 50
3
T a0t
30 +
20 +
10 -
0+

one have been investigated and compared. All investi-
gated tests can be described as follows:

Tr Iterative test based on random patterns (g = 1).
Each successive pattern is randomly selected re-
gardless of the patterns previously applied.

Ty Iterative test based on pairs of patterns (¢ = 2). In
each iteration two patterns (7, T1) are applied.
Ty is a random pattern, 7 is negation of 7.

Ts Iterative test based on standard patterns (g = 4).
In each iteration four patterns (7, T, T, T5) are
applied. Ty is a random pattern, 7, is negation of
Ty, T is a pattern where HD(Ty, T2) = N/2, T
is negation of T5.

To Iterative test based on optimal patterns (g = 4).
In each iteration four patterns (7, Ty, T, T5) are
applied. Ty is a random pattern, 7Ty, T, T5 are
generated according to Eq. 11.

The investigation was based on simulation where N-
bits patterns were generated. Each successive pattern
was generated according to the scheme of the inves-
tigated test. As the results we obtained the number
of N-bits patterns, which we have to generate, to ex-
haustively cover all possible (2’) k-subspaces. Average
numbers of these patterns (coverage of the tests) for
N =15 (in case of Ts N = 16) and various k are given
in Table 8. We observe that in each case the iterative

pure antirandom
iterative antirandom

I R N R N
[ B B R
01 2 3 4 5 6 17

N B E E E B B H R
8§ 9 10 11 12 13 14 15 16 17 18 19 20

Number of test patterns
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Table 8 Coverage of iterative tests for N = 15

k Tr TN Ts To

3 21.78 16.60 16.40 13.46
4 53.78 43.5 40.7 33.90
5 129.6 108.0 100.5 86.60

antirandom tests are more efficient than random one.
Moreover the best results were obtained in the case
of antirandom test which is based on optimal vectors
(To). For example for k = 5 and iterative random test
the average number of applied test patterns which
is needed to exhaustively cover all possible (}) k-
subspaces equals to 129.6. For the same k=15 and
iterative antirandom test based on optimal vectors the
average number of applied test vectors equals to 86.60.
So the coverage of the test based on optimal patterns
are about 33% higher in comparison to iterative ran-
dom test.

7 Conclusion

A new approach to improve the test coverage of ran-
dom testing was presented in this paper. Instead of
standard random testing iterative antirandom testing
was proposed and investigated. The key idea of this
kind of tests is repeating short antirandom test. In
these tests the first pattern for all iteration is a random
pattern, like in random tests, but the rest of iteration
is constructed according to a specific algorithm. Three
different anirandom tests were investigated. Obtained
results show that all analyzed iterative antirandom tests
have higher efficiency in comparison to standard ran-
dom test. The best efficiency was obtained for antiran-
dom test based on optimal vectors.

Open Access This article is distributed under the terms of the
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permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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