
Activity, assay and target data curation and quality
in the ChEMBL database

George Papadatos1 • Anna Gaulton1 • Anne Hersey1 • John P. Overington1

Received: 13 April 2015 / Accepted: 13 July 2015 / Published online: 23 July 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The emergence of a number of publicly avail-

able bioactivity databases, such as ChEMBL, PubChem

BioAssay and BindingDB, has raised awareness about the

topics of data curation, quality and integrity. Here we

provide an overview and discussion of the current and

future approaches to activity, assay and target data curation

of the ChEMBL database. This curation process involves

several manual and automated steps and aims to: (1)

maximise data accessibility and comparability; (2) improve

data integrity and flag outliers, ambiguities and potential

errors; and (3) add further curated annotations and map-

pings thus increasing the usefulness and accuracy of the

ChEMBL data for all users and modellers in particular.

Issues related to activity, assay and target data curation and

integrity along with their potential impact for users of the

data are discussed, alongside robust selection and filter

strategies in order to avoid or minimise these, depending

on the desired application.

Keywords Public bioactivity databases � Data curation �
Data quality

Introduction

The ChEMBL database, provided as part of a broad range

of life-science informatics resources at EMBL-EBI, is a

key representative of a current plethora of publicly

available chemical structure and bioactivity databases

(which also include, for example, PubChem BioAssay,

BindingDB, GuideToPharmacology and DrugBank) [1–7].

The emergence and increasing popularity of such databases

has arguably democratised the fields of computational

medicinal chemistry and chemical biology, and more

generally drug discovery. Large-scale access to quality data

for data-driven analyses of polypharmacology, bioisosteric

replacements, chemogenomics, drug repurposing and pre-

dictive modelling are no longer the exclusive privilege of a

few commercial organisations [8–14]. Moreover,

ChEMBL’s open nature, as reflected in its clear data

licensing terms, has brought about a dramatic shift in the

way the drug discovery community deposits, shares and

consumes experimental data, thus forging data exchange

activities, collaborations and pre-competitive initiatives

across industry, small and medium-sized enterprises

(SMEs), charitable organisations and academia [15–18].

ChEMBL covers a broad range of curated and annotated

data, mostly manually extracted from the primary medici-

nal chemistry literature. The data include experimental

biological readouts, such as binding, functional, absorption,

distribution, metabolism, and excretion (ADME), as well

as toxicity assay measurements. Importantly, a curated

linkage between indexed 2D chemical structures and bio-

logical targets is provided, whereby measurements are

standardised to common types and units, where possible.

The targets range from single proteins, to protein com-

plexes, sub-cellular components, cell-lines, then tissues and

finally whole organism in vivo data. In addition to the

literature-extracted information, ChEMBL also integrates

deposited screening results from PubChem Bioassay [4],

along with information on approved drugs, late-stage

clinical development candidate drugs, and their likely

efficacy targets. ChEMBL also serves as an open data-
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sharing hub for the important field of neglected tropical

diseases (NTD) research. The ChEMBL database is upda-

ted on a regular basis and, as of March 2015, the current

version (version 20) contains more than 13 million

experimentally derived bioactivities. For comprehensive

reviews of ChEMBL with regard to content, coverage,

availability and applications, the reader is referred else-

where [1, 2, 19].

The increase in the use of ChEMBL, along with other

bioactivity databases, was followed by an increase in the

community’s awareness of the topics of data integrity and

quality [20]. As a direct result, there have been several

publications on such topics in the last few years. Even

before the ChEMBL database was established, Fourches

et al. [21] were among the first to systematically codify and

document common sources of errors in public datasets and

databases in the context of chemoinformatics and QSAR

modelling research. Their review focussed on the quality of

chemical structures and exemplified typical sources of

errors and discrepancies such as treatment of tautomerism,

aromaticity, salts and functional group standardisation.

More recently, Tiikkainen et al. [22] have systematically

analysed and compared the inconsistencies introduced

during the extraction, digitalisation and subsequent cura-

tion of the data in three major commercial and publicly

available sources of bioactivity data, including ChEMBL

(version 14), Liceptor and WOMBAT. The authors

looked at cases where, for the same bioactivity data point,

two sources agreed in terms of ligand structure, biological

target assignment, activity value and activity type but

where the third did not. The analysis indicated that the

most frequent source of discrepancies was the structure of

the ligand, followed by the target assignment, the activity

value and finally the activity type—this trend would be

expected by the inherent complexity of the corresponding

data objects. More importantly, all accurate discrepancies

were communicated to the ChEMBL curation team and

were corrected in subsequent releases of the database.

In addition to the errors introduced during the data

extraction and digitalisation step, there are inherent dis-

crepancies and ambiguities in the publications themselves.

Some of these may be identified by means of automated

large-scale data mining. Kramer et al. [23] analysed Ki data

derived from ChEMBL (version 12) in order to quantify

the experimental uncertainty of independent measurements

for the same ligand–protein pair, and thus define the

maximum unbiased performance of in silico models.

During this effort, the authors identified several types of

putative activity issues and errors, listed below:

• Unrealistically high or low activity values

• Multiple values for the same ligand–protein pair

derived from a single publication

• Multiple citations of a specific activity value (exact or

rounded) for the same ligand–protein pair across

several publications leading to redundancy

• Unit transcription and conversion errors

Notably, some of these are not data errors per se: for

example, the apparent existence of multiple measurements

for the same ligand–protein pair within a paper often arises

when authors have reported activity measurements for

racemic mixtures, as well as for the isolated but structurally

uncharacterised individual stereoisomers (e.g., Figure 3a in

[23]). Similarly, repeat citations of single activity mea-

surements across multiple publications might not be con-

sidered to be an error, but can nevertheless lead to

statistical artefacts during the data modelling process. The

issues listed above were communicated to the ChEMBL

data integration team and were subsequently retrospec-

tively flagged in the ChEMBL database, as described in

detail in the sections below. In addition, the ChEMBL

database schema and interface were appropriately updated

to accommodate the results of this large-scale automated

curation effort.

In a follow-up review, the same authors discussed data

quality in bioactivity and chemogenomics databases [24].

In addition to the issues identified above, the authors

highlighted cases related to inaccurate or insufficient target

assignments, along with insufficient information in assay

description, which prevents users from comparing mea-

surements for the same ligand-target pairs across different

assays. These topics are critically discussed in the fol-

lowing sections, whereby the focus in on the activity, assay

and target curation and associated issues in the ChEMBL

database. For a review and discussion on the compound

curation and representation issues in public bioactivity

databases, the reader is referred elsewhere [20, 28]. Table 1

summarises common types of errors and ambiguities found

in bioactivity databases.

Activity, assay and target curation in the ChEMBL
database

The initial extraction of bioactivity data from the scientific

literature is performed manually and aims to capture data

as reported in a particular publication (i.e. the compounds,

measurement types, units and values as provided by the

author). The sections below provide an overview of the

further manual and automated approaches that take place

in-house and aim to standardise, curate, flag, map and

annotate activity, assay and target data in ChEMBL. Fur-

thermore, each of the respective sections is followed by a

discussion on related data integrity and ambiguity issues

and how these can be identified and minimised or avoided
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by the database user. A schematic summary of the steps

currently involved in the curation of literature data in

ChEMBL is provided in Fig. 1 below.

The activity values curation process

One problem faced in the extraction of published bioac-

tivity data is the diversity of measurement and unit types

used. For example, the ChEMBL measurement types

IC50 and clearance have each been extracted from the

literature associated with more than one hundred different

published units. These activity types, units and values are

respectively captured as ‘PUBLISHED_’ in the ACTIV-

ITIES table (Fig. 2), in order to aid users in mapping data

back to the original publication. However, comparison of

data across different publications would then require the

time-consuming and error-prone step of unit conversion

by individual users. To address this need, a standardisa-

tion workflow has been designed and implemented. For

key activity types in ChEMBL, a preferred unit or small

set of units of measurement have been selected, as cap-

tured in the ACTIVITY_STDS_LOOKUP table (Fig. 2).

Subsequently, extensive sets of unit conversion rules have

been manually compiled and employed to standardise the

data. IC50 and EC50 measurements, for instance, are

converted either to nM or lg 9 mL-1 units, depending

on the form of the original published units. Similarly,

different descriptions of the same activity type (e.g.,

‘Elimination half life’, ‘Half life’, ‘half-life’, ‘T1/20, t1/2’,
and ‘t(1/2)’) are also normalised to a single one. This

activity type and unit standardisation step has enabled the

conversion of activity values recorded in the literature

with 133 different concentration units to consistent nM

values. Likewise, AUC (Area Under the drug concentra-

tion time Curve) data with 83 units has all been stan-

dardised to units of ng 9 h 9 mL-1. Examples of the

numbers of published to standard activity types and

published to standard units are shown in Table 2a, b,

respectively. Moreover, records with activity types such

as pKi and logIC50 are converted to their unlogged

standard value and corresponding unit and relation.

Finally, the standardised activity types are mapped to

BioAssay Ontology (BAO) result terms [30, 31] and the

standardised units to unit ontology and quantities, units,

dimensions and data types (QUDT) terms [32, 33]. These

ontology mappings formalise the meanings of the activity

types and units, preventing ambiguities in their interpre-

tation, and also allow more advanced queries of the data,

such as grouping different concentration–response end-

points based on BAO.

In addition to the standardisation and mapping effort

described above, there has been a significant on-going

effort to capture the activity curation knowledge and

experience and distil it into a number of steps that can be

run in an automated fashion. The aim of this workflow is

twofold: (1) to flag activity records with potential quality

issues, mainly introduced by the publication authors or

extraction process; (2) to further standardise the activity

records, thus making them more accessible and suitable for

large-scale data mining and comparative analyses. The

flags and comments are primarily added to the DATA_-

VALIDITY_COMMENT column in the ChEMBL data-

base production schema (Fig. 2). Since ChEMBL version

15, the resulting workflow has been run before each

ChEMBL release and further activity type and unit stan-

dardisations are regularly added to this auto-curation

pipeline. The automated activity curation workflow is

summarised in Table 3.

The workflow starts with flagging missing data, i.e. data

without a published activity value or activity comment.

Then, records with unusual units for their respective

activity types are flagged by looking-up an in-house cura-

ted list of standard types and their corresponding units. As

an example, concentration-based activities, such as mini-

mum inhibitory concentration (MIC) IC50 and Kd, featur-

ing irrelevant, unknown or null associated units are flagged

in this step.

Table 1 Sources of errors and ambiguities related with bioactivity databases

Error source Examples References

Experimental Compound purity and stability [21, 25]

Errors in compound vendor catalogues. Errors in cell-line identity

Data extraction Missing stereochemistry or functional group [20, 26]

Incorrect or incomplete target assignment

Author of publication Insufficient assay description. Citation of previously reported activity values [23, 27]

Wrong activity type and units. Incorrect data processing

Database user Merging activities from different assays [21, 23, 28, 29]

Dealing with censored data points, tautomers, prodrugs, salts and duplicates
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The third step involves the further standardisation of

records with activity types, such as pKi and logIC50, which

are converted to their unlogged standard value and corre-

sponding unit, including exact and censored values. This

affects more than 20 % of the activities in ChEMBL and

‘unlocks’ a significant number of data, which are then

accessible and readily comparable for large-scale data

mining. Furthermore, at this stage, the standard activity

values that are lower than 10 are rounded arithmetically to

3 significant figures. The remaining values are rounded to

the second decimal digit.

With the majority of the records having standardised

values and units, the next step in the workflow flags records

that have unusually low or high activity values for their

type and unit. This is achieved by looking-up an internal

list of normal value ranges, compiled and maintained by in-

house curators. It should be noted that the defined normal

ranges used in this process are fairly stringent (e.g.,

0.01 nM–100 lM for IC50/Ki values) and some data fall-

ing outside of these ranges may be correct. A special case

is made for binding affinities that involve fragments

(MW\ 350) as reported in relevant fragment screening

Fig. 1 The current in-house compound, activity, assay and target

curation workflow in ChEMBL production. The steps involved in the

activity, assay and target curation branches, along with suggestions on

how the users/modellers can utilise these to improve data integrity

and minimise or avoid ambiguity are discussed in the following

sections
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publications; these are likely to be genuinely lower. Such

cases are treated with more relaxed activity ranges.

The fifth and sixth steps aim to detect and flag duplicate

entries and potential transcription errors in activity records

that come from different publications, whereby a process

similar to the one reported by Kramer et al. [23] is followed.

Putative duplicated entries are records with identical com-

pound, target, activity, type and unit values that were most

likely reported as citations of measurements from previously

published papers, even when these measurements were

subsequently rounded. Transcription errors consist of

otherwise identical entries, whose activity values differ by

exactly 3 or 6 orders of magnitude, thus indicating a likely

error in the units (e.g., lM instead of nM).

The final step of the workflow involves the calculation

of the pChEMBL value (the negative logarithm of the

activity values (in M units)) for records with dose–response

activity types, such as IC50, XC50, EC50, AC50, Ki, Kd,

and Potency and where there are no data validity

comments.

Fig. 2 The experimental data section of the ChEMBL 20 database schema, showing the columns of the ACTIVITIES and ASSAYS tables
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Activity records curation: discussion

Although the error rates in activity value and type are rela-

tively lower than target mapping or structure representation

[22], they may introduce ambiguity and be detrimental to the

robustness of generated statistical learning models and

activity summarisation efforts [23, 27]. Often for instance,

the calculation of the median or mean activity value for a

compound-target pair is the first step for the generation of a

QSAR regression model. This summary figure will be

significantly skewed by the presence of transcription errors

and/or unrealistically lowor high activity values.At the same

time, confidence in an activity value may be overestimated

due to citation-related over-sampling, as opposed to truly

independent measurements.

It has to be highlighted here that errors such as duplicate

values and unit transcription errors are sometimes inad-

vertently introduced by the authors of the publications. For

example, it is common practice for authors in the medicinal

chemistry literature to include tables in which they cite

measurements for reference compounds, such as known

tool compounds or drugs. These citations refer to previous

papers often reporting different assay protocols and activity

units, which are then misquoted in the table. This is clearly

illustrated in the case of two publications [34, 35] from the

same corresponding authors, who mis-cite a number of Ki

activity values with the wrong units for two assays and

several reference compounds (Table 1 in both publica-

tions). This has lead to otherwise matching activity records

with 1000-fold activity value difference being recorded in

the database. After the activity records curation step, the

corresponding records from the later publication are flag-

ged as ‘potential transcription errors’ in the DATA_VA-

LIDITY_COMMENT of the ACTIVITIES table.

While manually checking all publications for cited

duplicate values or transcription errors would be an

impossible task, the existence of multiple measurements

for the same compound and target facilitate automated

approaches to identify such inconsistencies and outliers in

the data. The automated activity curation workflow com-

plements the manual curation performed by the in-house

biological curation experts. Its aim is not to delete activity

records but merely to flag potential and putative issues,

inherently found in publications or potentially introduced

by the data extraction process. By incorporating the flags in

the DATA_VALIDITY_COMMENT and POTENTIAL_-

DUPLICATE columns in their analysis procedures, the

interested user/modeller may adjust appropriately the

granularity in the validity of the activity data, based on the

scale and type of the desired data mining application;

examples include local or global QSAR modelling

Table 2 Number of distinct published activity units (a) and activity

types (b) mapped to standard, normalised units and types, respec-

tively, after the standardisation step

Number of distinct published activity units STANDARD_Unit

(a)

133 nM

83 ng 9 h 9 mL-1

56 lg 9 mL-1

36 lM 9 h

28 mL 9 min-1 9 kg-1

20 mL 9 min-1 9 g-1

17 mg 9 kg-1

16 lmol 9 g-1

15 h

10 L 9 kg-1

Number of distinct published activity types STANDARD_Type

(b)

31 CL

29 AUC

21 T1/2

17 Vd

15 Solubility

14 IC50

10 Vdss

10 F

7 Kd

6 k_on

Table 3 The activity records curation workflow along with the count and percentage of affected records in ChEMBL 20

Order Step Data validity comment Num. and % affected records

1 Flag missing activities ‘Potential missing data’ 12,263—0.09 %

2 Flag non-standard units for activity type ‘Non standard unit for type’ 81,060—0.6 %

3 Convert log activity values N/A 2.6 9 106—20.3 %

4 Flag out of range values ‘Outside typical range’ 187,108—1.7 %

5 Flag potential duplicate values N/A 64,860—0.48 %

6 Flag potential transcription errors ‘Potential transcription error’ 382—0.003 %

7 Calculate standard negative log values N/A 2.8 9 106—20.7 %
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(regression or classification), chemogenomics modelling or

matched molecular pair analysis. As it has been suggested

before [21, 26], data preparation and filtering is equally, if

not more important, than the analysis or model itself.

In parallel, additional annotation with the pChEMBL

(negative logarithm of activity in M) value adds more

coverage and leverage to the activity data; this allows for

comparisons across assays, publications and activity types

for a given compound-target pair, which is suitable for

larger scale data integration and modelling, such as ligand-

based target prediction [9, 36, 37]. In the case of mixing

heterogeneous pIC50 and pKi data, there is evidence that

this does not lead to loss of quality, given that certain

criteria are met [27].

The assay curation process

Curation of assays in ChEMBL focuses on capturing key

characteristics of the experiment that has been performed

(such as the assay type, format and cell-line/tissues used)

and the assignment of targets (discussed in the next section).

Spelling correction is first performed on assay descriptions

in order to correct commonly misspelled words and there-

fore improve search and query recall. Next, each assay is

assigned an ASSAY_TYPE which can take one of five

values: B (binding), F (functional), A (ADME), T (toxicity)

and P (physicochemical). Since these categories are not

necessarily mutually exclusive, an order of precedence may

be applied. For example, a cytochrome P450 3A4 binding

assay could potentially be assigned a type of either B or A,

but is generally assigned to the ADME category, as this is

considered to be more informative in allowing users to

identify and filter relevant data. Similarly, a cytotoxicity

assay could be either a functional assay (in the context of a

cancer) or a toxicity assay (when assessing whether a

compound has adverse toxic effects). Cell-lines used in

assays are extracted from assay descriptions and mapped (in

the ChEMBL CELL_DICTIONARY) to existing published

ontologies, such as the experimental factor ontology (EFO)

and the cell line ontology (CLO) [38, 39]. This process can

be complicated by the fact that cell lines may not always be

adequately described in the original publication in order to

allow unambiguous identification. The term ‘H4’, for

example, can variously be used to refer to either a rat

hepatoma cell line (ATCC CRL-1548), or a human neu-

roglioma cell-line (ATCC HTB-148). Work is also

under way to extract organ/tissue information for assays

and map to the appropriate Uberon ontology terms [40].

Finally, a rule-based classifier is used to determine the assay

format, according to the BioAssay Ontology (e.g., bio-

chemical, cell-based, tissue-based, organism-based).

Capture of assay details: discussion

A frequent criticism of the ChEMBL database is a lack of

detail captured regarding the assay protocols. Such infor-

mation is important as it allows users to reliably compare

assays conducted in different labs for the same compound

or biological target. While key details of the assay are

typically captured in the assay description, the need for

more structured representation of such data is recognised.

Therefore, a mechanism to allow more robust capture of

these in the ASSAY_PARAMETERS database table

(Fig. 2) has been recently implemented, in anticipation of

future, more complete bioassay reporting [41]. Information

such as the concentration or dose at which a compound has

been tested, administration route for an in vivo assay, or

time point at which the measurement was taken can now be

captured, where such information is available. Details such

as mutations within the protein target (which could greatly

affect compound activity) or the use of particular assay

constructs such as chimeric proteins could also be captured

in this way. Currently, the target assigned in ChEMBL

represents the full-length, wild-type protein but details of

mutations may be captured in the assay description. An

example of one of the limitations here is that of thrombin

for which the initially produced protein is in a pre-pro

form, i.e. has a secretion signal, and after cleavage of this

signal sequence, circulates in a catalytically inactive form,

in which ligand binding for most classes of inhibitors does

not occur. Additionally, activity of mature thrombin, fur-

ther depends on various ion-binding and post-translational

amino-acid modifications. Future plans also include the

extraction of assay parameters from existing assay

descriptions by means of text mining, where possible, so

that they can be queried more effectively, as well as

seeking to capture these details for future additions to the

database.

All the annotations described above will all aid users in

filtering the ChEMBL data to the kind of assays they are

interested in (e.g., retrieve all organism-based ADME

assays with a particular activity type such as clearance, or

all cell-based cytotoxicity assays using mouse 3T3-L1

cells). However, it should be noted that it will still likely

not be possible to annotate assays to the level of detail that

would allow determination of whether two independently

conducted assays are truly identical in protocol (for

example the detection instrument with which the mea-

surements were taken, the full composition of the buffer

used). Many of the journals from which data are extracted

do not require details of assay protocols to be included

where these have previously been published. Therefore, for

a given article, the relevant information may be contained

in another cited article (which may, in turn, cite other
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earlier publications). While essential assay details are

extracted from these cited publications, where available, to

extract more fine-grained assay details at large scale would

be prohibitively time-consuming and expensive. It should

also be noted that even when assay conditions appear to be

the same, significant variability is observed between mea-

surements taken in different labs [27].

For the reasons described above, users should therefore

consider the assay annotation provided in ChEMBL as a

filter to remove assays that are clearly not comparable,

rather than a guarantee that two assays are comparable. It is

always advisable to consult the original publications and

obtain further information regarding the experimental setup

where such details are considered of great importance. On

the other hand, for large-scale applications, the size of the

data set may be sufficient that division of assays into

broadly similar subsets (e.g., biochemical vs. cell-based)

may be robust enough to yield useful results.

The target curation process

To achieve one of the main aims of ChEMBL, i.e. coupling

ligand-regulated phenotypic effects to the genotype, it is

necessary to assign each assay to a target, wherever

possible. Within a publication, the target of an assay is

usually only referred to by a name or abbreviation, rather

than a database identifier. Additional curation effort is

therefore required to determine the molecular identity of

the target and assign this a unique ChEMBL target iden-

tifier listed in the TARGET_DICTIONARY table (Fig. 3).

While UniProt is used as the reference source for protein

sequences and identifiers within ChEMBL [42], an

important distinction between the concept of a ‘protein’

and a ‘target’ is made: a target is defined as the entity with

which the compound actually interacts in a particular assay

system, which could be a protein complex, or a non-protein

target such as DNA, for instance. This requires the creation

of unique identifiers for these targets. While identification

of the correct target is relatively trivial for some kinds of

assays, in other cases the assignment can be much more

complex. Within ChEMBL, a range of different target

types are captured, depending on nature of the molecular

entity assigned and confidence in assigning it. The criteria

for assigning some of the common target types are dis-

cussed below. Each target is then associated with each of

its individual molecular components (usually proteins) and

these components are further annotated with information

such as the protein family to which they belong, in order to

facilitate searching and further grouping of the data.

Fig. 3 A subset of the target

information section of the

ChEMBL 20 database schema
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Biological complexity in target assignment:
discussion

For a binding assay carried out on a single, isolated protein

in vitro, it is usually trivial to unambiguously assign the

correct target. However, such data represent only around

10 % of the activity measurements in the ChEMBL data-

base. Far more common are functional assays carried out in

cell-lines, tissues or whole organisms. In these complex

systems the activity of a tested compound may be much

harder to interpret, yet will also yield more valuable

information regarding the efficacy of the approach. In cell-

based assays, a target of interest is often overexpressed or

the assay may be carried out using a competing ligand with

known selectivity for that target. In these cases, the intended

molecular target of the assay may be assigned, although this

assignment should still be interpreted with some caution, as

there could be other proteins or pathways within the cell-

line contributing to the observed effect. In many other cases

though, the molecular target responsible for the effects of

the compound cannot be unambiguously determined. For

example, a common assay for muscarinic acetylcholine

receptor-mediated smooth muscle contraction involves the

use of guinea pig ileum. While the M3 receptor subtype is

now believed to be primarily responsible for this effect [43],

this information was not known at the time many of these

assays were performed, and other receptor subtypes are also

present in the tissue—notably M2 receptors, which are more

abundant than M3 receptors [44]. Similarly, many other

functional assays potentially measure activity against a

group of closely related proteins, thus identification of the

receptor subtype(s) or enzyme isoform(s) contributing to

the effect may not be possible. Mapping such assays to a

single protein may be an oversimplification of the biology

involved, while mapping the assay to each of the individual

protein family members (as was originally done in

ChEMBL) may mislead users, giving the impression that

each subtype has been tested individually (though even in

earlier versions of the database, a flag was present to allow

users to detect this ‘multiple’ mapping). To deal with such

situations where one cannot be sure of the precise molecular

identity of the target, ChEMBL assigns a ‘PROTEIN

FAMILY’ target, incorporating each of the possible family

members. Annotating assays in this way still allows

retrieval of potentially valuable data for users interested in a

particular protein or protein family and wishing to include

functional/phenotypic endpoints in addition to binding

measurements, but also allows the exclusion of such data

where a precise mapping is important (for example, training

predictive models or assessing compound selectivity).

An additional level of complexity originates from the

fact that many of the molecular targets of bioactive

compounds are not single proteins but protein complexes.

While in some cases it may be possible to identify the

subunit of the complex to which the compound binds, in

other cases compounds may bind to the interface between

two subunits, or the identity of the binding site may not be

known. Even when the binding subunit is known, for many

applications it may be important to understand the com-

position of the full protein complex. For example, activity

may only be observed in a functional assay if all of the

required subunits are present, potentially leading to false

positive results if this information is omitted. Again,

mapping an assay where the target is a protein complex to

each of the individual subunits could be misleading to

users, suggesting that the compound might have activity

against each of the subunits in isolation. This could con-

found various analyses, such as the assessment of drug-

gability. Therefore such assays are mapped to a ‘PROTEIN

COMPLEX’ target in ChEMBL. Furthermore, the data

model also allows for the annotation of the binding subunit

(or also a structural domain within a subunit) within the

target, where known; this is annotated for targets of

approved drugs.

It is also important to note that the two situations descri-

bed above are not mutually exclusive and it is quite possible

(and indeed common) to have activity measured in a cell or

tissue-based assay where the intended target is known to be a

protein complex, but the precise subunit composition is

unknown. Perhaps the most common example of this is the

measurement of binding to GABA-A receptors in rat brain

membranes. GABA-A receptors are pentameric complexes

consisting of various combinations of alpha, beta and gamma

subunits. Furthermore, there are six subtypes of alpha sub-

unit, three subtypes of beta subunit and three subtypes of

gamma subunit,making a large number of different receptors

possible. Both alpha and beta subunits are necessary for

binding of the endogenous ligand, GABA, while many

GABA-A receptor drugs (benzodiazepines) bind at alpha/

gamma subunit interfaces. Certain receptor combinations

appear to be restricted to discrete areas of the brain, while

other regions express a diversity of receptor types [45]. Such

cases are assigned a target type of ‘PROTEIN COMPLEX

GROUP’ in ChEMBL, indicating that the caveats associated

with both the ‘PROTEIN COMPLEX’ and the ‘PROTEIN

FAMILY’ target type apply.

A further challenge in target assignment can be the

identification of suitable protein sequences for inclusion.

Not all species that have bioactivity data in ChEMBL have

been fully genome-sequenced, and therefore it might not be

possible to identify the correct protein in UniProt. In such

cases an orthologous protein might be substituted (e.g., a

human sequence in place of another mammalian target, or a

model organism, such as E. coli, in place of another
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bacterial species). A RELATIONSHIP_TYPE field in the

ASSAYS table (Fig. 2) indicates cases where the target

assigned is a homologue (‘H’) of the actual assayed target.

Again, it may be appropriate for users to filter out such data

in certain circumstances.

In analysing and using ChEMBL data, it is therefore

important for the user/modeller to consider which types of

data are suitable for addressing the question of interest, to

select only appropriate target types and to understand the

relationship of these targets with each of their individual

protein components. Users should also be aware that other

databases integrating data from ChEMBL, whose data

models differ, might not represent or display this, or other

data in the same way.

Conclusion and future outlook

The availability of public chemistry and bioactivity data-

bases, along with large scale data-driven applications has

increased the community’s attention to data curation and

integrity issues, such as structure quality, name-to-structure

fidelity, structure–activity mapping, activity data accuracy,

assay description sufficiency, target assignment, author

errors and redundancy. Better quality data mean more and

higher confidence assertions and therefore more robust

applications and models. In this work, the focus was on the

activity, assay and target curation and associated issues.

Current strategies to map, standardise, flag and further

annotate the data were presented, along with recommen-

dations on good practice when mining these. Notably, the

efforts reported here are only a subset of the on-going in-

house manual and automated curation, which include

compound structures, compound synonyms and drug

information. Future plans include more detailed extraction

of terms and parameters from the assay description, stan-

dardisation of additional activity types (particularly in the

areas of pharmacokinetic, toxicity and crop protection

data) and the addition of further BAO mappings, such as

the bioassay class (e.g., radioligand-binding assay, cell

growth assay, cytotoxicity assay), facilitating more granu-

lar queries particularly against phenotypic assays. From a

technical point of view, we aim to streamline the curation

process, in order to accelerate the ChEMBL release cycles

and enable better data validation and easier data deposi-

tions by users. Finally, in the longer run, we envisage

broadening the access and scope of the curatorial process

by providing a simple data-quality feedback mechanism in

the ChEMBL interface, and eventually developing a pub-

licly available curation interface. Such an interface could

serve as a platform to curate either ChEMBL data, perhaps

even in a crowd-sourcing manner, or in-house, proprietary

data, according to standardised curation rules. Finally,

some of the sources of potential error the and accompa-

nying burden of curation could be reduced in future by the

enforcement of standards for data recording [41] and

mandates by journals to deposit bioactivity data in a public

repository at the point of publication.
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