
J Comput Electron (2015) 14:916–921
DOI 10.1007/s10825-015-0733-x

Dynamical localisation of conduction electrons in one-dimensional
disordered systems
View from the phase-space perspective

B. J. Spisak1 · M. Wołoszyn1 · D. Szydłowski1

Published online: 28 July 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The phase-space approach based on the Wigner
distribution function is applied to the description of dynam-
ics of conduction electrons in finite one-dimensional systems
with randomly distributed scattering centres. It is shown that
the coherent multiple scattering of the carriers in the disor-
dered environment leads to the slowdown of its dynamics
due to the weak localisation. This quantum phenomenon can
be treated as a source of the subdiffusion of the quantum
particles.

Keywords Wigner distribution function · Disordered
systems · Localisation

1 Introduction

Many years of studies on transport properties of disordered
systems provided the understanding of the mechanisms lead-
ing to the slowdown of the conduction electrons dynamics
in the diffusive regime of the solid systems. The coherent
multiple scattering processes of the carriers on the set of ran-
domly distributed scattering centres lead to the momentum
correlations, so that the electronic transport reveals the non-
Markovian properties, i.e., successive scatterings of carriers
are not independent [1]. One of the main consequences of
these correlations is the phase coherence of the carriers. This
coherence enhances the classical return probability and leads
to the correction to the diffusion process of conduction elec-
trons [2–5]. The processes described by this correction are
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responsible for a deviation from the Einstein–Smoluchowski
diffusion law. The phenomenon behind the correction is
called the weak localisation and it is perceived as a precur-
sor of the Anderson or strong localisation. The latter takes
place in the limit of strong disorder when the coherent mul-
tiple scattering processes can block the electronic transport
in the disordered environment. It is worth noting that both
of these phenomena, i.e., weak and strong localisation may
also be present in complex media other than the electronic
systems [6].

The slowdown of the dynamics of carriers in the weakly
disordered environment can be regarded as a manifestation
of the process of anomalous diffusion of particles, which can
be described by the relation for the mean squared deviation
of the displacement,

〈[x(t) − x(t0)]2〉 = 2D(t)t, (1)

where D(t) is the time dependent diffusion coefficient, x(t)
is the position of particle at time t , and x(t0) is the initial loca-
tion. The relation (1) is often replaced by a more transparent
form which enables us to classify the anomalous diffusion
processes according to the anomalous diffusion parameter α

that is specified by the relation [7]

〈[x(t) − x(t0)]2〉 = 2Dαt
α, (2)

where Dα is the anomalous diffusion coefficient measured
in the units of m2s−α . In agreement with the relation (2), the
anomalous diffusion processes can be classified as follows:
α = 0 corresponds to the case of the strong localisation,
0 < α < 1 corresponds to the subdiffusion processes (the
weak localisation), α = 1 corresponds to the classical dif-
fusion processes, 1 < α < 2 corresponds to superdiffusion
processes, and α = 2 corresponds to the ballistic transport.
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The power type dependence of the mean squared deviation of
the displacement on time is one of the possible laws describ-
ing the anomalous diffusion processes [7]. Therefore we
conclude that the relation given by Eq. (1) is more general
and it can be extrapolated to the regime of electronic transport
where the quantum effects play a vital role.

The coherent multiple scattering processes lead to the
subdiffusion of the conduction electrons in the weakly disor-
dered systems. Inclusion of such processes to the description
of the transport processes requires some additional quantum
considerations because the origin of the existing momentum
correlations is a consequence of the quantum interference.
One of the possible ways to investigate the influence of the
quantum effects on the dynamics of carriers in the framework
of the kinetic theory is the phase-space approach proposed
by Wigner and further developed by Moyal, Groenewold and
others [8,9]. Their approach makes the quantum mechanics
resemble the statistical mechanics because of the usage of
the quantum version of the distribution functions.

In the present contribution we examine the subdiffusion
process of the electronic quantum state represented by a
Gaussian wave packet. We discuss its dynamics in the static
random potential of the one-dimensional finite system using
the phase-space analysis based on the Wigner function and
on the equation of motion in the Moyal form [10].

The paper is organised as follows. In Sect. 2, we present
some basic theoretical facts about the phase-space formula-
tion of the quantum dynamics, and a model of the disordered
system which is used in our calculations. Section 3 contains
the results of calculations and their discussion, and the con-
clusions are contained in Sect. 4.

2 Ph̄ase-space representation of quantum state and
its dynamics

The description of the conduction electron’s dynamics in
terms of the classical distribution function over the phase
space, which satisfies the Liouville or Boltzmann equations
is insufficient for the quantum transport phenomena because
the interference effects are ignored [11]. Nevertheless, the
concept of the phase space can be used to describe the dynam-
ics of the quantum states provided the Heisenberg uncertainty
principle for the momentum and position operators is taken
into account. The consequences of the principle are twofold.
Firstly, the distribution function cannot be localised in an
area of the phase space smaller than the reduced Planck’s con-
stant h̄. Secondly, the observables form the non-commutative
algebra [12]. The inclusion of both the aspects to the theoret-
ical description of the electron’s quantum states in the phase
space allows us to introduce the Wigner distribution function
(WDF), which is defined by the Wigner–Weyl transform of
the one-particle density operator [13]

f (x, p, t) =
∫

dx ′ρ
(
x − x ′

2
, x + x ′

2
, t

)
e(i/h̄)px ′

, (3)

where ρ(x, x ′) is the density matrix in the coordinate repre-
sentation. The WDF is a real and normalised function of the
spatial and momentum coordinates. Its marginal distributions
in the coordinate space,

n(x, t) =
∫

dp f (x, p, t), (4)

and in the momentum space,

n(p, t) =
∫

dx f (x, p, t), (5)

represent the time-dependent probability densities in terms
of position and momentum, respectively.

In contrast to the classical distribution functions the WDF
can take negative values in some regions of the phase-
space [14]. The negativity of the WDF is the reason for the
non-classical character of this distribution function [15]. This
property of the WDF is a consequence of the Wigner–Weyl
transform which “forces” the off-diagonal elements of the
density matrix to the resulting distribution function. There-
fore, the WDF contains the mutually dependent quantum
correlations between the momentum and position states of
the conduction electrons.

The equation of motion for the WDF can be written in the
Moyal form as follows [10]

∂ f (x, p, t)

∂t
+ p

m

∂ f (x, p, t)

∂x
= {UW (x), f (x, p, t)}� , (6)

where m is the effective mass of the conduction electron,
UW (x) is the Weyl symbol of the potential energy U (x), and
{UW (x), f (x, p, t)}� represents the Moyal bracket which is
defined by the formula

{UW (x), f (x, p, t)}� = 2

h̄
U (x) sin

[
h̄

2

(−→
∂

∂p

←−
∂

∂x
−

−→
∂

∂x

←−
∂

∂p

)]

× f (x, p, t). (7)

The arrows indicate in which direction the derivatives act.
The Moyal form of the transport equation is equivalent to the
kinetic form of the transport equation [16,17],

∂ f (x, p, t)

∂t
+ p

m

∂ f (x, p, t)

∂x

= 1

2π h̄

∫
dp′V (x, p − p′) f (x, p′, t), (8)
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but the integral kernel (the Wigner potential) represents a
non-local potential and its form is given by the formula

V (x, p) = i

h̄

∫
dx ′ e(i/h̄)px ′

×
{
U

(
x + 1

2
x ′

)
−U

(
x − 1

2
x ′

)}
. (9)

Within the presented model, the potential energy U (x)
of the conduction electron in the one-dimensional disor-
dered system is represented by the superposition of the
non-overlapping short range potentials un(x). Each of such
scattering centres is described by the power-exponential
function, and thus the potential energy takes on the form

U (x) =
∑
n

un(x) = U0

∑
n

exp

[
−

(
x − Xn

w

)s]
. (10)

The positions of the scattering centres along the system are
generated according to the formula [18]

Xn =
(
n + 1

2

)
a + rn, n = 0,±1,±2, . . . , (11)

where a = 85 nm is the period of a reference periodic system,
and each rn is a random number taken independently with
uniform probability from the range [−40, 40] nm. Each of
the single scatterers is characterised by the same repulsive
strength U0 = 11.4 eV, and its shape is described by the
parameters w = 3.2 nm and s = 2.

One of the advantages of using the WDF is a possibility to
use a straightforward method of calculating the expectation
values of the dynamical variables. Almost all required expec-
tation values of those variables can be calculated according
to the formula [19]

〈A(t)〉 =
∫

dxdp AW (x, p) f (x, p, t). (12)

where AW (x, p) is a real scalar function obtained by the
Weyl transform of the hermitian operator which represents
dynamical variable.

3 Results and discussion

We have determined the propagation of the WDF through the
disordered environment by means of the effective numerical
algorithm [20] based on the split-operator approach which
was adopted to the Moyal form of the transport equation for
the WDF (6). Since this approach is based on the Fast Fourier
Transform, it allows to perform simulations in much larger
systems and for considerably longer time scales than in the

case of traditional methods based on direct discretisation of
the Wigner equation.

For the current calculations, the initial WDF f (x, p, 0)

corresponds to the Gaussian wave packet centred in the phase
space around the point (x0, p0):

f (x, p, 0) = 1

π h̄
exp

{
−2δ2

x (p − p0)
2

h̄2 − (x − x0)
2

2δ2
x

}
,

(13)

where δx = 0.3[(2π h̄2)/(mkBT )]1/2 ≈ 10 nm is the ini-
tial half-width of the wave packet at T = 77 K [21].
For the calculations the following values are also assumed:
x0 = 0, p0 = 0.15 h̄ nm−1, and the effective mass of carri-
ers m = 0.067m0, where m0 is the free electron rest mass.
All parameters for the computer simulations are taken as
typical for the conduction electrons in semiconductor GaAs
nanostructures. The phase-space calculations are performed
on the computational grid with Nx = 16384 mesh points
for the x-coordinate, and Np = 1024 mesh points for the x-
component of momentum. The averaging procedure is based
on 20 realisations of the disordered system.

Because δx is less than the minimal distance between any
two scattering centres, it entitles us to conclude that we con-
sider the coherent electronic transport in the diffusive regime
according to the Ioffe-Regel criterion [1], since the distance
between neighbouring scattering centres can be treated as
the mean free path for the one-dimensional systems. There-
fore we expect to observe a hallmark of the weak localisation
effect in the finite disordered samples.

The snapshots of the WDF in the initial (t = 0), final
(t = 240 ps) and two intermediate time instants of the sim-
ulation are presented in Fig. 1. Highly non-classical flow
of the WDF is clearly visible when negative values of the
WDF emerge for t > 0 [cf. Fig. 1b,c,d], as a result of the
quantum interference phenomena [15]. Figure 2 shows the
marginal distributions of the WDF in coordinate and momen-
tum spaces, corresponding to the snapshots presented in the
previous figure. The marginal distributions of the WDF in
the coordinate space shows that at the end of the simulation,
and also at all intermediate steps, the probability density for
the conduction electron has a maximum at the initial posi-
tion x0 = 0. On the other hand, the marginal distributions of
the WDF in the momentum space show two maxima of the
distribution of momentum placed around ±p0 (where p0 is
the initial value of the momentum). It seems to be in agree-
ment with the general theory of weak localisation because the
multiple scattering processes due to the constructive quantum
interference exhibit a narrow backscattered peak [5].

Subsequently, we determine the momentum autocorrela-
tion function to investigate the presence of the momentum
correlations for the conduction electrons in the disordered
environment. For this purpose, we calculate
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Fig. 1 Wigner distribution
function f (x, p) for one
particular realisation of the
disordered potential, at different
time instants a t = 0, b t = 2 ps,
c t = 7 ps, and d t = 240 ps

p/
p 0

-1

 0

 1 (a) t=0

-1

 0

 1 (b) t=2ps

-1

 0

 1 (c) t=7ps

x [µm]

-1

 0

 1

-1 -0.5 0 0.5 1

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

(d) t=240ps

f(x,p,t) [arb.u.]

Fig. 2 Marginal distributions
of the WDF in a–d coordinate
and e–h momentum space, at
time instants corresponding to
the results presented in Fig. 1
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Cp(Δt) = 〈p(t)〉〈p(t + Δt)〉 (14)

where 〈p(t)〉 is the expectation value of the momentum cal-
culated according to the formula (12), and the bar symbol
denotes the time-average. The results are presented in Fig. 3.
The decay time of the momentum correlations is Δt ≈ 9 ps
and it is nearly three times greater than the scattering time
τ = 〈ΔX〉/v0 ≈ 3 ps, where 〈ΔX〉 is the mean distance
between scattering centres, and v0 is the velocity of the carri-
ers. It implies that the successive collisions with the scatterers
cannot be perceived as the independent events. Hence we can
conclude that in the considered one-dimensional disordered

systems the momentum coherence length L p is greater than
the mean free path 
 = 〈ΔX〉. This observation allows us
to establish the fundamental length-scale hierarchy for the
considered system as follows: δx < 
 < L p < L . In these
inequalities we can recognise the condition for the coher-
ent propagation of conduction electrons in the disordered
environment [1]. Moreover, the value of the dimensionless
transport parameter k0
 is approximately equal to 13, and
according to the Ioffe-Regel criterion (k0
 � 1) it determines
the diffusion regime of the electronic transport. The combina-
tion of these issues leads to the conclusion that the electronic
transport in the diffusion regime contains the coherent part
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Fig. 3 Normalised autocorrelation function of the momentum expec-
tation value

Fig. 4 Expectation value of the mean squared displacement as a func-
tion of time, averaged over 20 realisations of the disordered potential.
Error bars correspond to the sample standard deviation

responsible for the weak localisation which causes the slow-
down of electron’s dynamics. Additionally, it can be seen in
Fig. 3 that the momentum autocorrelation function displays
slowly varying fluctuations that persist in the long-time tail
which further enhances our conclusions about the existence
of the momentum correlations because it causes a further
increase of the momentum coherence length.

Finally, we performed calculations of the mean squared
displacement as a function of time using the formula

〈x2(t)〉 =
∫

dxdp x2 f (x, p, t). (15)

The results of the calculations presented in Fig. 4 show that
the mean squared displacement fluctuates around the value
2.2 μm2, which reveals confinement of the electron density
in some finite region of the disordered system. Moreover, the
presented calculations suggest a possibility of disappearance
of the diffusion coefficient in the limit of T → ∞, as it was
noticed by Anderson [22].

4 Conclusions

In the present paper, we have applied the quantum trans-
port equation in the Moyal form for the Wigner distribution
function in the phase space to investigate the dynamics of
the conduction electrons in the finite one-dimensional sys-
tem with the structural disorder. We have shown that the
electronic transport in such systems can be seen as the subd-
iffusion process because of the multiple scattering processes
which are coherent due to the correlation of the momentum.
It leads to the weak localisation of conduction electrons,
and consequently to the slowdown of carriers dynamics in
the diffusive regime of the disordered environment which
is determined by the fundamental length-scale hierarchy.
We have supported this conclusions by the calculation of
the momentum autocorrelation function and we have found
that the mean squared displacement as a function of time
fluctuates around the constant value if longer times of time
simulation are considered, which suggests the strong locali-
sation effect.
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