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Abstract We present a biologically plausible spiking
neuronal network model of free monkey scribbling that
reproduces experimental findings on cortical activity
and the properties of the scribbling trajectory. The
model is based on the idea that synfire chains can en-
code movement primitives. Here, we map the propaga-
tion of activity in a chain to a linearly evolving preferred
velocity, which results in parabolic segments that fulfill
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the two-thirds power law. Connections between chains
that match the final velocity of one encoded primitive
to the initial velocity of the next allow the composi-
tion of random sequences of primitives with smooth
transitions. The model provides an explanation for the
segmentation of the trajectory and the experimentally
observed deviations of the trajectory from the parabolic
shape at primitive transition sites. Furthermore, the
model predicts low frequency oscillations (<10 Hz) of
the motor cortex local field potential during ongoing
movements and increasing firing rates of non-specific
motor cortex neurons before movement onset.

Keywords Motor cortex - Compositionality - Synfire
chains - LFP - Spike synchrony - Motor control

1 Introduction

Motor learning can be tedious. The optimisation of
the interconnected processes involves the adaptation
of internal models, the prediction of external rewards
and the exploration of synergistic patterns of mus-
cle activations. Often it occurs on time scales com-
parable to the life span and can be achieved only
on the cost of the plasticity of the available mo-
tor actions. In order to reconcile the complexities
of behavioural learning with the necessary flexibility,
smoothness and efficiency of the movements, evo-
lution has brought about a compositional approach
that allows behavior to be generated from a set
of possibly highly optimized elements. All move-
ments that are possible for the organism can brought
about by a combination of elementary movements,
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or primitives, however movement efficiency is im-
proved by concatenating well-matched primitives in a
purposeful manner.

The existence of behavioural primitives is supported
by a number of experimental studies. For example,
force field primitives that can be combined vectorially
have been identified by stimulating the frog’s spinal
cord (Bizzi et al. 1991, 2008; Mussa-Ivaldi et al. 1994;
Mussa-Ivaldi and Bizzi 2000). Hart and Giszter (2010)
revealed the neuronal basis of these motor primitives
in the spinal cord. Recently, movement primitives have
been identified in a free monkey scribbling task on
a two dimensional plane (Polyakov et al. 2009a, b).
Segments of constant acceleration constitute the par-
abolic movement primitives which satisfy the two-thirds
power law of the end-effector dynamics observed in
experiments (Lacquaniti et al. 1983; Viviani and Flash
1995).

An obvious question arising within this approach is
how primitives are represented in a dynamic network
of spiking neurons. One hypothesis is based on feed-
forward sub-networks known as synfire chains (Abeles
1991). These structures were originally postulated to
explain the occurrence of precise spike timing in corti-
cal neurons (e.g. Eckhorn et al. 1988; Abeles et al. 1993;
Prut et al. 1998). The general concept of feed-forward
networks has recently been reviewed by Kumar et al.
(2010) with respect to the transmission of informa-
tion. Although there is substantial indirect evidence for
synfire chains, a direct proof of their existence is has
yet to be established due to the difficulties of deter-
mining such fine grained connectivity in neural tissue.
However, methods to detect their activity continue to
improve (Abeles and Gat 2001; Schrader et al. 2008;
Berger et al. 2010) and theoretical and computational
studies have shown that such structures would support
the stable propagation of activity under quite general
conditions (Herrmann et al. 1995; Diesmann et al. 1999;
Gewaltig et al. 2001). Bienenstock (1995) proposed that
each primitive is represented by an individual synfire
chain and that the synchronization of activity between
different chains binds the associated primitives into a
composed object. A further study (Bienenstock 1996)
elaborated on the relevance of the concept of com-
positionality for brain processing. Since then, it has
been shown that synfire chains can be synchronized
(Arnoldi and Brauer 1996) and that this mechanism
can indeed realize compositionality (Hayon et al. 2005;
Abeles et al. 2004; Schrader et al. 2010).

In the present study, we focus on compositional-
ity in the sense of how behavioral primitives can be
concatenated into sequences. It has been shown that
networks of synfire chains can generate sequences
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in the context of abstract primitives (Schrader et al.
2010) or syllables in bird song (Li and Greenside
2006; Jin et al. 2007; Glaze and Troyer 2008; Jin 2009;
Hanuschkin et al. 2010b). We present a functional
model that is simultaneously capable of reproducing
several experimental findings on cortical activity and
generating trajectories which exhibit key features of
free monkey scribbling. Our model consists of a topo-
logically organized network of synfire chains. Neurons
in the same pool of a chain encode the same pre-
ferred velocity vector, thus realizing a population cod-
ing for movement (Georgopoulos et al. 1982, 1986b).
The neural activity is characterized by asynchronous
and irregular dynamics (Burns and Webb 1976; Softky
and Koch 1993; van Vreeswijk and Sompolinsky 1996;
Ponce-Alvarez et al. 2010), but due to the synfire ac-
tivity, precise interspike timing and patterns can also
be observed during ongoing motion and locked to rel-
evant task features, as have been found experimentally
in the motor cortex (Riehle et al. 1997, 2000; Shmiel
et al. 2005, 2006; Ghosh et al. 2009; Putrino et al.
2010). The topological arrangement of our network
is supported by the finding that correlation strength
between neurons decreases as the distance between
them increases (Murthy and Fetz 1996; Dombeck et al.
2009), and that nearby neurons tend to prefer similar
motion parameters (Georgopoulos et al. 2007; Stark
et al. 2009). The trajectories generated by our model
consist of a series of parabolic segments similar to those
identified experimentally (Polyakov et al. 2009a, b)
which fulfill the well established two-thirds power law
relationship of velocity and curvature (Lacquaniti et al.
1983; Viviani and Flash 1995). It has previously been
shown that population vectors of neural activity also
fulfill this relationship (Schwartz 1994).

The paper is organized as follows. In Section 2, we
summarize how stable activity propagation in a feed-
forward network of spiking neurons can be mapped
to parabolic movement primitives in position space. In
Section 3, we present our model architecture and de-
termine optimal parameters to enable long sequences
of primitives. We then derive experimental predictions
for the signature of synfire chain based composition
of trajectories in collective signals of neural activity
such as the local field potential (LFP). We analyze
the characteristics of an example model trajectory and
demonstrate that it shares key properties with trajecto-
ries generated by monkeys in a scribbling task. Finally,
in Section 4 we discuss the model findings, limitations
and predictions.

Preliminary results of this model study on free mon-
key scribbling have been published in abstract form
(Hanuschkin et al. 2009a, b).
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2 Materials and methods
2.1 Mapping uniform motion to parabolic motion

It has previously been demonstrated that monkey
scribbling is well approximated by parabolic strokes
(Polyakov et al. 2009a, b). Parabolic movement prim-
itives obey the two thirds power law, are invariant
under equi-affine transformations and minimize hand
jerk. A parabola can be constructed from a constant
acceleration produced by a homogeneous force field.
Assume the initial position and velocity of a point
mass is Xo = (X0, yo)© and vy = %o = (Xo, yo) ', respec-
tively. If the point mass experiences a constant accel-
eration a=(ay, ay)T then the trajectory of x=(x, y)! is
given by

1
x(t) = X + vot + Eatz. (1)
The curvature of the path is

c = |xy_ yxl - |).C0ay _y0ax|
v3 v3

’

where v=/||x|| is the tangential velocity. Since |xoa,—
Voay| is constant, ¢ and v obey the following relation

V= KC_»%, (2)

where K is named velocity gain factor. Equation (2) can
be rewritten in terms of the angular velocity A = vc as:

2
3

A= Kc3, ?3)

the experimentally observed two-thirds power law
(Lacquaniti et al. 1983). Thus, parabolic movement
segments naturally fulfill the two-thirds power law.

Constant accelerations are equivalent to velocities
that change linearly in time, asa = ‘fl—:. In velocity space,
linearly evolving velocities (Vv = const) are represented
by a uniform motion along a straight line. Therefore,
straight lines in velocity space can be mapped into
parabolic trajectories in position space, as illustrated
in Fig. 1.

2.2 Propagation of activity in cell assemblies

A natural candidate neural architecture to produce
spiking activity which can be associated with a uni-
form motion is the synfire chain (Abeles 1991). In
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Fig. 1 Mapping uniform motion to parabolic motion. (a) Uni-
form motion along a straight line in velocity space corresponding
to motion with constant acceleration (arbitrary units). Motion
starts at time £y and finishes at time #1, #; > marks the middle point.
(b) Parabolic trajectory in position space corresponding to (a),
given an initial position (0, 0)

the simplest formulation of the synfire chain concept,
excitatory neurons are grouped in pools and each neu-
ron is connected to all neurons of the following pool
creating a chain of convergent and divergent feed-
forward connections. If the first group is stimulated
with sufficient strength and a sufficiently high degree of
synchrony, a wave of synchronous activity propagates
along the chain. The propagation along the chain is at
constant speed (Wennekers and Palm 1996; Diesmann
et al. 1999) and stable under fairly general conditions
(Herrmann et al. 1995; Diesmann et al. 1999). As
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Fig. 2 Synfire chain connectivity. Excitatory neurons (open
circles) of pool i are connected to pool i+ 1 in a feed-forward
manner. Inhibitory neurons (blue filled circles) are projecting
globally to the network. Connections are visualized by arrows in
the corresponding (black = excitatory, blue = inhibitory) colors
with pointed (excitatory) or round (inhibitory) arrowheads. In
this figure the dilution rate is set to p = 1 for clarity
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illustrated in Fig. 2, the basic concept of synfire chains
has recently been extended by introducing a dilu-
tion rate p and globally projecting inhibitory neurons
(Abeles et al. 2004; Hayon et al. 2005). Instead of
connecting each neuron to all neurons of the follow-
ing group, connections are drawn with probability p.
Additionally, each synfire group comprises not only
excitatory neurons making feed-forward connections,
but also inhibitory neurons that make random connec-
tions to neurons selected from the entire network. The
former adaptation has the effect that the propagation
of activity can be more easily influenced by outside
activity, such as synfire activity binding (Abeles et al.
2004; Hayon et al. 2005). The latter adaptation balances

the network and enables control of the global network
activity in the presence of synfire activity. The synfire
chain connectivity is described in detail in Table 1,
the corresponding parameters can be found in
Table 3.

2.3 Mapping activity in cell assemblies
to parabolic motion

The activity of single cells in the motor cortex has been
shown to be directionally tuned to arm movements
(Georgopoulos et al. 1982). The arm trajectory can be
estimated by calculating the population average over all
neurons (Georgopoulos et al. 1986a, 1988). Similarly,

Table 1 Summary of model Model summary

structure after Nordlie et al. -
opulations
(2009) Populat

One network of interconnected synfire chains (SFCN), one

backward-and-forward connected chain (BFCN)

Connectivity

SFCN: excitatory feed-forward (FF) connections within each chain

and between final and initial groups of selected pairs of chains,
cross-inhibition between chains, global random inhibition.

@ Springer

Neuron model

Synapse model

BFCN: FF and feed-back (FB) connections. SFCN to BFCN: random
inhibition. BFCN to SFCN: FF connections from final group of BFCN
to initial group of chain 1 in SFCN. All connections realized
using random divergent (RD) or random convergent (RC) wiring.
Leaky integrate-and-fire (IaF), fixed voltage threshold, fixed absolute
refractory time
a-current inputs

Input Independent fixed-rate Poisson spike trains to all neurons

Measurements Spike activity, membrane potential
Populations
Name Elements Size
SFCN Synfire chain SFC; 10
BFCN Backward-and-forward 1

connected chain BFC

SFC; SFC groups G; ; 50
BFC BFC groups G, 50
Gij Neuron populations E; j,I; ; 2 populations per group G; ;: E; jand I; ;
Gy Neuron populations E7, I} 2 population per group Gj: Ef and I}
E;;,E} Excitatory IaF neuron 100
Lij, I} Inhibitory IaF neuron 25
Connectivity
Name Source Target Pattern
FF Ei,j Ei+1.j+1i+1.j RD, 1 — Cgy, weight Jg, delay d
Cheonn Ej(),j E]vjf + Il,/"’ with j, / as Fig. 4 RC, Cgx — 1, weight Jg, delay d
Iglobal Iiff SFC]‘ RD, 1 — kg, weight Jy, delay d
Icross I;; SFCJJ, with j, / as Fig. 4 RD, 1 — k., weight Jy, delay d
Igrc I,"j BFC RD, 1 — kg, weight J1, delay d
FF* E; Ef + 1 RD, 1 — Cgx, weight Jg, delay d
FB* E; B+, RD, 1 — Cgyx, weight Jg, delay d
I;‘lobal Iy BFC RD,1 — kg, weight Jy, delay d
EEFC E;O SFC]J RC, Cgx — 1, weight JE, delay d
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we use population coding to generate a trajectory from
simulated neuronal activity:

all neurons

v= Y wa()ps
I

chain pool

=YY wlawp], ()
j i

where v is the instantaneous velocity, ai] (¢) is the activity
in the ith group of the jth chain and pi/ its preferred
velocity. The weights are set to w! = 0.02s ¥ j,j resulting
in velocities comparable to the monkey experiments
(median 300 mm/s as given by Polyakov et al. 2009b).
The propagation speed of the activity volley in a synfire
chain from one pool to the next is constant as described
in Section 2.2. We can therefore map a synfire chain
to an arrow in velocity space. Each pool of the synfire
chain is assigned its preferred velocity p; according to
its position along the arrow, i.e. for a chain consisting
of n pools mapped to an arrow starting at vy and ending
at vy,

1
(V1 — vp) + vo. 5

pi:n—l

This is illustrated in Fig. 3(a); the activity of the cor-
responding synfire chain is given in Fig. 3(b). As the
preferred velocity for each chain jchanges linearly with

the pool index i and the propagation speed from one
pool to the next is constant, the instantaneous velocity
vector also evolves linearly resulting in parabolic mo-
tion as derived in Section 2.1. Figure 3(c) shows the
parabolic trajectory in position space generated by the
synfire activity in Fig. 3(b). To extract the trajectory
from the simulated neuronal activity, we bin the activity
in 1 ms intervals and reconstruct the motion according
to the population coding scheme given by Egs. 4 and 5.

2.4 Sequences of primitives

As discussed in the previous section, an appropriate
mapping of preferred velocities to the pools of a synfire
chain enables the generation of an individual parabolic
segment. By extension, a series of parabolic strokes in
position space can be realized by uniform motion along
a graph of connected straight lines in velocity space.
An example of this is shown in Fig. 4. Each arrow in
velocity space is realized by a synfire chain with the
corresponding velocity mapping. By construction, the
velocity at the end of one parabolic stroke is equal
to the velocity at the beginning of the next. When
the activity volley in a synfire chain reaches the final
pool, feed-forward connections to the initial pools of
the two potential successor chains initiates the prop-
agation of an activity volley in each of them. Assum-
ing a strong competition between the two stimulated
chains, such that only one of the chains can continue

Fig. 3 Mapping synfire (a) 1
activity to parabolic

movements: (a) The

preferred velocity vectors for

the pools of the synfire chain -
(gray arrows; shown for every
third pool of the chain) are
determined by sampling a
straight line in velocity space

(C) 150 T

100 7

y [mm]
3

(red arrow). (b) The spiking

activity of an activity volley
propagating with constant

speed along a synfire chain.

Preferred velocity vectors for (b)

0 -100 0 100

every third pool as in (a) are 50 L
shown as gray arrows above :
the dot display. (¢) Generated
parabolic trajectory. The
black cross at (0,0) indicates
the start position

40 7

pool id

20

10

50 75 100 125 150
time [ms]
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1

10

Vx

Fig. 4 Abstract generator for trajectories consisting of parabolic
segments. Uniform motion along straight lines in velocity space
(arbitrary units) is equivalent to parabolic motion in position
space. Each colored arrow represents a parabolic segment and its
direction of execution. When the end of an arrow is reached, one
of the two successor arrows is selected. Arrows are numbered to
enable future reference

propagating the activity, a trajectory of parabolic seg-
ments is produced.

2.5 Analysis of the trajectories

We analyze the properties of the generated trajectories
to see whether they are sequences of parabolic seg-
ments. A parabola has zero equi-affine curvature (for a
brief introduction to equi-affine geometry see Polyakov

et al. 2009b). Following Calabi et al. (1996, 1998), the
equi-affine curvature « can be approximated employing
five points P,. We define

xi yil
[l]k] = [P,‘, Pj, Pk] = det X yj 1
X Vi 1
which is twice the signed area of the triangle with

vertices P;, P; and Py. The equi-affine curvature « is
now given by:

S
T
where

4T =

k]

[T

O<i<j<k<4

[ijk]

and

48 = [013]%[024]> ([124] — [123])?
+ 01217 [034]% ([134] — [132])?
— 2[012][034][013][024] - ([123][234]
+[124][134]).

2.6 Numerical simulations

We perform numerical simulations of networks of pas-
sive leaky integrate-and-fire neurons (Lapicque 1907;
Abbott 1999) with post synaptic currents (PSCs) de-
scribed by the alpha-function. This model provides a
reasonable approximation of many of the basic fea-
tures of cortical nerve cells, such as integration of

Table 2 Summary of model Neuron models

dynamics after Nordlie et al.

(2009) Name IaF neuron
Type Leaky integrate-and-fire, ¢-current input
Subthreshold dynamics V() =-V@)+ RI® if t>r+ Tref
V)=V, else
se =i ~
1) = Iy + i Z;e’“ sS(t—1
Spiking Vi) < Vin AV(E+) > Vi
1. calculate retrospective threshold crossing
with bisectioning method (Hanuschkin et al. 2010c)
2.set t* =t 4+ Aoffset
3. emit spike with time stamp ¢*
Input
Type Target Description
Poisson generator SFCN, BFCN Independent for all targets, rate vy, weight Jg

Measurements

Spike activity of all neurons, membrane potential of neurons of SFC; with j € (1,2,7)
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synaptic inputs, and the stereotypical character of
the action potential and can be simulated efficiently
(Rotter and Diesmann 1999; Plesser and Diesmann
2009) since the sub threshold membrane dynamic is ex-
pressed by a time invariant linear differential equation.
This enables us to simulate networks of ten thousands
of neurons with biological realistic connectivity nec-
essary for the investigation of collective phenomenas
like the propagation of ensemble firing of neuronal
groups. A description of the neuron model dynamics
and corresponding parameters can be found in Tables 2
and 3.

Simulations were performed with NEST revision
8257 (see www.nest-initiative.org and Gewaltig and
Diesmann 2007) using a computational step size of 1 ms
on a standard workstation running Linux. To avoid syn-
chrony artefacts (Hansel et al. 1998), we employ precise
simulation techniques in a globally time driven frame-
work (Morrison et al. 2007b; Hanuschkin et al. 2010c).
To allow other researchers to perform their own exper-
iments, at the time of publication we are making a mod-
ule available for download at www.nest-initiative.org
containing all relevant scripts.

Table 3 Specification of model parameters

Name  Value Description
Connectivity
Cgyx 93 Number of feed-forward connections
from each excitatory neuron
kg 7 Number of outgoing global connections
from each inhibitory neuron
ke 19 Number of cross connections
from inhibitory neuron to each
competing SFC;
kg 6 Number of connections from each
inhibitory neuron to the BFCN
kg 0 Number of connections from each
inhibitory neuron in the BFCN
JE 20.68 pA  Amplitude of excitatory connection,
=0.1 mV EPSP amplitude
Jr —124.68 pA  Amplitude of inhibitory connection,
=—0.6 mV EPSP amplitude
d 1.5 ms Synaptic transmission delay
Neuron model
Tm 20 ms Membrane time constant
Cn 250 pF Membrane capacitance
Vin 20 mV Fixed firing threshold
Vo 0mV Resting potential
Vieset 0mV Reset potential
Tref 2 ms Absolute refractory period
Ty 0.5 ms Rise time of post-synaptic current
Input
Vx 7.7kHz External Poisson rate

The categories correspond to the model summary in Tables 1
and 2

3 Results
3.1 Network model architecture

We develop a spiking network model to realize a gen-
erator of random trajectories consisting of parabolic
segments. Our model comprises two interconnected
networks as shown in Fig. 5. The synfire chain network
(SFCN) consists of ten chains, each chain correspond-
ing to one of the arrows in velocity space shown in
Fig. 4 and thus encoding a parabolic segment. Each
chain consists of 80% excitatory neurons that make
feed-forward connections with dilution factor p = 0.75
and 20% inhibitory neurons making k, random con-
nections to other neurons in SFCN. To distinguish the
random inhibitory connections from other connectivity
patterns, we will refer to k, as the global inhibition
parameter. The graph vertices specified in Fig. 4 are
realized by feed-forward connections from the final
group of each chain to the initial groups of two other
chains, e.g. the final group of chain 1 has feed-forward
connections to the initial groups of chains 2 and 7.
The preferred velocity of the last group of a chain is
the same as the first groups of the chains it connects
to in order to generate trajectories that are smooth at
the transition points. Reliable switching at the tran-
sition points is enabled by mutual inhibition between
potential successor chains; this is discussed in detail in
Section 3.2.

In strongly recurrently connected networks of spik-
ing neurons synfire activity can be ignited sponta-
neously (Tetzlaff et al. 2002). Although this is an

BFCN >

Poisson
input
\ 4

SFCN %

Fig. 5 Architecture of the network model. Two networks are
coupled with an inhibitory/excitatory reciprocal connection. Ex-
citatory connections are shown as black pointed arrows, in-
hibitory connections as blue rounded arrows. The synfire chain
network (SFCN) consists of 10 synfire chains connected into a
directed graph as shown in Fig. 4. The backward-and-forward
connected network (BFCN) consists of a single backward-and-
forward connected chain. Both networks are driven by an in-
dependent excitatory Poisson input to each neuron with rate
vy = 7.7 kHz
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unwanted effect in studies investigating embedded
synfire chains in balanced recurrent networks as it
limits the density of local feed forward structures, we
exploit this property in our model. We create a synfire
chain with feed-backward as well as feed-forward
connections, both with a dilution factor of p. This
backward-and-forward connected chain, or BFC, con-
stitutes the second network (BFCN). One end of the
BFC makes excitatory feed-forward connections with
dilution factor p to the initial pool of chain I in SFCN.
Each inhibitory neuron in SFCN makes kg connections
to neurons randomly selected from BFCN, thus inhibit-
ing its activity when synfire activity is present. If synfire
activity is extinguished, the drop in inhibition causes a
self-ignition in the unstable BFC, which in turn triggers
a fresh wave of activity in chain 1. Thus the recurrent
connections between SFCN and the BFCN ensure sus-
tained activity. The dynamics of the BFCN and of the
interaction with SFCN are investigated in Section 3.3.
The arbitrary choice of chain 1 to re-ignite the SFCN is
made here for the sake of simplicity; a more complex
interaction could be assumed which would allow re-
ignition of the SFCN at the beginning of any chain.

The scaling of inhibitory synapses with respect to
excitatory synapses and the rate of the external excita-
tory Poisson input to each neuron in SFCN are chosen
such that in the absence of synfire activity, the net-
work spikes in the asynchronous irregular (Al) regime
(Brunel 2000). A tabular description of our model is
given in Tables 1 and 2; unless otherwise stated, model
parameters are as given in Table 3.

3.2 Competition between synfire chains

Each of the chains in SFCN represents a parabolic
movement primitive. To produce a series of primitives,
it is necessary that activity reliably propagates from one
chain to exactly one of multiple (here two) potential
successor chains at the vertices of the network graph
(see Fig. 4). In our model, cross-inhibition realizes
this switching between two simultaneously activated
and competing chains. We investigate two approaches
to achieve reliable switching. In Section 3.2.1, cross-
inhibition is structured such that synchronous activity in
each pool directly inhibits the activity in the next pool
of the competitor chain. This approach is motivated by
the idea of synfire binding (Abeles et al. 2004; Hayon
et al. 2005; Schrader et al. 2010), in which two simul-
taneously active chains can bind a third chain due to
structured excitation. In an alternative approach in Sec-
tion 3.2.2, the cross-inhibition is unstructured. Synfire
chain competition relying solely on global inhibition
has recently been proposed by Chang and Jin (2009).

@ Springer

However, in their study the synfire chain activity is
‘driven’: a suprathreshold driving input is combined
with dominant global inhibition. In contrast, our model
exhibits activity in the asynchronous irregular regime
due to balanced global inhibition (van Vreeswijk and
Sompolinsky 1996) and only exhibits synfire activity if
the initial pool of a chain receives additional stimula-
tion. Due to our different activity regime, additional
assumptions on the inhibition between chains need to
be made to realize reliable switching.

3.2.1 Competition by structured cross-inhibition

Figure 6 illustrates the structured cross-inhibition archi-
tecture. Each neuron in the initial pools of the potential
successor chains is activated by p - Cg randomly chosen
excitatory neurons from the final pool of the preceding
chain. The symmetric connections ensure that the suc-
cessor chains are stimulated equally. All inhibitory neu-
rons of pool i of one potential successor chain project to
k. neurons of pool i 4 1 of the other potential successor
chain, and vice versa. Thus each wave of synchronous
activity directly inhibits the propagation of the activity
to the next pool in the competitor chain, leading to a
competition. The activity in the losing chain dies away
leaving the activity in the winning chain to continue
propagating, thus realizing a switching mechanism.

To demonstrate the switching and its effects on col-
lective signals such as average firing rate or local field
potential (LFP), we change the inter-chain connectivity
such that only chains 1, 2 and 7 can be activated.
A reduced network which still exhibits synfire chain
competition is provided by the following connectivity:
the final pool of chain 1 is connected to the initial pools
of chains 2 and 7, the final pools of these chains are
connected back to the initial pool of chain 1. Chains 2
and 7 are mutually cross inhibited as shown in Fig. 6.

Fig. 6 Structured cross-inhibition architecture. The final pool of
one synfire chain activates the initial pools of two potential suc-
cessor chains (excitatory connections illustrated by black pointed
arrows). Each pool in a successor chain inhibits the next pool in
the competitor chain (blue rounded arrows)
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A reduced network with no synfire chain competition
is realized by connecting chains 1, 2 and 7 in a cycli-
cal fashion but retaining the structured cross-inhibition
between chains 2 and 7. Both reduced networks are
activated by an external Gaussian pulse packet to the
initial group of chain 1. We calculate the average firing
rate (Gaussian smoothing kernel with ¢ = 1 ms) and
two approximations of the local field potential (LFP)
of the network. A first approximation of the LFP is
given by the average membrane potential of 10% of
the neurons in the network (Ursino and Cara 2006).
A more sophisticated approximation of the LFP (in
arbitrary units) is given by calculating the sum of the
absolute values of the excitatory and inhibitory postsy-
naptic currents (PSCs) in 1 ms steps and smoothing the
result with a Gaussian filter with o = 1 ms (Mazzoni
et al. 2008).

The switching mechanism is demonstrated in
Fig. 7(a), which shows the spiking activity of the mini-
mal network with synfire chain competition. After each
completion of chain 1, either chain 2 or chain 7 wins
the competition; the activity in the other chain dies
away. The average firing rate, mean potential and ap-
proximated LFP of the network are given in Fig. 7(b).
The average firing rate increases whenever two chains
are competing, returning to its initial value after the
activity of the losing chain has died away. The time of
cell assembly competition is also clearly visible in both
LFP approximations. The average membrane potential

Fig. 7 The effect of synfire

shows a dip right after the increased local firing rate due
to the neuron reset and refractory period during which
the membrane potential is clamped to zero. The change
in the signal given by the summed and smoothed ab-
solute postsynaptic currents is particularly pronounced
at the transition sites due to the contribution of the
inhibitory PSCs, which are g times larger than the ex-
citatory currents. Figure 7(c) shows the spiking activity
for the corresponding network without synfire chain
competition. The activity moves from one chain to
the next in a deterministic fashion. Figure 7(d) shows
the corresponding collective signals. The approximated
LFP signal still exhibits step-like changes due to the
increase of inhibitory activity when either chain 2 or 7
is active, however the transient increases of LFP signal
and firing rate and transient decreases of membrane
potential indicated by arrows in Fig. 7(b) are not ob-
served in the reduced network without synfire chain
competition. These results suggests that low frequency
components of the LFP in experimental data could be
indicators for cell assembly competition.

We now determine the optimal values for k, and
k., the number of outgoing connections that each in-
hibitory neuron in a synfire chain establishes with ran-
domly selected neurons and with neurons in the com-
petitor chain, respectively. To this end, we investigate
the switching error in a network where the final pool of
chain 1 is connected to the initial pools of chains 2 and
7, and the final pools of chains 2 and 7 have no outgoing

(a)
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by structured cross-inhibition
on collective signals.

(a) Spiking activity of a
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chain competition, connected
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feed-forward connections. For a given configuration
of k, and k., the network is stimulated 100 times by
applying a Gaussian pulse packet to the initial pool of
chain 1. We record the occurrence of the two types of
switching error: the activation of both successor chains
as depicted in Fig. 8(a) and the activation of neither of
the successor chains as illustrated in Fig. 8(b).

Figure 8(c) shows the probability of activating both
successor chains and Fig. 8(d) illustrates the probabil-
ity of neither of the successor chains as functions of
ko and k.. As the cross-inhibition parameter k. and
the global inhibition parameter k, increase, the prob-
ability of activating both successor chains decreases
whilst the probability that neither chain is activated
increases. The cross-inhibition parameter k. directly
influences the competition of the chains and so has
a stronger effect on the switching behavior than the
global inhibition k, parameter, which regulates the
overall activity in the network. A good choice for the
number of inhibitory connections is k. = 7 and k, = 7:
for this configuration, the probability of activating
both successor chains is p; = 5.44% + 2.26, whereas
the probability that neither chain is activated is pp =

(

Y
N

chain id

200 300 400

500
time [ms]
C
) 50 T T T
40 .
30 .
< H
20 .
10 | .
0 1 1 1
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Fig. 8 Switching errors as a function of the number of inhibitory
cross connections k. and global inhibitory connections k.
(a) Spiking activity of a reduced network connected as 1 — 2,7
with k. = kg = 7. Activity of 10% of the neurons is shown. A
switching error in which both successor chains are activated oc-
curs at around ¢ = 140 ms. (b) As in (a), but depicting a switching
error in which neither successor chain is activated at around
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(b)

4.98% =+ 1.85. The means and standard deviations for
these two values are calculated by performing the 100
switching trials for 100 different network realizations.
This configuration exhibits a reasonable compromise
between reliable switching and stability. The probabil-
ity of activating two chains can be reduced to zero by
increasing k., but at the cost of increasing the probabil-
ity of activating neither chain. Likewise, the probability
of activating neither chain reaches zero for small k., but
the probability of activating both chains increases. For a
given realization of the network a bias towards selecting
chain 2 or chain 7 can be observed, however on average
there is no bias due to the symmetry of the randomly
chosen connections (data not shown).

3.2.2 Competition by unstructured cross-inhibition

Figure 9 illustrates the unstructured cross-inhibition
architecture. As above, each neuron in the initial pools
of the potential successor chains is activated by p - Cg
randomly chosen excitatory neurons from the final pool
of the preceding chain and symmetric connections en-
sure that the successor chains are stimulated equally.

0 100 200 300 400 500
J time [ms]
(d) 100
i 75
I 50
L 25
0
0 10 20 30 error [%]
kC

t = 140 ms. (c) Percentage of trials resulting in the activation of
both successor chains as a function of the number of inhibitory
cross connections (horizontal axis) and the number of global
inhibitory connections (vertical axis). (d) As in (c) but for the
case that neither of the successor chains is activated. The red cross
indicates the chosen parameter set k. = kg =7
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Fig. 9 Unstructured cross-inhibition architecture. The final pool
of one synfire chain activates the initial pools of two potential suc-
cessor chains (excitatory connections illustrated by black pointed
arrows). Each inhibitory neuron in a successor chain projects to
a number of randomly chosen neurons in the competitor chain
(blue rounded arrows)

All inhibitory neurons of one potential successor chain
project to k. randomly chosen neurons from the other
potential successor chain, and vice versa. This archi-
tecture uniformly inhibits synfire activity in the com-
petitor, rather than simply the propagation to the next
pool as in Section 3.2.1. This architecture also leads to a
competition between the activated synfire chains, such
that the activity in the losing chain dies away and the
activity in the winning chain continues propagating.

Figure 10 demonstrates synfire chain switching on
the basis of unstructured cross-inhibition and its effect
on collective signals. The reduced network connectivity
and the spike data analysis are as previously described
in Section 3.2.1.

As in Fig. 7(b), the average firing rate in Fig. 10(b)
increases whenever two chains are competing, return-
ing to its initial value after the activity of the losing
chain has died away. The time of cell assembly com-
petition is also clearly visible in both LFP approxima-
tions as indicated by the red and blue arrows. Figure
10(c) shows the spiking activity for the corresponding
network without synfire chain competition. As for the
structured cross-inhibition case, Fig. 10(d) illustrates
that the effects marked by arrows in Fig. 10(b) do not
occur in the absence of competition between the synfire
chains. In this case, a step-like modulation is visible
for the average membrane potential as well as the ap-
proximated LFP. These steps are not observed during
simulations of the full network model, as each chain
competes with some other chain and thus all chains
generate the same excitatory and inhibitory activity.
However, they might be observable in a less symmetric
model where chains may have differing numbers of
potential successor chains.

As in the case of structured cross-inhibition, to find
the optimal values for the number of outgoing connec-
tions that each inhibitory neuron in a synfire chain es-
tablishes with k, randomly selected neurons and k. neu-
rons in its competitor chain, we investigate the switch-
ing error in a network where the final pool of chain 1
is connected to the initial pools of chains 2 and 7, and
the final pools of chains 2 and 7 have no outgoing feed-
forward connections. Figure 11 shows the probabilities

Fig. 10 The effect of synfire
chain switching realized by (a)
unstructured cross-inhibition

on collective signals.

(a) Spiking activity of 10%

(c)

of the neurons of a reduced
network with synfire chain
competition, connected
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of generating the two types of switching errors for the
network as functions of k. and k. Each configuration
is stimulated 100 times by applying a Gaussian pulse
packet to the initial pool of chain 1. As the number of
unstructured cross-inhibition connections k. increases,
the probability of activating both successor chains de-
creases (Fig. 11(a)) whilst the probability that neither
chain is activated increases (Fig. 11(b)). The influence
of k, on the switching errors is less pronounced but
acts in the same direction as k.. A good choice for the
number of inhibitory connections is k. = 19 and k, =
7: for this configuration, the probability of activating
both successor chains is p, = 0%, whereas the prob-
ability that neither chain is activated is pp = 4.51% =+
2.66. As before, the means and standard deviations for
these two values are calculated by performing the 100
switching trials on 100 different network realizations.
This configuration exhibits a reasonable compromise
between reliable switching and stability and is used for
the rest of this manuscript. As in the case of structured
cross-inhibition, for a given realization of the network
a bias towards selecting chain 2 or chain 7 can be
observed, however on average there is no bias due to
the symmetry of the connection distribution (data not
shown).

3.2.3 Competition between multiple chains

To generate a series of parabolic segments, it is neces-
sary that the network enables reliable switching from
one chain to exactly one of its successor chains. The

(a) (b)

50

40

30 error [%]

Fig. 11 Switching errors as a function of the number of inhibitory
cross connections k¢ (horizontal axis) and the number of global
inhibitory connections kg (vertical axis). (a) Percentage of trials
resulting in the activation of both successor chains (b) Percentage
of trials resulting in the activation of neither of the successor
chains. In both plots the red cross indicates the chosen parameter
setke =19and kg =7
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robust winner-takes-all mechanism proposed by Chang
and Jin (2009) cannot be realized, as it depends on
dominant global inhibition, whereas our network op-
erates in the asynchronous irregular regime which en-
tails a balance of excitation and inhibition (Brunel
2000). However, in Sections 3.2.1 and 3.2.2 we showed
that switching to one of two possible successor chains
is reliable if the inhibition strength and connectivity
are chosen appropriately. Here we investigate whether
competition by mutual inhibition can be extended to
the case of more than two successor chains. Figure 12(a,
b) shows the total error probabilities for structured and
unstructured cross-inhibition when switching to one of
two successor chains, i.e. the sum of the number of trials
in which more than one successor chain was activated
and the number of trials in which no successor chain
was activated. The working regime for structured cross-
inhibition is much smaller than that for unstructured
cross-inhibition. We therefore investigate the total er-
ror probability for three and four successor chains as-
suming unstructured cross-inhibition, see Fig. 12(c, d).
The working regime shrinks with increasing number of
successor chains.

However, in most natural movement scenarios the
choice of the next action is unlikely to be truly random,
but influenced by the existence of imprinted repetitive
movement sequences or by priming from motor plan-
ning and control areas. In order to illustrate the effect
of a very simple priming mechanism on the reliability
of switching, we apply an additional Poisson input of
1 kHz with variable synaptic weight Jyim to all neurons
of the first 10 pools of one successor (chain 2) in a
network with four potential successor chains. The inhi-
bition parameters are chosen as k. = 25 and k, = 7 (see
red cross in Fig. 12(d)). The conditional probability of
switching to chain 2, given a correct switch to exactly
one of the successor chains, is shown in Fig. 12(e)
as a function of Jyim. The conditional probability of
switching to chain 2 increases with increasing excita-
tory priming and decreases with increasing inhibitory
priming. It can be fitted by a sigmoidal function ( f(x) =
100/ (1 4 e~“>*2)) where a = 1.8 and b = 0.4).

The total error probability decreases with increasing
excitatory or inhibitory priming and is maximal when
the network is operating at chance level, i.e. the proba-
bility of switching to any of the four successor chains is
25%. The chance level shown in Fig. 12(e) is estimated
from the fitted function and is slightly shifted from
the unprimed case towards inhibitory priming with
Jorim = —0.98 pA. This is due to the random network
connectivity which results in minor asymmetries in the
switching probabilities. Specifically, the probability that
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Fig. 12 Total probability of switching errors as a function of the
number of successor chains. (a) Total probability of switching
error for two potential successor chains assuming structured
cross-inhibition as a function of the number of inhibitory cross
connections k. and number of global inhibitory connections k.
The plot shows the summed probabilities of Fig. 8(a) (probability
of activating more than one successor chain) and Fig. 8(b) (prob-
ability of activating no successor chain). The red cross marks
the parameter set k. = kg =7. (b) As for (a) for the case of
unstructured cross-inhibition; the red cross marks the parameter
set ke =19 and k; = 7. (¢) As for (b) but for three potential

no successor chain is chosen is maximal at chance level
as the symmetry between the activity in all potential
successor chains increases the likelihood that no win-
ner emerges. Applying inhibitory or excitatory priming
introduces a bias into the competition, thus making
it more likely that activity will propagate in at least
one chain. Conversely, the probability that multiple
chains are activated is approximately constant for exci-
tatory priming and increases with increasing inhibitory
priming. This effect is due to the general reduction of
activity in chain 2, which results in less global inhibition
in the network and thus a greater probability of activ-
ity propagating in more than one chain (see also Fig.
11(a)). At around Jyim > 4 pA the general increase of
activity in chain 2 enables the spontaneous triggering
of synfire activity (Tetzlaff et al. 2002). In this network
regime, reliable switching is no longer possible and so
the total error probability increases. Fig. 12(f) shows
the case of four chain switching with excitatory priming
to chain 2 (Jpim = 3 pA). The introduction of prim-
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successor chains. (d) As for (b) but for four potential successor
chains; the red cross marks k. = 25 and kg = 7. (e) Conditional
probability of switching to chain 2 as a function of the priming
strength Jprim for ke = 25 and kg = 7 (blue squares; sigmoidal fit
to the data, blue curve). Probability of activating no successor
chains (grey triangles), probability of activating multiple succes-
sor chains (black triangles) and total switching errors (red trian-
gles). Dotted lines indicate chance level, i.e. a 25% probability
of activating chain 2. (f) As for (d) but with excitatory priming
Jprim = 3 pA to chain 2
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Fig. 13 Spontaneous synfire activity in the BFCN without global
inhibition k3 = 0 and with an external excitatory Poissonian input
of fox = 7.7 kHz to each neuron (see inset). The activity of 10%
of the neurons is shown
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Fig. 14 Activity state

transition in the BFCN with
global inhibition, network
set-up top right. (a) Spiking
activity in the BFCN plotted
with an external excitatory
Poissonian input of

fex = 7.65 kHz to each
neuron and kg = 7. Activity
of 10% of the neurons is
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ing results in a large increase of the working regime
(compare Fig. 12(d)). For the rest of the manuscript
we restrict our analysis to the case of two successor
chains with no priming, as this is sufficient to model
the key features of the behavior of a highly trained and
motivated monkey in the free scribbling task.

3.3 Activity state transition in the BFC

When the backward-and-forward connected chain net-
work (BFCN) described in Section 3.1 is not being
inhibited by the presence of synfire chain activity in the
synfire chain network (SFCN), the external drive is just
strong enough to induce spontaneous synfire activity
and so re-ignite activity in the SFCN. The ignition
of synfire activity in the network can be understood
intuitively as follows: random synchronous activity in
a small subset of the neurons in a given pool i will
be projected to the pools i £ 1, which in turn project
back to i, thus building a recurrent positive feedback
loop. In the example given in Fig. 13, synfire activity
emerges spontaneously at around 380 ms and prop-
agates in both directions along the chain. Once the
spike volleys have reached the ends of the BFC the
synfire activity is extinguished. A reflection of activity
does not occur because for any activated pool, the neu-
rons in the previously activated pool have been reset
by the propagating volley. When the SFCN has been
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re-ignited, the increased inhibition decreases the net
drive to the network such that no spontaneous synfire
activity occurs.
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Fig. 15 Sustained activity in the coupled network: (a) Gaussian
filtered (o = 5 ms) firing rate of the SFCN (red) and the BFCN
(blue) as functions of time. Activity of 10% of the neurons is
recorded. The blue arrow indicates a spontaneous emergence of
synfire activity in the BFCN, resulting in a substantial transient
increase in firing rate. The red arrow highlights a switching failure
in which neither successor chain is activated, causing activity
in the SFCN to die out temporarily. (b) Power spectrum of
the average Gaussian filtered firing rate between 0 and 10.24 s
(vertical black dashed line in (a)). Black arrow indicates peak at
around 7 Hz
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The activity transition in the BFCN can be seen with
greater clarity by investigating a more general version
of the network with non-zero global inhibition (k; > 0)
which balances the network activity and a variable
strength of external drive. An example with kj =7
is given in Fig. 14(a) and (b). If the external drive
is chosen below the transition point ( fex = 7.65 kHz)
the network exhibits low rate asynchronous activity
and no spontaneous synfire activity. This is illustrated
in Fig. 14(a). If the external drive is chosen above
the transition point ( fex = 7.9 kHz in Fig. 14(b)), the
network exhibits periodic waves of synfire activity. The
oscillation frequency of the synfire activity increases
with increasing external drive f.x and the transition
point shifts to higher values of f., with increased global
inhibition (see Fig. 14(c)).

As can be seen in Fig. 14(b), synfire volleys caused by
spontaneous self-ignition tend to be of limited duration.
Activity volleys traveling in different directions cancel
each other when they meet and volleys reaching either
end of the BFCN are not reflected. Furthermore, the
high activity in the BFCN during synfire activity results
in strong global inhibition and a reset of nearly all
neurons, which in turn decreases the probability of
self-ignition until activity has built up again. However,
if the pool size is chosen sufficiently large (e.g. 175

Fig. 16 Generation of

scribbling trajectories.

(a) Spiking activity of BFCN

and SFCN. Activity of 1% (a)

neurons for k; =0 and fex =7.7 kHz), a single self-
ignition results in ongoing pathological high firing rates.

3.4 Sustained activity

We exploit the self-igniting property of the BFCN to
sustain activity in the SFCN described in Section 3.1
and illustrated in Fig. 5. Inhibitory connections from the
SFCN suppress the activity of the BFCN when synfire
activity is present, as this is characterized by a high
firing rate. When no synfire activity is present in the
SFCN, it fires in the asynchronous irregular regime at
low rate and consequently is not able to suppress the
activity in the BFCN. An example is given in Fig. 15(a).
In the beginning no synfire activity is present in the
SFCN and the BFCN is not suppressed. At around
1.8 s the BFCN self-ignites as described in Section 3.3,
leading to a sharp increase in its firing rate. The BFCN
activates chain 1 in the SFCN. The subsequent synfire
activity suppresses the BFCN activity below the self-
ignition threshold. The synfire activity lasts for 8 s be-
fore the activity dies away due to a switching error. The
inhibitory input to the BFCN decreases as the SFCN
firing rate drops, allowing the BFCN activity to rise
above the self-ignition threshold again. At around 9.8 s

of the neurons is shown. The -
BFCN [

activity of each synfire chain

is plotted in a strip marked by

horizontal lines in the color of

the corresponding arrow in

velocity space shown in (b).

BFC activity (blue) is plotted

in the top strip. Above the

raster plot the average firing

chain id
—H\)Q)LU‘IO)\ICO(OS
1

rate of the SFCN (red) and

the BFCN (blue) is plotted.
(b) Reproduction of Fig. 4
for ease of reference.

(¢) Scribbling trajectory
extracted from the spiking (b) ) (€) 400 — ' '
activity using population
coding. Segments are 1
drawn in the color of — 200 i
the most active chain > ob | E
10 =
0 -
4
_1 1 1 1 1
=1 0 T v x[mm]  —200 0 200

@ Springer



690 J Comput Neurosci (2011) 30:675-697
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the BFCN self-ignites again, inducing a fresh sequence
of SFCN activity. The low frequency signature of the
synfire chain competition discussed in Section 3.2 can
be clearly seen in the full network as a peak at around
7 Hz in the Fourier transformed firing rate shown in
Fig. 15(b). This is the expected frequency because the
synfire activity duration in each chain is approximately
140 ms (see Fig. 3).

3.5 Generation of scribbling trajectories

The spiking activity of the complete network underly-
ing the average firing rates shown in Fig. 15 is given in
Fig. 16(a). The trajectory extracted from the spiking ac-
tivity as described in Section 2.3 is shown in Fig. 16(c).
The trajectory consists of a long random sequence
of parabolic movement primitives. Small overlaps can
be seen at the transition points where both successor
chains are active before one of the chains wins the com-
petition. The distribution of the length » of an uninter-
rupted sequence is well fitted by P(n) = po (1 — po)”,
where py is the probability that neither successor chain
is activated during synfire chain switching (data not
shown).

We analyze the characteristics of the trajectory
shown in Fig. 16(c). In Fig. 17(b) the first part of the
trajectory is displayed in the colors of the most active
synfire chain as calculated from the spiking activity in
Fig. 17(a). For increased clarity in Fig. 17(c—¢), colored
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vertical lines indicate transitions to the corresponding
parabolic segments as identified in Fig. 17(b). The
velocity of the trajectory in the x and y directions is
extracted from the spiking activity by calculating the
population coding in 2 ms bins and smoothing with a
Gaussian kernel with standard deviation o = 10 ms.
Figure 17(c) shows that the velocities vary approxi-
mately linearly during the activity time of a given chain.
This can also be seen by considering the accelerations
in the x and y directions, which are calculated using
the finite difference method between successive sam-
ple points of the velocities and shown in Fig. 17(d).
The accelerations are approximately constant during
the activity time of a given chain. Due to the piece-
wise constant accelerations, following the derivation in
Section 2.1 we conclude that the trajectory does indeed
fulfil the two-thirds power law (e.g. Viviani and Flash
1995). Figure 17(e) shows that the equi-affine curvature
of the trajectory is close to zero (see Section 2.5 for
details of analysis). We therefore conclude that the
trajectory does indeed consist of a series of parabolic
segments.

4 Discussion

In this study we have demonstrated that activity in
synfire chains can realize the generation of experi-
mentally observed parabolic segments that fulfill the
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two-thirds power law (Viviani and Flash 1995; Polyakov
et al. 2009b). The key insights are that uniform linear
motion in velocity space maps to parabolic motion in
position space and that the propagation of a wave of
activity in a synfire chain is an ideal neural mech-
anism for a process characterized by uniform linear
motion. We further show that a network of synfire
chains can produce on-going trajectories consisting of
series of parabolic segments with smooth transitions
among them. Necessary assumptions for this to happen
are that the terminal pools of the synfire chains have
a similar preferred velocity as the initial pools of the
chains to which they connect to, and that the switching
mechanism that selects an appropriate successor chain
is reliable. A final aspect of the model is that the extinc-
tion of synfire activity triggers a mechanism by which it
is re-ignited. In summary, by postulating an appropriate
structure in a simulated network of biologically realistic
neurons we have developed a model that reliably repro-
duces macroscopic properties of monkey scribbling. In
the following sections we discuss the assumptions, limits
and predictions of our model in greater detail.

4.1 Synfire chains

The choice of synfire chains as the chief computa-
tional element of the model results from a possible
interpretation of the two-thirds power law as a linear
propagation in velocity space. While other interpre-
tations of the two-thirds power law are conceivable,
the simplicity of the present assumption is not only
theoretically appealing, but is also a good match to
the known properties of synfire chains in maintaining
an accurate representation of a constant progression
(Hap et al. 2008). The assumption of synfire chains as
constituents of the model is also in good agreement
with Fitts’ law, since the speed of the synfire activity
can be reliably controlled, for example by the varia-
tion of global noise or by the modulation of neural
threshold values (Wennekers and Palm 1996). The ex-
ample studied here considers only five basic speeds and
their one-parametric linear combinations. The model
is obviously generalizable to a larger number of accel-
erating forces to the arm provided that the matching
conditions between terminal speed of one chain and
the initial speed of another one are observed. Even a
continuous arrangement of synfire structures in form of
a two-dimensional neural field (Amari 1977) is imag-
inable, but it should be noted that the data (Polyakov
et al. 2009a, b) are largely representable by as little
as three unidirectional chains. This impoverishment of
the movement manifold might be due to continued

optimization under constant experimental conditions
and can be assumed to reflect a compromise between
the goal of the task and the energy-efficient control
of the arm. Thus, we might speculate that even in a
more general framework, certain movements would be
preferred to others. Consequently, a discrete represen-
tation, save for some extraneously encoded invariances,
might be sufficient to account for planned optimized
movements of the extremities.

4.2 Competition between synfire chains

We investigated two alternate switching mechanisms on
the basis of mutual cross-inhibition (see Section 3.2).
We have shown that both structured and unstructured
cross-inhibition realize reliable switching, but that un-
structured cross-inhibition is more effective at elimi-
nating the occurrence of two successor chains being
activated without substantially increasing the risk of
activity dying away altogether. Additionally, the work-
ing regime in which reliable switching can be achieved
is greater for unstructured than for structured cross-
inhibition. Note that in this study, each inhibitory neu-
ron has the same number of global and the same num-
ber of local outgoing connections. A finer tuning could
be achieved by assuming that the numbers of outgoing
inhibitory connections are drawn from distributions or
not homogeneous along the length of a chain. The
question of whether the assumption of structured or un-
structured cross-inhibition is more realistic in the motor
cortex cannot be answered with the experimental data
currently available. In Section 3.2.3 we investigated the
scaling properties of the switching mechanism by un-
structured mutual inhibition in networks with greater
numbers of potential successors. The working regime
shrinks with increasing number of successor chains,
however, even a very simple priming mechanism re-
stores the working regime.

The two architectures investigated here are not the
only possible candidates for a reliable switching mecha-
nism. For example, an alternative architecture realizing
synfire chain competition on the basis of a dominant
global inhibition was recently proposed by Chang and
Jin (2009). Their simplified model, with pulse coupling
(i.e. zero delays) and constant superthreshold drive to
the individual neurons ensures that only one neuron is
active at a time (Jin 2002). In this case the robustness
of the switching can be shown analytically. In a sub-
sequent study, Jin (2009) showed that their proposed
mechanism also enables robust synfire chain switch-
ing in a biologically realistic model of songbird HVC
(high vocal center) nuclei. However, syllable-coding

@ Springer



692

J Comput Neurosci (2011) 30:675-697

excitatory neurons in HVC exhibit sparse bursting be-
havior (Hahnloser et al. 2002) while the inhibitory
interneurons fire with high frequencies (Dutar et al.
1998). This activity regime differs markedly from that
of the motor cortex investigated in our model, which is
characterized by on-going asynchronous irregular
activity.

4.3 Ignition of synfire activity

Our model makes use of a backward-and-forward con-
nected chain to ignite synfire chain activity in the SFCN
at the beginning of the simulation and after switching
failures cause the synfire activity to die out. We have
characterized the dynamical properties of the BFCN,
such as periodic ignition and self-extinction of synfire
activity. The choice of the BFCN is not crucial for our
model; clearly, a variety of network architectures could
fulfil its role. The critical mechanism is the existence of
an inhibitory/excitatory reciprocal connection between
the networks, such that synfire activity in the SFCN
inhibits activity in the other network, which in turn
excites the SFCN when the inhibition is reduced. The
advantage of the BFCN is that it creates a pulse packet
of exactly the right width and amplitude to guaran-
tee that synfire activity is triggered in the SFCN. We
therefore include it to demonstrate that changes in the
standard synfire chain architecture can lead to interest-
ing functional properties that have not previously been
investigated. For the sake of simplicity we restricted
the model to a single BFC which can only ignite the
first chain; in this study we are investigating a possible
neuronal architecture that could underlie the observed
segmentation of 2D movement trajectories, rather than
the characteristics of movement initialization after a
still period. However, the model could be extended to
include several BFCs projecting to different first pools
in order to investigate this aspect of behavior. The
interconnection between BFCs and directional synfire
chains can be learned by a realistic Hebbian rule as
described in Haf et al. (2008) for a somewhat simpler
model.

4.4 Learning and synfire chains

Our model is predicated on the existence of synfire
chains. Many studies have reported precise spike tim-
ing, for example in mammalian cortex (Eckhorn et al.
1988; Gray and Singer 1989; Prut et al. 1998; Abeles
et al. 1993; Tkegaya et al. 2004; Pulvermiieller and
Shtyrov 2009) or songbird HVC (Hahnloser et al. 2002;
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Kozhevnikov and Fee 2007), which suggests an un-
derlying feed-forward connectivity. Moreover, a local
convergent-divergent connectivity profile has been ex-
perimentally observed in HVC (Mooney and Prather
2005). It has also been shown experimentally that the
learning of new motor tasks leads to changes in synap-
tic strength and the rapid formation of new synaptic
connections (Rioult-Pedotti et al. 1998; Xu et al. 2009),
however there is as yet no consensus on the mecha-
nisms required for the brain to develop such structures.
Although some modeling studies have reported the
development of feed-forward sub-networks (Izhikevich
et al. 2004; Buonomano 2005; Doursat and Bienenstock
2006; Jun and Jin 2007; Fiete et al. 2010) on the basis of
Hebbian synaptic plasticity, studies of large-scale net-
works with biologically realistic numbers of synapses
per neuron have not reproduced these findings
(Morrison et al. 2007a; Kunkel et al. 2010). This high-
lights the need for further studies to determine the
necessary and sufficient conditions for the divergent-
convergent connectivity of synfire chains to develop.

The introduction of synaptic plasticity could also ad-
dress another limitation of our model, namely that the
transition probabilities between one primitive and the
next are constant. Hebbian plasticity at the transitions
between one chain and the next would imprint trajecto-
ries that are carried out more often (Hanuschkin et al.
2010a) whereas reward-modulated plasticity would im-
print trajectories that are more likely to generate a
reward (e.g. Izhikevich 2007; Farries and Fairhall 2007;
Baras and Meir 2007; Legenstein et al. 2008; Potjans
et al. 2009, 2010). As shown in Section 3.2.3 the proba-
bility of a switching failure increase with the number of
successors. A reward can be externally applied, but it is
also conceivable that the increase in the network rate
caused when more than one potential successor chain
is activated, or the rate decrease when no successor
chain is activated, could be interpreted by the network
as a negative reward signal. The effect of the reward-
modulated plasticity in this case would be to decrease
the variability (number of possible successors) in gen-
erated motor sequences.

The decision where to continue after reaching the
end of a synfire chain or, considered here as equivalent,
a movement primitive, might be biased by a number of
factors such as movement intentions, visual feedback
or biomechanical constraints. An alternative approach
to generate specific rather than random trajectories
is therefore to influence the switching mechanism by
priming one potential successor chain, as investigated
in Section 3.2.3. The priming signals can be generated
by an additional network (Hanuschkin et al. 2010b)
or even within the same network if neural populations
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with different time constants are assumed (Yamashita
and Tani 2008). Experiments suggest that sequential
information and directional coding are indeed coded
within the same neuronal population (Carpenter et al.
1999; Ben-Shaul et al. 2004). A repeated application
of priming to generate a specific movement sequence
could induce the imprinting of the sequence through
the Hebbian mechanisms discussed above, rendering
future priming unnecessary. On a behavioral level this
can be interpreted as the convergence of a motor pat-
tern from a consciously controlled variable to a fully
automatic execution of a stereotyped movement after
intensive training (Sforza et al. 2000).

4.5 Predictions of the model

In our model study of free monkey scribbling we show
that cell assembly competition generates low frequency
oscillations in collective signals that approximate the
LFP. In our simulations, all synfire chains are the same
length and generate primitives with durations of about
140 ms, leading to competition-driven oscillations in the
LFP at around 7 Hz. In experiments the median draw-
ing time of a parabolic movement is 250 ms; our model
therefore predicts competition-driven oscillations in
the LFP around 4 Hz. This component is unlikely to
be as well-defined as in our simplified model, as feed-
forward structures embedded in real cortical tissue are
likely to be overlapping and of varying lengths, masking
the effect of low LFP oscillations. Additionally, when
the switching is biased due to priming or learned asym-
metries in the connections to potential successor chains,
the degree of competition is lowered. This suggests that
the low frequency component of the LFP will decrease
as training progresses, as stereotypical movements are
imprinted or priming is activated. Experimental studies
have shown that the low frequency LFP (<13 Hz) is
suitable for extracting motion direction of stereotyped
movements by investigating the movement evoked
potential (mEP) (Rickert et al. 2005; O’Leary and
Hatsopoulos 2006), but so far studies investigating os-
cillations during continuous movements have focussed
on the beta to gamma band (~15—90 Hz) rather than
the low frequency band (Donoghue et al. 1998). In
our model the approximated LFP signal contains no
information about the direction of movement, as the
neurons are not spatially organized and each neuron
contributes equally to the signal. However, in future
studies this simplification could be relaxed in order to
take the spatial extent of an LFP signal into consider-
ation, as could the high degree of symmetry which is
unlikely to occur in a biological system.

Along with the effect of introducing low frequency
components to the LFP, competition between cell
assemblies also produces deviations from the pure par-
abolic trajectories at the transition sites between move-
ment primitives. This effect can indeed also be seen
in the analysis of the experimental movement trajecto-
ries: in Fig. 4(a) of Polyakov et al. (2009b), deviations
from the « = 0 line can be observed that may indicate
transition points between movement primitives. Our
model predicts that these deflections will decrease with
training, as training reduces the competition by priming
or imprinting the sequence of cell assemblies. As our
model does not include any priming or learning dur-
ing the generation of movement sequences, the length
of the trajectories follows the geometric distribution
P(n) = po (1 — pg)", where py is the constant proba-
bility that no successor chain is activated at a switch-
ing point (Section 3.5). This distribution is unlikely
to occur in real experimental data, as a real monkey
will exhibit varying levels of motivation during a trial.
However, our experiments on priming suggest that the
mean length of trajectories will increase with training,
as the transitions from one primitive to the next become
more reliable due to priming of the successor chain or
strengthening of the transition connections (imprint-
ing). To verify these predictions, further experimental
studies on the development of the equi-affine proper-
ties and characteristic lengths of on-going trajectories
with training could be carried out.

A final prediction of the model is the existence of
directionally un-tuned neurons in the motor cortex that
increase their firing rate immediately before movement
onset (see Fig. 15). A possible signature of this popula-
tion activity is the peak in the mEP observed just before
movement onset (Rickert et al. 2005). Additional evi-
dence to support this interpretation is that the peak am-
plitude decreases when the monkey can anticipate the
movement to execute (Roux et al. 2006). In our model,
this would correspond to inducing a new movement
primitive through a priming signal rather than through
ignition. To investigate these issues further, more so-
phisticated theoretical models of the generation of the
LFP in a simulated network are required (Lindén et al.
2009a, b). Instead of high frequency oscillations serving
to bind distributed cortical representations as proposed
by Singer and Gray (1995), in our study composition
is expressed in low frequency oscillations resulting
from cell assembly interaction. We therefore suggest
greater attention should be paid to low frequency
components in experimental data and that data sets
recorded from partially trained animals may be par-
ticularly helpful in revealing the mechanisms of motor
compositionality.
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