
Journal of Automated Reasoning (2020) 64:1483–1522
https://doi.org/10.1007/s10817-020-09574-9

Multi-cost Bounded Tradeoff Analysis in MDP

Arnd Hartmanns1 · Sebastian Junges2 · Joost-Pieter Katoen1,2 ·
Tim Quatmann2

Received: 23 June 2020 / Accepted: 2 July 2020 / Published online: 28 July 2020
© The Author(s) 2020

Abstract
We provide a memory-efficient algorithm for multi-objective model checking problems on
Markov decision processes (MDPs) with multiple cost structures. The key problem at hand
is to check whether there exists a scheduler for a given MDP such that all objectives over cost
vectors are fulfilled. We cover multi-objective reachability and expected cost objectives, and
combinations thereof. We further transfer approaches for computing quantiles over single cost
bounds to the multi-cost case and highlight the ensuing challenges. An empirical evaluation
shows the scalability of our new approach both in terms of memory consumption and runtime.
We discuss the need for more detailed visual presentations of results beyond Pareto curves
and present a first visualisation approach that exploits all the available information from the
algorithm to support decision makers.

Keywords Markov decision process · Multi-objective verification · Pareto-optimal
strategies · Cost-bounded reachability · Expected rewards · Probabilistic model checking

1 Introduction

Markov decision processes [46] (MDPs) with rewards or costs are a popular model to describe
planning problems under uncertainty. Planning algorithms aim to find strategies which per-
form well (or even optimally) for a given objective. These algorithms typically assume that

The authors are listed in alphabetical order. This work was supported by DFG RTG 2236 “UnRAVeL” and
NWO VENI Grant 639.021.754.

B Arnd Hartmanns
a.hartmanns@utwente.nl

Sebastian Junges
sebastian.junges@cs.rwth-aachen.de

Joost-Pieter Katoen
j.p.katoen@utwente.nl; katoen@cs.rwth-aachen.de

Tim Quatmann
tim.quatmann@cs.rwth-aachen.de

1 University of Twente, Enschede, The Netherlands

2 RWTH Aachen, Aachen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-020-09574-9&domain=pdf
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0002-2843-5511

1484 A. Hartmanns et al.

(a) (b)

Fig. 1 Science on Mars: planning under several resource constraints

a goal is reached eventually (with probability one) and optimise the expected reward or cost
to reach that goal [46,53]. This assumption however is unrealistic in many scenarios, e.g.
due to insufficient resources or the possibility of attempted actions failing. Furthermore,
the resulting optimal schedulers often admit single runs which perform far below the user’s
expectation. Such deviations to the expected value are unsuitable in many scenarios with
high stakes. Examples range from deliveries reaching an airport after the plane’s departure
to more serious scenarios in e.g. wildfire management [56]. In particular, many practical
scenarios call for minimising the probability to run out of resources before reaching the goal:
while it is beneficial for a plane to reach its destination with low expected fuel consumption,
it is essential to reach its destination with the fixed available amount of fuel.

Schedulers that optimise solely for the probability to reach a goal are mostly very expen-
sive. Even in the presence of just a single cost structure, decision makers have to trade the
success probability against the costs. This tradeoff makes many planning problems inherently
multi-objective [12,17]. In particular, safety properties cannot be averaged out by good per-
formance [22]. Planning scenarios in various application areas [51] have different resource
constraints. Typical examples are energy consumption and time [11], or optimal expected
revenue and time [42] in robotics, and monetary cost and available capacity in logistics [17].

Example 1 Consider a simplified (discretised) version of the Mars rover task scheduling
problem [11]. We want to plan a variety of experiments for a day on Mars. The experiments
vary in their success probability, time, energy consumption, and scientific value upon success.
The time, energy consumption, and scientific value are uncertain and modelled by probability
distributions, cf. Figure 1a. Each day, the rover can perform multiple experiments until it runs
out of time or out of energy. The objective is to achieve aminimum of daily scientific progress
while keeping the risk of exceeding the time or energy limits low. As the rover is expected
to work for a longer period, we prefer a high expected scientific value.

This article focuses on (i) multi-objective multi-cost bounded reachability queries as well
as (ii) multi-cost quantiles on MDPs. We take as input an MDP with multiple cost structures
(e.g. energy, utility, and time).

The bounded reachability problem is specified as multiple objectives of the form “max-
imise/minimise the probability to reach a state in Gi such that the cumulative cost for the i-th
cost structure is below/above a cost limit bi”. This multi-objective variant of cost-bounded
reachability in MDPs is PSPACE-hard [49]. The focus of this article is on the practical
side: we aim at finding a practically efficient algorithm to obtain (an approximation of) the
Pareto-optimal points. To accomplish this, we adapt and generalise recent approaches for the
single-objective case [28,37] towards the multi-objective setting. The basic idea of [28,37]
is to implicitly unfold the MDP along cost epochs, and exploit the regularities of the epoch
MDP. Prism [39] and the Modest Toolset [31] have been updated with such methods
for the single-objective case and significantly outperform the traditional explicit unfolding

123

Multi-cost Bounded Tradeoff Analysis in MDP 1485

approach of [1,44]. This article presents an algorithm that lifts this principle to multiple cost
objectives and determines approximation errors when using value iteration. We also sketch
extensions to expected accumulated cost objectives.

The problem of computing quantiles [2,37,52,57] is essentially the inversion of the
bounded reachability problem: a quantile query has the form “what are the cumulative cost
limits bi such that the maximum/minimum probability to reach a state in Gi with the accu-
mulated cost for the i-th cost structure being below/above bi is less/greater than a fixed
probability threshold p.” Such an inversion is natural: Instead of asking how likely it is to
arrive at the planned destination with the pre-specified amount of fuel, we now ask how
much fuel to take such that we arrive at the planned destination in 99.9% of the cases. A
key difference to multi-cost bounded reachability as described earlier is that we do not know
a priori how far to unfold the MDP. The main algorithm for quantiles iteratively extends
the unfolding, reusing the ideas developed for an efficient implementation for multi-cost
bounded reachability. The algorithm thereby explores a frontier of the set of cost limits for
which the probability threshold holds. To ensure that the representation of the frontier is
finite, already in the single-bounded case, some preprocessing is necessary, see e.g. [2]. We
generalise these preprocessing steps to the multi-bounded case, and show that this is not
always straightforward.

Our new approach has been implemented in the probabilistic model checker Storm [21].
We evaluate its performance, compared to the traditional unfolding approach, on a number
of MDP examples as well as on discrete-time Markov chains as a special case of MDPs. We
find that the new approach provides not only the expected memory advantage, but is usually
faster, too, especially for high cost limits.

In addition, we equip our algorithm with means to visualise (inspired by the recent tech-
niques in [43]) the tradeoffs between various objectives that go beyond Pareto curves. We
believe that this is key to obtain better insights into multi-objective decision making. An
example is given in Fig. 1b: it depicts the probability (indicated by the colours) to satisfy
an objective based on the remaining energy (y-axis) and time (x-axis). Our visualisations
provide a way to inspect all of the data that our algorithm implicitly computes anyway.
The key challenge here is to reduce the dimensionality of the available data to make the
available information easy to grasp without obscuring important dependencies. As such, our
visualisations are a first proposal, and come with a call to visualisation experts for improved
methods.
Related Work The analysis of single-objective (cost-bounded) reachability in MDPs is an
active area of research in both the AI and the formal methods communities, and referred to
in e.g. [3,18,38,59]. Various model checking approaches for single objectives exist. In [35],
the topology of the unfolded MDP is exploited to speed up the value iteration. In [28], three
different model checking approaches are explored and compared. A survey for heuristic
approaches is given in [53]. A Q-learning based approach is described in [13]. An extension
of this problem to the partially observable setting was considered in [14], and to probabilistic
timed automata in [28]. Quantile queries with a single cost bound have been studied in [57].
Multiple cost bounds where all but one cost limits are fixed a priori have been considered in [2]:
the idea is to explicitly unfold the model with respect to the given cost bounds, effectively
transforming the query to a single-dimensional one. [37] presents a symbolic implementation
of these approaches. The method of [4] computes optimal expected values under e.g. the
condition that the goal is reached, and is thus applicable in settings where a goal is not
necessarily reached. A similar problem is considered in [55]. For multi-objective analysis,
the model checking community typically focuses on probabilities and expected costs as in the
seminal works [15,23]. Implementations are typically based on a value iteration approach as

123

1486 A. Hartmanns et al.

in [25], and have been extended to stochastic games [16], Markov automata [47], and interval
MDPs [30]. Other considered cases include e.g. multi-objective mean-payoff objectives [8],
objectives over instantaneous costs [10], and parity objectives [7]. Multi-objective problems
for MDPs with an unknown cost-function are considered in [36]. Surveys on multi-objective
decision making in AI and machine learning can be found in [51] and [58], respectively.
This article is an extended version of a previous conference paper [32]. We provide more
details on the core algorithms, extended proofs, an expanded explanation of our visualisations,
and additional models in the experimental evaluation. We added Sect. 5, which presents
methods for computing multi-cost quantiles, for which we also provide an experimental
evaluation in Sect. 7.
Structure of the PaperAfter the preliminaries (in Sect. 2), we first recap the existing unfolding
technique that the new approach conceptually builds upon (in Sect. 3). Then, we present (in
Sect. 4) our approach to computing the Pareto curve under multiple cost bounds. We use
similar techniques to compute multi-cost quantiles (outlined in Sect. 5). Finally, we show
proposals for visualisations of the available data (in Sect. 6), and empirically evaluate the
proposed algorithms based on their implementation in Storm (in Sect. 7).

2 Preliminaries

We first introduce notation used throughout this article, then define the model of Markov
decision processes, its semantics, and the multi-objective cost-bounded properties that we
are interested in.

2.1 Mathematical Notation

The i-th component of a tuple t = 〈v1, . . . , vn〉 is t[i] def= vi . Given a set Ω , we write 2Ω for
its powerset. A (discrete) probability distribution over Ω is a function μ : Ω → [0, 1] such
that support(μ)

def= {ω ∈ Ω | μ(ω) > 0 } is countable and
∑

ω∈support(μ) μ(ω) = 1. Dist(Ω)

is the set of all probability distributions over Ω . D(s) is the Dirac distribution for s, defined
by D(s)(s) = 1. We use the Iverson bracket notation [cond] for Boolean expressions cond:
[cond] = 1 if cond is true and [cond] = 0 otherwise.

2.2 Markov Decision Processes

Markov decision processes (MDPs) combine nondeterministic choices, capturing e.g. user
input, scheduler decisions, or unknown and possibly adversarial environments, with prob-
abilistic behaviour as in discrete-time Markov chains. They are the fundamental model for
decision-making under uncertainty. We use MDPs in which the branches of transitions are
annotated with (multiple) integer costs (also called rewards), allowing properties to observe
quantities such as the passage of discrete time, energy usage, or monetary costs of decision
outcomes.

Definition 1 A Markov decision process (MDP) with m cost structures is a triple M =
〈S, T , sinit〉 where S is a finite set of states, T : S → 2Dist(Nm×S) is the transition function,
and sinit ∈ S is the initial state. For all s ∈ S, we require that T (s) is finite and non-empty.
M is a discrete-time Markov chain (DTMC) if ∀ s ∈ S : |T (s)| = 1.

123

Multi-cost Bounded Tradeoff Analysis in MDP 1487

(a) (b)

Fig. 2 Example MDP and Pareto curve

We write s −→T μ for μ ∈ T (s) and call it a transition. We write s c−→T s′ if additionally
〈c, s′〉 ∈ support(μ) and call 〈c, s′〉 a branch with cost vector c. If T is clear from the context,
we just write −→ in place of −→T . Graphically, we represent transitions by lines to a node
from which branches labelled with their probability and costs lead to successor states. We
may omit the node and probability for transitions into Dirac distributions.

Example 2 Figure 2a shows an example MDP Mex . From the initial state s0, the choice of
going towards s1 or s2 is nondeterministic. Either way, the probability to stay in s0 is 0.5,
otherwise we move to s1 (or s2). Mex has two cost structures: Failing to move to s1 has a cost
of 1 for the first, and 2 for the second structure. Moving to s2 yields cost 2 for the first and
no cost for the second structure.

Using MDPs directly to build complex models is cumbersome. In practice, high-level for-
malisms like Prism’s [39] guarded command language or the high-level modelling language
Modest [29] are used to specify MDPs. Aside from a parallel composition operator, they
extend MDPs with variables over finite domains that can be used in expressions to e.g.
enable or disable transitions. Their semantics is an MDP whose states are the valuations of
the variables. This allows to compactly describe very large MDPs.

2.3 Paths and Schedulers

For the remainder of this article, we fix an MDP M = 〈S, T , sinit〉. Its semantics is cap-
tured by the notion of paths. A path in M represents the infinite concrete resolution of both
nondeterministic and probabilistic choices.

Definition 2 A path in M is an infinite sequence

π = s0 μ0 c0 s1 μ1 c1 . . .

where si ∈ S, si −→ μi and 〈ci , si+1〉 ∈ support(μi) for all i ∈ N. A finite path

πfin = s0 μ0 c0 s1 μ1 c1 s2 . . . μn−1 cn−1 sn

is a finite prefix of a path with last(πfin)
def= sn ∈ S. Let costi (πfin)

def= ∑n−1
j=0 c j [i]. Pathsfin(M)

is the set of all finite paths and Paths(M) the set of all (infinite) paths starting in sinit .

An end component is a subset of the states and transitions such that it is possible (by choosing
only transitions in the subset) to remain within the subset of states forever (with probability 1).

Definition 3 An end component (EC) of M is given by T ′ : S′ → 2Dist(Nm×S) for a non-empty
S′ ⊆ S such that

123

1488 A. Hartmanns et al.

– for all s ∈ S′, T ′(s) ⊆ T (s) and s
c−→T ′ s′ implies s′ ∈ S′, and

– for all s, s′ ∈ S′ there is a finite path in M from s to s′ only using transitions in T ′.

A scheduler (or adversary, policy, or strategy) resolves the nondeterministic choices.

Definition 4 A function S : Pathsfin(M) → Dist(Dist(Nm × S)) is a scheduler for M if

∀πfin ∈ Pathsfin(M) : μ ∈ support(S(πfin)) ⇒ last(πfin) −→T μ.

The set of all schedulers of M is Sched(M). We call a scheduler S ∈ Sched(M) deter-
ministic if |support(S(πfin))| = 1 and memoryless if last(πfin) = last(π ′

fin) implies
S(πfin) = S(π ′

fin) for all finite paths πfin and π ′
fin. For simplicity, we also write deterministic

memoryless schedulers as functions S : S → Dist(Nm × S).
Via the standard cylinder set construction a scheduler S induces a probability measure

P
S
M on measurable sets of paths starting from sinit . More details can be found in e.g. [26] for

the case of deterministic schedulers and [46, Section 2.1.6] for the general case. We define the
extremal values P

max
M (Π) = supS∈Sched(M) P

S
M (Π) and P

min
M (Π) = infS∈Sched(M) P

S
M (Π)

for measurable Π ⊆ Paths(M). For clarity, we focus on probabilities in this article, but note
that expected accumulated costs can be defined analogously (see e.g. [26]) and our methods
apply to them with only minor changes.

2.4 Cost-Bounded Reachability

Recall that the branches of an MDP are annotated with tuples of costs. In our notations we
use C j to refer to the j-th cost structure, i.e. the costs obtained by taking the j-th component
of each tuple. We are interested in the probabilities of sets of paths that reach certain goal
states while respecting a conjunction of multiple cost bounds.

Definition 5 A cost bound is given by 〈C j 〉∼b G where C j with j ∈ {1, . . . ,m} identifies a
cost structure, ∼ ∈ {<,≤,>,≥}, b ∈ N is a cost limit, and G ⊆ S is a set of goal states. A
cost-bounded reachability formula is a conjunction

∧n∈N
i=1 (〈C ji 〉∼i bi Gi) of cost bounds. It

characterises the measurable set of paths Π where, for every i , every π ∈ Π has a prefix π i
fin

with last(π i
fin) ∈ Gi and cost ji (π

i
fin) ∼i bi .

We call a cost-bounded reachability formula ϕ = ∧n∈N
i=1 (〈C ji 〉∼i bi Gi) single-cost bounded

if n = 1 and multi-cost bounded in the general case. A (single-objective) multi-cost bounded
reachability query asks for the maximal (minimal) probability to satisfy a conjunction of
cost bounds, i.e. for P

opt
M (ϕ) where opt ∈ { max, min } and ϕ is a cost-bounded reachability

formula. Unbounded and step-bounded reachability are special cases of cost-bounded reach-
ability. A single-objective query may contain multiple bounds, but asks for a single scheduler
that optimises the probability of satisfying them all.

Example 3 The single-objective multi-cost bounded query P
max
M (〈C1〉≤1 {s1} ∧ 〈C2〉≤2 {s2})

for Mex of Fig. 2a asks for the maximal probability to reach s1 with at most cost 1 for the
first cost structure and s2 with at most cost 2 for the second cost structure. This probability
is 0.5, e.g. attained by the scheduler that tries to move to s1 once and to s2 afterwards.

Given multiple objectives (i.e. multiple reachability queries) at once, a scheduler that opti-
mises for one objective might be suboptimal for the other objectives. We thus consider
multi-objective tradeoffs (or simply tradeoffs), i.e. sets of single-objective queries written as

� = multi
(
P
opt1
M (ϕ1), . . . , P

opt�
M (ϕ�)

)
.

123

Multi-cost Bounded Tradeoff Analysis in MDP 1489

The cost-bounded reachability formulas ϕk occurring in � are called objectives. For trade-
offs, we are interested in the Pareto curve Pareto(M,�) which consists of all achievable
probability vectors pS = 〈PS

M (ϕ1), . . . , P
S
M (ϕ�)〉 for S ∈ Sched(M) that are not dominated

by another achievable vector pS′ . More precisely, pS ∈ Pareto(M,�) if and only if for all
S′ ∈ Sched(M) either pS = pS′ or for some i ∈ {1, . . . , �} we have pS[i] � pS′ [i] with

� =
{

> if opti = max

< if opti = min.

Example 4 We consider � = multi
(
P

max
Mex

(〈C1〉≤1 {s1}), P
max
Mex

(〈C2〉≤3 {s2})
)

for Mex of
Fig. 2a. Let S j be the scheduler that tries to move to s1 for at most j attempts and after-
wards almost surely moves to s2. The induced probability vectors pS1 = 〈0.5, 1〉 and
pS2 = 〈0.75, 0.75〉 both lie on the Pareto curve since no S ∈ Sched(Mex) induces (strictly)
larger probabilitiespS. By also considering schedulers that randomise between the choices of
S1 and S2 we obtain Pareto(Mex,�) = {w ·pS1 + (1−w) ·pS2 | w ∈ [0, 1]}. Graphically,
the Pareto curve corresponds to the line between pS1 and pS2 as shown in Fig. 2b.

For clarity of presentation in the following sections, and unless otherwise noted, we restrict
to tradeoffs � where every cost structure occurs exactly once, i.e. the number m of cost
structures of M matches the number of cost bounds occurring in �. Furthermore, we require
that none of the sets of goal states contains the initial state. Both assumptions are without
loss of generality since any formula can be made to satisfy this restriction by copying cost
structures as needed and adding a new initial state with a zero-cost transition to the old initial
state. We will also introduce all ideas with the upper-bounded maximum case first, assuming
a tradeoff

� = multi
(
P

max
M (ϕ1), . . . , P

max
M (ϕ�)

)

with � cost-bounded reachability formulas (cf. Definition 5)

ϕk =
nk−1∧

i=nk−1

(〈Ci 〉≤bi Gi), 0 = n0 < · · · < n� = m.

We discuss other bound types in Sect. 4.4, including combinations of lower and upper bounds.

3 The Unfolding Approach Revisited

The classic approach to compute cost-bounded properties is to unfold the accumulated cost
into the state space [1]. Our new approach is more memory-efficient than unfolding, but
fundamentally rests on the same notions and arguments for correctness. We thus present the
unfolding approach in this section first.

3.1 Epochs and Goal Satisfaction

The central concept in our approach is that of cost epochs. The idea is that, to compute a
Pareto curve, we analyse all reachable cost epochs one by one, in a specific order. Let us start
with the most naïve way to track costs: For each path, we can plot the accumulated cost in all
dimensions along this path in a cost grid. A coordinate 〈c1, . . . , cm〉 in the cost grid reflects
that the amount of collected cost in dimension i is ci .

123

1490 A. Hartmanns et al.

(a) (b)

Fig. 3 An illustration of epochs

Example 5 Consider path π = (s0 〈2, 0〉 s2 〈0, 0〉 s0 〈1, 2〉)ω through Mex of Fig. 2a. We plot
the collected costs in Fig. 3a. Starting from 〈0, 0〉, the first transition yields cost 2 for the first
cost structure: we jump to coordinate 〈2, 0〉. The next transition, back to s0, has no cost, so
we stay at 〈2, 0〉. The failed attempt to move to s1 incurs costs 〈1, 2〉, jumping to coordinate
〈3, 2〉. This series of updates repeats ad infinitum.

For an infinite path, infinitely many points in the cost grid may be reached. These points are
therefore not a suitable notion to use in model checking. However, a tradeoff specifies limits
for the costs, e.g. for

�ex = multi
(
P

max
Mex

(〈C1〉≤4 {s1}), P
max
Mex

(〈C2〉≤3 {s2})
)

we get cost limits 4 and 3. Once the limit for a cost is reached, accumulating further costs in
this dimension does not impact the satisfaction of the corresponding formula. It thus suffices
to keep track of the remaining costs before reaching the cost limit of each bound. This leads
to a finite grid of cost epochs.

Definition 6 An m-dimensional cost epoch e is a tuple in Em
def= (N ∪ {⊥})m . For e ∈ Em ,

c ∈ N
m , the successor epoch succ(e, c) ∈ Em is point-wise defined by

succ(e, c)[i] =
{
e[i] − c[i] if e[i] ≥ c[i]
⊥ otherwise.

Example 6 Reconsider path π of Example 5 and �ex as above. We illustrate the finite epoch
grid in Fig. 3b. We start in cost epoch 〈4, 3〉. The first transition incurs cost 〈2, 0〉, and
subsequently the remaining cost before reaching the bound is 〈2, 3〉. These updates continue
analogously to Example 5. From 〈1, 1〉 taking cost 〈2, 0〉 means that we violate the bound in
the first dimension. We indicate this violation with ⊥, and move to 〈⊥, 1〉. Later, taking cost
〈1, 2〉 does not change that we already violated the first bound: the first entry remains ⊥, but
as we now also violate the second bound, we move to 〈⊥,⊥〉. We then remain in this cost
epoch forever.

Recall that we consider upper bounds. Consequently, if the entry for a bound is ⊥, it cannot be
satisfied any more: too much cost has already been incurred. To check whether an objective
ϕk = ∧nk−1

i=nk−1
(〈Ci 〉≤bi Gi) is satisfied, we need to memorise whether each individual bound

already holds, that is, whether we have reached a state in Gi before exceeding the cost limit.

Definition 7 A goal satisfaction g ∈ Gm
def= {0, 1}m represents the cost structure indices i

for which bound 〈Ci 〉≤bi Gi already holds, i.e. Gi was reached before exceeding the cost

123

Multi-cost Bounded Tradeoff Analysis in MDP 1491

limit bi . For g ∈ Gm , e ∈ Em and s ∈ S, let succ(g, s, e) ∈ Gm define the update upon
reaching s:

succ(g, s, e)[i] def=
{

1 if s ∈ Gi ∧ e[i] �= ⊥
g[i] otherwise.

Example 7 Reconsider path π of Example 5 and �ex as previously. As s0 /∈ Gi , we start with
g = 〈0, 0〉. We visit s1 and update g to 〈1, 0〉 since s1 ∈ G1 and s1 /∈ G2. We then visit s0

and g remains 〈1, 0〉. After that, upon visiting s2, g is updated to 〈1, 1〉.

3.2 The Unfolding Approach

We can now compute Pareto(M,�) by reducing � to a multi-objective unbounded reacha-
bility problem on the unfolded MDP Munf . The states of Munf are the Cartesian product of the
original MDP’s states, the epochs, and the goal satisfactions, thereby effectively generalising
the construction from [1].

Definition 8 The unfolding for an MDP M as in Definition 1 and upper-bounded maximum
tradeoff � is the MDP

Munf = 〈S′, T ′, s′
init〉

with S′ = S × Em × Gm , s′
init = 〈sinit, 〈b1, . . . , bm〉, 0〉, no cost structures, and

T ′(〈s, e, g〉) def= { unf (μ) ∈ Dist(S′) | μ ∈ T (s) }
where

unf (μ)
(〈s′, e′, g′〉) def= μ(〈c, s′〉) · [e′ = succ(e, c)] · [g′ = succ(g, s′, e′)].

Transitions and probabilities are thus as before, but if a branch is equipped with costs, we
update the cost epoch entry in the state; likewise, if a state is a goal state, we update the
corresponding goal satisfaction entry. As costs are now encoded in the state space, it suffices
to consider the unbounded tradeoff

�′ = multi
(
P

max
Munf

(ϕ′
1), . . . , P

max
Munf

(ϕ′
�)

)

with

ϕ′
k = 〈·〉≥0 G

′
k, G ′

k =
⎧
⎨

⎩
〈s, e, g〉 |

nk−1∧

i=nk−1

g[i] = 1

⎫
⎬

⎭
.

Example 8 Consider Mex of Fig. 2a and �ex as previously. Figure 4 contains a fragment of
the unfolding.

Lemma 1 There is a bijection ξ : Sched(M) → Sched(Munf) with P
S
M (ϕk) = P

ξ(S)
Munf

(ϕ′
k)

for all S ∈ Sched(M) and k ∈ { 1, . . . , � }. Consequently, we have that Pareto(M,�) =
Pareto(Munf ,�

′).

123

1492 A. Hartmanns et al.

Fig. 4 Initial fragment of the unfolding. Successors of actions in gray are omitted

3.3 Multi-objective Model Checking on the Unfolding

Pareto(Munf ,�
′) can be computed with existing multi-objective model checking algorithms

for unbounded reachability. We build on the approach of [25]: we iteratively choose weight
vectors w = 〈w1, . . . , w�〉 ∈ [0, 1]� \ {0} and compute points

pw = 〈PS
Munf

(ϕ′
1), . . . , P

S
Munf

(ϕ′
�)〉 with S ∈ arg max

S′

(
�∑

k=1

wk · P
S′
Munf

(ϕ′
k)

)

. (1)

The Pareto curve Pareto(Munf ,�
′) is convex, has finitely many vertices, and contains the

point pw for each weight vector w. Moreover, q ·w > pw ·w implies q /∈ Pareto(Munf ,�
′).

These observations enable us to approximate the Pareto curve with arbitrary precision by
enumerating its vertices pw in a smart order. At any point, the algorithm maintains two
convex areas which under- and overapproximate the area under the Pareto curve. Further
details are given in [25], including a method to compute a bound on the error at any stage.

To reduce the computation of pw to standard MDP model checking, [25] characterises
pw via weighted expected costs: we construct M+

unf from Munf . States and transitions are

as in Munf , but M+
unf is additionally equipped with � cost structures used to calculate the

probability of each of the � objectives. This is achieved by setting the value of the k-th cost
structure on each branch to 1 if and only if the objective ϕ′

k is satisfied in the target state of
the branch but was not satisfied in the transition’s source state. More precisely, the cost of a

branch 〈s, e, g〉 c−→ 〈s′, e′, g′〉 in M+
unf is set to c = satObj�(g, g′), where function

satObj� : Gm × Gm → {0, 1}�

is point-wise defined by

satObj�(g, g′)[k] =
{

1 if ∃ i : g[i] = 0 and ∀ i : g′[i] = 1 where i ∈ { nk−1, . . . , nk − 1 }
0 otherwise.

On a path π through M+
unf , we collect exactly cost 1 for cost structure k if and only if π

satisfies objective ϕk .

123

Multi-cost Bounded Tradeoff Analysis in MDP 1493

Definition 9 For S ∈ Sched(M+
unf) and w ∈ [0, 1]�, the weighted expected cost is

E
S
M+

unf
(w) =

�∑

k=1

w[k] ·
∫

π∈Paths(M)

costk(π)dP
S
M+

unf
(π).

The weighted expected cost is the expected value of the weighted sum of the costs accumu-
lated on paths in M+

unf . In the definition, we consider a Lebesgue integral instead of a sum

since Paths(M) is generally uncountable. The maximal weighted expected cost for M+
unf and

w is given by E
max
M+

unf
(w) = maxS E

S
M+

unf
(w). There is always a deterministic, memoryless

scheduler S that attains the maximal expected cost [46].
The following characterisation of pw is equivalent to Eq. 1:

pw = 〈ES
M+

unf
(11), . . . , E

S
M+

unf
(1�)〉 where S ∈ arg max

S′ E
S′
M+

unf
(w), and

1k ∈ {0, 1}� defined by 1k[j] = 1 iff j = k.
(2)

Standard MDP model checking algorithms [46] can be applied to compute an optimal (deter-
ministic and memoryless) scheduler S and the induced costs E

S
M+

unf
(1k).

4 Multi-cost Multi-objective Sequential Value Iteration

An unfolding-based approach as discussed in Sect. 3.2 does not scale well in terms of memory
consumption: If the original MDP has n states, then the unfolding has on the order of n ·∏m

i=1(bi +2) states. This blow-up makes an a priori unfolding infeasible for larger cost limits
bi over multiple bounds. The bottleneck lies in computing the points pw as in equations 1 and
2. In this section, we show how to compute these probability vectors efficiently, i.e. given a
weight vector w = 〈w1, . . . , w�〉 ∈ [0, 1]� \ {0}, compute

pw = 〈PS
M (ϕ1), . . . , P

S
M (ϕ�)〉 with S ∈ arg max

S′

(
�∑

k=1

wi · P
S′
M (ϕk)

)

(3)

without creating the unfolding. The two characterisations of pw given in equations 1 and 3
are equivalent due to Lemma 1.

The efficient analysis of single-objective queries �1 = P
max
M (〈C〉≤b G) with a single

bound has recently been addressed [28,37]. The key idea is based on dynamic programming.
The unfolding Munf is decomposed into b + 2 epoch models MDPs Mb, . . . , M0, M⊥ such
that the epoch model MDPs correspond to the cost epochs. Each epoch model MDP is a copy
of M with only slight adaptations (detailed later). The crucial observation is that, since costs
are non-negative, reachability probabilities in copies corresponding to epoch i only depend
on the copies { M j | j ≤ i ∨ j = ⊥}. It is thus possible to analyse M⊥, . . . , Mb sequentially
instead of considering all copies at once. In particular, it is not necessary to construct the
complete unfolding.

We lift this idea to multi-objective tradeoffs with multiple cost bounds: we aim to build an
MDP for each epoch e ∈ Em that can be analysed via standard model checking techniques
using the weighted expected cost encoding of objective probabilities. Notably, in the single
cost bound case with a single objective, it is easy to determine whether the one property is
satisfied: either reaching a goal state for the first time or exceeding the cost bound immediately
suffices to determine whether the property is satisfied. Thus, while M⊥ is just one sink state in

123

1494 A. Hartmanns et al.

Fig. 5 Epoch models reachable from M〈4,3〉 in a grid

the single cost bound case, its structure is more involved in the presence of multiple objectives
and multiple cost bounds.

4.1 An EpochModel Approach without Unfolding

We first formalise epoch models for multiple bounds. As noted, the overall epoch structure
is the same as in the unfolding approach.

Example 9 We illustrate the structure of the epoch models in Fig. 5. For our running example
MDP Mex of Fig. 2a with bounds 4 and 3, we obtain (4 + 2) · (3 + 2) = 30 epoch models.
The epoch models can be partitioned into 4 partitions (indicated by the dashed lines), with
all epoch models inside a partition having the same MDP structure. The overall graph of the
epoch models is acyclic (up to self-loops). From the maximum costs in Mex , we a priori know
that e.g. epoch model M 〈2,1〉 can only be reached from epochs M 〈i, j〉 with i ≤ 2, j ≤ 1.
In our illustration, we only show the transitions between the epoch models that are forward-
reachable from M 〈4,3〉; observe that in this example, these are significantly fewer than what
the backward-reachability argument based on the maximum costs gives, which are again only
a fraction of all possible epochs.

Before we give a formal definition of the epoch model in Definition 10, we give an intuitive
description. The state space of an individual epoch model for epoch e consists of up to one
copy of each original state for each of the 2m goal satisfaction vectors g ∈ Gm . Additional
sink states 〈s⊥, g〉 encode the target for a jump to any other cost epoch e′ �= e. Similar to
the unfolding M+

unf , we use the function satObj� : Gm × Gm → {0, 1}� to assign cost 1 for
objectives that change from not (yet) satisfied to satisfied, based on the information in the
two goal satisfaction vectors. More precisely, we put cost 1 in entry 1 ≤ k ≤ m if and only
if a reachability property ϕk is satisfied according to the target goal satisfaction vector and
not in the previous goal satisfaction vector. For the transitions’ branches, we distinguish two
cases:

1. If the successor epoch e′ = succ(e, c) with respect to the original cost c ∈ N
m of M is the

same as the current epoch e, we jump to the successor state as before, and update the goal

123

Multi-cost Bounded Tradeoff Analysis in MDP 1495

Fig. 6 One epoch model of Mex

satisfaction. We collect the new costs for the objectives if the updated goal satisfaction
newly satisfies an objective given by satObj�, i.e. if it is now satisfied by the new goal
satisfaction and the old goal satisfaction did not satisfy that objective.

2. If the successor epoch e′ = succ(e, c) is different from the current epoch e, the transitions’
branch is redirected to the sink state 〈s⊥, g′〉 with the corresponding goal state satisfaction
vector. Notice that this might require to merge some branches, hence we have to sum over
all branches.

The collected costs contain the part of the goal satisfaction as in item 1, but also the results
obtained by analysing the successor epoch e′. The latter is incorporated by a function f : Gm×
Dist(Nm × S) → [0, 1]� such that the k-th entry of the vector f (g, μ) reflects the probability
to newly satisfy the k-th objective after leaving the current epoch via distribution μ.

Definition 10 The epoch model of an MDP M as in Definition 1 for e ∈ Em and a function
f : Gm×Dist(Nm × S) → [0, 1]� is the MDP Me

f = 〈Se, T e
f , 〈sinit, 0〉〉 with � cost structures

defined by

Se def= (S � s⊥) × Gm, T e
f (〈s⊥, g〉) = {D(〈0, 〈s⊥, g〉〉) },

and for every s̃ = 〈s, g〉 ∈ Se and μ ∈ T (s), there is a ν ∈ T e
f (s̃) such that

1. ν(〈satObj�(g, g′), 〈s′, g′〉〉) = μ(c, s′) · [succ(e, c) = e] · [succ(g, s′, e) = g′]
2. ν(〈satObj�(g, g′) + f (g, μ), 〈s⊥, g′〉〉) = ∑

〈c,s′〉 μ(c, s′) · [succ(e, c) = e′ �= e]
· [succ(g, s′, e′) = g′].

In contrast to Definition 1, the MDP Me
f may consider cost vectors that consist of non-natural

numbers—as reflected by the image of f . The two items in the definition reflect the two cases
described before. For item 2, the sum satObj�(g, g′) + f (g, μ) reflects the two cases where
an objective is satisfied in the current step (upon taking a branch that leaves the epoch) or
only afterwards. In particular, our algorithm constructs f in a way that satObj�(g, g′)[k] = 1
implies f (g, μ)[k] = 0.

Example 10 Figure 6 shows an epoch model Me
f of the MDP Mex in Fig. 2a with respect

to tradeoff � as in Example 4 and any epoch e ∈ Em in the partition where e[1] �= ⊥ and
e[2] �= ⊥.

123

1496 A. Hartmanns et al.

As already mentioned before, the structure of Me
f differs only slightly between epochs. In

particular consider epochs e and e′ with e[i] = ⊥ if and only if e′[i] = ⊥. To construct
epoch model Me′

f ′ from Me
f , only transitions to the bottom states 〈s⊥, g〉 need to be adapted,

by adapting f accordingly.
Consider the unfolding M+

unf with � cost structures as in Sect. 3.3. Intuitively, the states of

Me
f reflect the states of M+

unf with cost epoch e. We use the function f to propagate values for

the remaining states of M+
unf . This is formalised by the following lemma. We use the notation

E
S
M+

unf
(w)[〈s, e, g〉] for the weighted expected costs for M+

unf when changing the initial state

to 〈s, e, g〉.
Lemma 2 Let M = 〈S, T , sinit〉 be an MDP with unfolding M+

unf = 〈S′, T ′, s′
init〉 as above.

Further, let Me
f = 〈Se, T e

f , 〈sinit, 0〉〉 be an epoch model of M for epoch e ∈ Em, and f given
by

f (g, μ)[k] = 1

μexit

∑

〈c,s′〉
μ(c, s′) · [succ(e, c) = e′ �= e] · E

max
M+

unf
(1k)[〈s′, e′, succ(g, s′, e′)〉]

if μexit = ∑
〈c,s〉 μ(c, s) · [succ(e, c) �= e] > 0 and f (g, μ)[k] = 0 otherwise. For every

weight vector w ∈ [0, 1]� and state 〈s, g〉 of Me
f with s �= s⊥ we have

E
max
M+

unf
(w)[〈s, e, g〉] = E

max
Me

f
(w)[〈s, g〉].

Proof We apply the characterisation of (weighted) expected rewards as the smallest solution
of a Bellman equation system [25,46]. For M+

unf , assume variables x[〈s, ê, g〉] ∈ R≥0 for
every 〈s, ê, g〉 ∈ S′. The smallest solution of the equation system

∀〈s, ê, g〉 ∈ S′ : x[〈s, ê, g〉] = max
μ∈T ′(〈s,ê,g〉)

(∑

〈c,ŝ〉
μ(〈c, ŝ〉) · (

w · c + x[ŝ])
)

(4)

satisfies x[〈s, ê, g〉] = E
max
M+

unf
(w)[〈s, ê, g〉]. Similarly, for Me

f , the smallest solution of

∀〈s, g〉 ∈ Se : ye[〈s, g〉] = max
ν∈T e

f (〈s,g〉)

(∑

〈c,s̃〉
ν(〈c, s̃〉) · (

w · c + ye[s̃])
)

(5)

satisfies ye[〈s, g〉] = E
max
Me

f
(w)[〈s, g〉]. We prove the lemma by showing the following claim:

If x[〈s, ê, g〉] for 〈s, ê, g〉 ∈ S′ is the smallest solution for Eq. 4, the smallest solution for
Eq. 5 is given by ye[〈s, g〉] = [s �= s⊥] · x[〈s, e, g〉] for 〈s, g〉 ∈ Se.

Let x[〈s, ê, g〉] be the smallest solution for Eq. 4. Since no cost can be reached from s⊥
in Me

f , we can show that ye[〈s⊥, g〉] = 0 has to hold. Now let 〈s, g〉 ∈ Se with s �= s⊥. To
improve readability, we use e′ as short for succ(e, c) and g′ as short for succ(g, s′, e′).

ye[〈s, g〉] = [s �= s⊥] · x[〈s, e, g〉] = x[〈s, e, g〉]

= max
μ∈T ′(〈s,e,g〉)

(∑

〈c,ŝ〉
μ(〈c, ŝ〉) · (

w · c + x[ŝ])
)

= max
μ∈T (s)

(∑

〈c,s′〉
μ(〈c, s′〉) · (

w · satObj�(g, g′) + x[〈s′, e′, g′〉])
)

123

Multi-cost Bounded Tradeoff Analysis in MDP 1497

= max
μ∈T (s)

(∑

〈c,s′〉
[e = e′] · μ(〈c, s′〉) · (

w · satObj�(g, g′) + x[〈s′, e′, g′〉])

+
∑

〈c,s′〉
[e �= e′] · μ(〈c, s′〉) · (

w · satObj�(g, g′) + E
max
M+

unf
(w)[〈s, e′, g〉])

)

= max
μ∈T (s)

(∑

〈c,s′〉
[e = e′] · μ(〈c, s′〉) · (

w · satObj�(g, g′) + x[〈s′, e′, g′〉])

+
∑

〈c,s′〉
[e �= e′] · μ(〈c, s′〉) ·

∑

ḡ∈Gm

[g′ = ḡ] · (
w · satObj�(g, ḡ)

)

+
∑

〈c,s′〉
[e �= e′] · μ(〈c, s′〉) · (

w · f (g, μ)
) ·

∑

ḡ∈Gm

[g′ = ḡ]
)

= max
μ∈T (s)

(∑

〈c,s′〉
[e = e′] · μ(〈c, s′〉) · (

w · satObj�(g, g′) + x[〈s′, e′, g′〉])

∑

ḡ∈Gm

w · (
satObj�(g, ḡ) + f (g, μ)

) ·
∑

〈c,s′〉
[e �= e′] · μ(〈c, s′〉) · [g′ = ḡ]

)

= max
ν∈T e

f (s)

(∑

〈c,〈s′,g′〉〉
[s′ �= s⊥] · ν(〈c, 〈s′, g′〉〉) · (

w · c + x[〈s′, e, g′〉])

+
∑

〈c,〈s⊥,g′〉〉
ν(c, 〈s⊥, g′〉) · w · c

)

= max
ν∈T e

f (s)

(∑

〈c,〈s′,g′〉〉
ν(〈c, 〈s′, g′〉〉) · (

w · c + [s′ �= s⊥] · x[〈s′, e, g′〉])
)

= max
ν∈T e

f (s)

(∑

〈c,〈s′,g′〉〉
ν(〈c, 〈s′, g′〉〉) · (

w · c + ye[〈s′, g′〉])
)

.

We conclude that ye[〈s, g〉] = [s �= s⊥] · x[〈s, e, g〉] is indeed a solution for Eq. 5. If there
is a smaller solution ŷe[〈s, g〉] < ye[〈s, g〉], the equalities above can be used to construct a
smaller solution for Eq. 4, violating our assumption for x[〈s, e, g〉]. ��

To analyse an epoch model Me
f , any successor epoch e′ of e needs to have been analysed

before. Since costs are non-negative, we can ensure this by analysing the epochs in a specific
order: In the case of a single cost bound, this order is uniquely given by ⊥, 0, 1, . . . , b.

Definition 11 Let � ⊆ Em × Em be the partial order with

e′ � e iff ∀ i : e′[i] ≤ e[i] ∨ e′[i] = ⊥.

A proper epoch sequence is a sequence of epochs E = e1 . . . , en such that (i) e1 � e2 �
. . . � en for some linearisation � of � and (ii) if e occurs in E and e′ � e, then also e′
occurs in E.

For multiple cost bounds any proper epoch sequence can be considered. This definition
coincides with the topological sort of the graph in Fig. 6. To improve performance, we group
the epoch models with a common MDP structure.

123

1498 A. Hartmanns et al.

Input : MDP M = 〈S, T , sinit〉, tradeoff � = multi
(
P

max
M (ϕ1), . . . , P

max
M (ϕ�)

)
with cost limits

b1, . . . , bm , weight vector w ∈ [0, 1]� and proper epoch sequence E ending with
last(E) = 〈b1, . . . , bm 〉

Output : Point pw ∈ R
� satisfying Equation 3

1 foreach e ∈ E in ascending order do
2 foreach g ∈ Gm , μ ∈ {ν | ∃ s : ν ∈ T (s)} do
3 z ← 0; μexit ← 0
4 foreach 〈c, s′〉 ∈ support(μ) do
5 e′ ← succ(e, c); g′ ← succ(g, s′, e′)
6 if e′ �= e then
7 z ← z + μ(c, s′) · xe′ [〈s′, g′〉]
8 μexit ← μexit + μ(c, s′)

9 if μexit > 0 then
10 f (g, μ) ← z/μexit
11 else
12 f (g, μ) ← 0

13 build epoch model Me
f = 〈Se, T e

f , s
e
init〉

14 S ← arg maxS′ E
S′
Me

f
(w)

15 foreach k ∈ {1, . . . , �}, s̃ ∈ Se do
16 xe[s̃][k] ← E

S
Me

f
(1k)[s̃]

17 return x last(E)[slast(E)
init]

Algorithm 1: Sequential multi-cost bounded analysis

Example 11 For the epoch models depicted in Fig. 5, a possible proper epoch sequence is

E = 〈⊥,⊥〉, 〈0,⊥〉, 〈2,⊥〉, 〈⊥, 1〉, 〈⊥, 3〉, 〈1, 1〉, 〈0, 3〉, 〈3, 1〉, 〈2, 3〉, 〈4, 3〉.

We compute the points pw by analysing the different epoch models (i.e. the coordinates
of Fig. 3b) sequentially, using a dynamic programming-based approach. The main procedure
is outlined in Algorithm 1. The costs of the model for the current epoch e are computed
in lines 2-12. These costs comprise the results from previously analysed epochs e′ (line 7).
In lines 13-16, the current epoch model Me

f is built and analysed: We compute weighted

expected costs on Me
f where E

S
Me

f
(w)[s] denotes the expected costs for Me

f when changing

the initial state to s. In line 14, a (deterministic and memoryless) scheduler S that induces
the maximal weighted expected costs (i.e. E

S
Me

f
(w)[s] = maxS′ E

S′
Me

f
(w)[s] for all states s)

is computed. In line 16, we then compute the expected costs induced by S for the individual
objectives. Forejt et al. [25] describe how this computation can be implemented with a value
iteration-based procedure. Alternatively, we can apply policy iteration or linear programming
[46] for this purpose.

Theorem 1 The output of Algorithm 1 satisfies Eq.3.

Proof We have to show:

x last(E)[slast(E)
init] = 〈PS

M (ϕ1), . . . , P
S
M (ϕ�)〉 with S ∈ arg max

S′

(
�∑

k=1

wi · P
S′
M (ϕk)

)

123

Multi-cost Bounded Tradeoff Analysis in MDP 1499

We prove the following statement for each epoch e:

xe[〈s, g〉] = 〈PS
M (ϕ′

1), . . . , P
S
M (ϕ′

�)〉 with S ∈ arg max
S′

(
�∑

k=1

wi · P
S′
M (ϕ′

k)

)

where

ϕ′
k =

nk−1∧

i=nk−1

(〈Ci 〉≤e[i] Gi) using ϕk =
nk−1∧

i=nk−1

(〈Ci 〉≤bi Gi)

i.e. ϕ′
k is obtained from ϕk by adapting the cost limits based on the current epoch. For e[i] = ⊥

we assume that the cost bound 〈Ci 〉≤⊥ Gi is not satisfied by any path.
Thus, the algorithm correctly computes the bounded reachability for all states and all

epochs. This statement is now proven by induction over any proper epoch sequence. For the
induction base, the algorithm correctly computes the epoch 〈⊥, . . . ,⊥〉. In particular, notice
that there exists an optimal memoryless scheduler on the unfolding, and thus a memoryless
scheduler on the epoch model. For the induction step, let e be the currently analysed epoch.
Since E is assumed to be a proper epoch sequence, we already computed any reachable
successor epoch e′ of e, i.e. line 7 is only executed for epochs e′ for which xe

′
has already been

computed, and by the induction hypothesis these xe
′ [〈s, g〉][k] computed by the algorithm

coincide with the probability to satisfy ϕ′
k from state 〈s, e′, g〉 in the unfolding Munf under a

scheduler S that maximises the weighted sum. Hence, the algorithm computes the function
f as given in Lemma 2. Then, the algorithm computes weighted expected costs for the
epoch model and writes them into xe[〈s, g〉][k]. By Lemma 2, these values coincide with the
unfolding. ��

4.2 Runtime andMemory Requirements

In the following, we discuss the complexity of our approach relative to the size of a binary
encoding of the cost limits b1, . . . , bm occurring in a tradeoff �. Algorithm 1 computes
expected weighted costs for |E| many epoch models Me

f . Each of these computations can
be done in polynomial time (in the size of Me

f) via a linear programming encoding [46].
With |E| ≤ ∏m

i=1 bi , we conclude that the runtime of Algorithm 1 is exponential in a binary
encoding of the cost limits. For the unfolding approach, weighted expected costs have to be
computed for a single MDP whose size is, again, exponential in a binary encoding of the cost
limits. Although we observe similar theoretical runtime complexities for both approaches,
experiments with topological value iteration [5,19] and single cost bounds [2,28] have shown
the practical benefits of analysing several small sub-models instead of one large MDP. We
make similar observations with our approach in Sect. 7.

Algorithm 1 stores a solution vector xe[〈s, g〉] ∈ R
� for each e ∈ E, s ∈ S, and g ∈ Gm , i.e.

a solution vector is stored for every state of the unfolding. However, memory consumption
can be optimised by erasing solutions xe[〈s, g〉] as soon as this value is not accessed by
any of the remaining epoch models (for example if all predecessor epochs of e have been
considered already). If m = 1 (i.e. there is only a single cost bound), such an optimisation
yields an algorithm that runs in polynomial space. In the general case (m > 1), the memory
requirements remain exponential in the size of a binary encoding of the cost limits. However,
our experiments in Sect. 7 indicate substantial memory savings in practice.

123

1500 A. Hartmanns et al.

4.3 Error Propagation

As presented above, the algorithm assumes that (weighted) expected costs E
S
M (w) are com-

puted exactly. Practical implementations, however, are often based on numerical methods
that only approximate the correct solution. The de-facto standard in MDP model checking
for this purpose is value iteration. Methods based on value iteration do not provide any guar-
antee on the accuracy of the obtained result [27] for the properties considered here. Recently,
interval iteration [5,27] and similar techniques [9,34,48] have been suggested to provide error
bounds. These methods guarantee that the obtained result xs is ε-precise for any predefined
precision ε > 0, i.e. upon termination we obtain |x[s] − E

S
M (w)[s]| ≤ ε for all states s. We

describe how to adapt our approach for multi-objective multi-cost bounded reachability to
work with an ε-precise method for computing the expected costs.

4.3.1 General Models

Results from topological interval iteration [5] indicate that individual epochs can be analysed
with precision ε to guarantee this same precision for the overall result. The downside is that
such an adaptation requires the storage of the obtained bounds for all previously analysed
epochs. Therefore, we extend the following result from [28].

Lemma 3 For the single-cost bounded variant of Algorithm 1, to compute P
max
M (〈C〉≤b G)

with precision ε, each epoch model needs to be analysed with precision ε
b+1 .

The bound is easily deduced: assume the results of previously analysed epochs (given by f)
are η-precise and that Me

f is analysed with precision δ. The total error for Me
f can accumulate

to at most δ + η. As we analyse b+ 1 (non-trivial) epoch models, the error thus accumulates
to (b + 1) · δ. Setting δ to ε

b+1 guarantees the desired bound ε. We generalise this result to
multi-cost bounded tradeoffs.

Theorem 2 If the values xe[s̃][k] at line 16 of Algorithm 1 are computed with precision
ε/

∑m
i=1(bi + 1) for some ε > 0, the output p′

w of the algorithm satisfies |pw − p′
w| ·w ≤ ε

where pw is as in Eq.3.

Proof As in the single-cost bounded case, the total error for Me
f can accumulate to δ+η when

η is the (maximal) error bound on f . The error bound on f is again recursively determined by
δ − 1 times the maximum number of epochs visited along paths from the successor epochs.
Since a path through the MDP M visits at most

∑m
i=1(bi + 1) non-trivial cost epochs, each

incurring cost δ, the overall error can be upper-bounded by δ · ∑m
i=1(bi + 1). ��

While an approach based on Theorem 2 thus requires the analysis of epoch models with
tighter error bounds than the bounds induced by [5], and therefore potentially increases the
per-epoch analysis time, it still allows us to be significantly more memory-efficient.

4.3.2 Acyclic Epoch Models

The error bound in Theorem 2 is pessimistic, as it does not assume any structure in the epoch
models. However, very often, the individual epoch models are in fact acyclic, in particular
for cost epochs e ∈ N

m , i.e. e[i] �= ⊥ for all i . Intuitively, costs usually represent quantities
like time or energy usage for which the possibility to perform infinitely many interesting
steps without accumulating cost would be considered a modelling error. In the timed case,

123

Multi-cost Bounded Tradeoff Analysis in MDP 1501

Fig. 7 Example MDP for
multi-bounded single-goal
queries

for example, such a model would allow Zeno behaviour, which is generally considered
unrealistic and undesirable. When epoch models are acyclic, interval iteration [5,27] will
converge to the exact result in a finite number of iterations. In this case, the tightening of the
precision according to Theorem 2 usually has no effect on runtime. The epoch models for
cost epochs e ∈ N

m are acyclic for almost all models that we experiment with in Sect. 7.

4.4 Different Bound Types

Minimising Objectives Objectives P
min
M (ϕk) can be handled by adapting the function satObj�

in Definition 10 such that it assigns cost −1 to branches that lead to the satisfaction of ϕk .
To obtain the desired probabilities we then maximise negative costs and multiply the result
by −1 afterwards. As interval iteration supports mixtures of positive and negative costs [5],
arbitrary combinations of minimising and maximising objectives can be considered1.
Beyond Upper Bounds Our approach also supports bounds of the form 〈C j 〉∼b G for ∼ ∈ {<
,≤,>,≥}, and we allow combinations of lower and upper cost bounds. Strict upper bounds
< b can be reformulated to non-strict upper bounds ≤ b− 1. Likewise, we reformulate non-
strict lower bounds ≥ b to > b − 1, and only consider strict lower bounds in the following.

For bound 〈Ci 〉>bi Gi we adapt the update of goal satisfactions (Definition 7) such that

succ(g, s, e)[i] =
{

1 if s ∈ Gi ∧ e[i] = ⊥,

g[i] otherwise.

Moreover, we support multi-bounded single-goal queries like 〈C(j1,..., jn)〉(∼1b1,...,∼nbn) G,
which characterises the paths π with a prefix πfin satisfying last(πfin) ∈ G and all cost
bounds simultaneously, i.e. cost ji (πfin) ∼i bi . Let us clarify the meaning of simultaneously
with an example.

Example 12 The formula ϕ = 〈C(1,1)〉(≤1,≥1) G expresses the paths that reach G while
collecting exactly one cost with respect to the first cost structure. This formula is not equivalent
to ϕ′ = 〈C1〉≤1 G ∧ 〈C1〉≥1 G. Consider the trivial MDP in Fig. 7 with G = { s0 }. The MDP
(and the trivial strategy) satisfies ϕ′ but not ϕ: Initially, the left-hand side of ϕ′ is (already)
satisfied, and after one more step along the unique path, also the right-hand side is satisfied,
thereby satisfying the conjunction. However, there is no point where exactly cost 1 is collected,
hence ϕ is never satisfied.

Expected Cost Objectives The algorithm supports cost-bounded expected cost objectives
E
opt
M (R j1 , 〈C j2〉≤b) with opt ∈ { max, min }, which refer to the expected cost accumulated

for cost structure j1 within a given cost bound 〈C j2〉≤b . The computation is analogous to
cost-bounded reachability queries: we treat them by computing (weighted) expected costs
within epoch models. Therefore, they can be used in multi-objective queries, potentially in
combination with cost-bounded reachability objectives.

1 This supersedes a restriction of the algorithm of [25].

123

1502 A. Hartmanns et al.

(a) (b)

Fig. 8 Example MDP MQu and satisfying cost limits

5 Multi-cost Quantiles

The queries presented in previous sections assume that cost limits are fixed a priori and ask
for the induced probabilities. We now study the opposite question: What are the cost limits
required to satisfy a given probability threshold? This question thus asks for computing
quantiles as considered in [2,37,52,57], and we lift it to multiple cost bounds. In particular,
we present an efficient implementation of an algorithm to answer questions like

– How much time and energy is required to fulfil a task with at least probability 0.8?
– How many product types can be manufactured without failure with probability 0.99?
– How much energy is needed to complete how many jobs with probability 0.9?

In this section, we introduce multi-cost bounded quantile queries to formalise these questions.
We then first sketch our approach to solve them, and after that provide a more extensive
treatment of quantiles with only upper cost bounds and of quantiles with only lower cost
bounds. Finally, we address more complex forms of quantiles in Sect. 5.5.

5.1 Quantiles in Multiple Dimensions

Definition 12 An m-dimensional quantile query for an MDP M and m ∈ N is given by

Qu
(
P
opt
M (ϕ?) ∼ p

)
, with opt ∈ { min, max }, ∼ ∈ {<,≤,>,≥}, a fixed probability thresh-

old p ∈ [0, 1], and a cost-bounded reachability formula ϕ? = ∧m∈N
i=1 (〈C ji 〉∼i ? Gi) with

unspecified (i.e. a priori unknown) cost limits.

The solution of a quantile query is a set of cost limits that satisfy the probability threshold.

Definition 13 The set of satisfying cost limits for an m-dimensional quantile query � =
Qu

(
P
opt
M (ϕ?) ∼ p

)
is given by

Sat(�) = {b ∈ N
m | P

opt
M (ϕb) ∼ p }

where ϕb = ∧m∈N
i=1 (〈C ji 〉∼ib[i] Gi) arises from ϕ? by inserting cost limits b.

Example 13 Consider the MDP MQu given in Fig. 8a and the quantile query

�ex = Qu
(
P
max
MQu

(〈C1〉≤? { st } ∧ 〈C2〉≤? { st }
)

> 0.5
)

.

123

Multi-cost Bounded Tradeoff Analysis in MDP 1503

The (upper-right, brighter) green area in Fig. 8b indicates the set of satisfying cost limits for
�ex , given by

Sat(�ex) = { c ∈ N
2 | ∃b ∈ { 〈2, 4〉, 〈3, 3〉, 〈4, 2〉, 〈5, 1〉, 〈6, 0〉 } : b[1] ≤ c[1] ∧ b[2] ≤ c[2] }.

Concretely, the set describes a form of closure of a set of points on the frontier. We discuss
why this is the satisfying set. First, consider cost limits 〈1, y〉 for arbitrary y. The point
indicates a limit of 1 in the first dimension. In particular, the leftmost action is then never
helpful in satisfying the objective as it takes cost 2 in the first dimension. Thus, we have
to take the right action. When taking this action, we may return to s0 at most once before
violating the cost limit. Thus, the probability to reach the target is 0.1 + 0.9 · 0.1 < 0.5, and
these cost limits violate the query. Now, consider cost limits 〈6, 0〉. Using similar reasoning
as above, only the right action is relevant. We may take the self-loop at most 6 times, which
yields a probability to reach the target within the cost limit of

∑6
i=0 0.1 ·0.9i > 0.5, and thus

these cost limits satisfy the query. Finally, consider cost limits 〈2, 4〉. Now, the left action
helps: We can take the left action at most 4 times. If we still have not reached the target, we
have 〈2, 0〉 cost remaining, which can be spend trying the right action up to 2 times. The
probability of reaching the target under this scheduler is again

∑6
i=0 0.1 · 0.9i > 0.5.

For the remainder, let us fix an m-dimensional quantile query � = Qu
(
P
opt
M (ϕ?) ∼ p

)
with

ϕ? = ∧m∈N
i=1 (〈C ji 〉∼i ? Gi). We write � for the complementary query Qu

(
P
opt
M (ϕ?) � p

)

where the comparison operator is inverted (e.g. � = ≤ if ∼ = >). Observe that Sat(�) =
N
m \ Sat(�).
In Example 13, the infinite set of satisfying cost limits is concisely described as the closure

of the finitely many points generating its “frontier”. We lift this type of representation to
general quantile queries.

Definition 14 The closure of a set B ⊆ (N ∪ {∞})m with respect to a quantile query � is
given by cl� (B) = {c ∈ (N ∪ {∞})m | ∃b ∈ B : b � c}, where

b � c iff ∀i ∈ {1, . . . ,m} : b[i] = c[i] or

{
b[i] ∼i c[i] if ∼ ∈ {>,≥}
c[i] ∼i b[i] if ∼ ∈ {<,≤}.

Indeed, we can always characterise the set of satisfying cost limits by B ⊆ Sat(�) with
cl� (B) = cl� (Sat(�)).

Lemma 4 Sat(�) = cl� (Sat(�)) ∩ N
m.

Proof The probability P
opt
M (ϕb) is monotonic in the cost limits b. More precisely, increasing

cost limit b[i] for i ∈ {1, . . . ,m} increases the probability if ∼i ∈ {<,≤} and decreases it
otherwise. It follows that b ∈ Sat(�) ∧ b � c implies c ∈ Sat(�) for c ∈ N

m . The lemma
follows by the definition of closure. ��

The smallest set whose closure is Sat(�) is called the generator of Sat(�).

Definition 15 The generator gen� (B) of B ⊆ (N ∪ {∞})m is the smallest set G such that
cl� (G) = cl� (B) and cl�

(
G ′) �= cl� (B) for every proper subset G ′

� G .

Lemma 5 The generator gen� (B) of any B ⊆ (N ∪ {∞})m is unique.

123

1504 A. Hartmanns et al.

(a) (b)

Fig. 9 Example MDP M ′
Qu and satisfying cost limits for �ex

Proof For the sake of contradiction, assume B ⊆ (N ∪ {∞})m has two generators G1, G2

with G1 �= G2. According to Definition 15, G1 cannot be a subset of the generator G2 since
cl� (G1) = cl� (B) = cl� (G2). Let b1 ∈ G1 \ G2. We have b1 ∈ cl� (G2), thus there is
b2 ∈ G2 with b2 � b1, where � is as in Definition 14. Similarly, b2 ∈ cl� (G1) implies
b3 � b2 for some b3 ∈ G1. Let b ∈ cl� (G1) with b1 � b. Transitivity of � yields b3 � b,
i.e. b ∈ cl� (G1 \ {b1 }). It follows that cl� (G1 \ {b1 }) = cl� (G1) for the proper subset
G1 \ {b1 } of G1. This contradicts our assumption that G1 is a generator of B. ��
We also refer to gen� (Sat(�)) as the generator of quantile query �. A generator is called
natural if it only contains points in N

m . The following example shows that quantile queries
can have (non-)natural and (in-)finite generators.

Example 14 �ex from Example 13 has a finite natural generator:

gen�ex (Sat(�ex)) = { 〈2, 4〉, 〈3, 3〉, 〈4, 2〉, 〈5, 1〉, 〈6, 0〉 }
The generator of the complementary query �ex is still finite but not natural:

gen�ex
(
Sat(�ex)

) = {〈1,∞〉, 〈2, 3〉, 〈3, 2〉, 〈4, 1〉, 〈5, 0〉}.
The MDP M ′

Qu from Fig. 9a and the quantile query

� ′
ex = Qu

(
P
max
M ′

Qu

(〈C1〉≥? { st } ∧ 〈C2〉≤? { st }
)

> 0.5
)

.

yield the satisfying cost limits as shown in Figure 9b. � ′
ex does not have a finite generator:

gen� ′
ex

(
Sat(� ′

ex)
) = { 〈2 · n, 2 + n〉 | n ∈ N }.

5.2 Computing Finite Natural Generators

We now present an algorithm to compute the set of satisfying cost limits Sat(�) for quantile
queries � where both � and � have a finite natural generator. In the subsequent subsections,
we present suitable preprocessing steps to lift this algorithm to more general quantiles.

Our approach is sketched in Algorithm 2. Similarly to Algorithm 1 it analyses epoch
models successively. However the sequence of analysed cost epochs is extended in an on-
the-fly manner by considering more and more candidate epochs with an increasing maximum
component maxi (ecand[i]) = b. Whenever the algorithm finds an epoch e that is a valid cost

123

Multi-cost Bounded Tradeoff Analysis in MDP 1505

Input : MDP M = 〈S, T , sinit〉, m-dimensional quantile � = Qu
(
P
opt
M (ϕ?) ∼ p

)

Output : A finite natural generator of �

1 B+ ← ∅; B− ← ∅
2 Echecked ← ∅; b ← 0; progress ← TRUE
3 while progress do
4 progress ← FALSE
5 foreach ecand ∈ N

m with maxi (ecand [i]) = b do

6 if ecand /∈ cl�
(
B+)

and ecand /∈ cl�
(
B−)

then
7 progress ← TRUE
8 E ← proper epoch sequence with last(E) = ecand
9 foreach e ∈ E in ascending order do

10 if e /∈ Echecked then
11 Echecked ← Echecked ∪ {e}

// Check epoch model as in Algorithm 1 for � = 1 objectives:
12 foreach g ∈ Gm , μ ∈ {ν | ∃ s : ν ∈ T (s)} do
13 z ← 0; μexit ← 0
14 foreach 〈c, s′〉 ∈ support(μ) do
15 e′ ← succ(e, c); g′ ← succ(g, s′, e′)
16 if e′ �= e then
17 z ← z + μ(c, s′) · xe′ [〈s′, g′〉]
18 μexit ← μexit + μ(c, s′)

19 if μexit > 0 then
20 f (g, μ) ← z/μexit
21 else
22 f (g, μ) ← 0

23 build epoch model Me
f = 〈Se, T e

f , s
e
init〉 with a single cost structure

24 foreach s̃ ∈ Se do
25 xe[s̃] ← E

opt
Me

f
(〈1〉)[s̃] // weighted expected costs over weight vector 〈1〉

26 if e[i] �= ⊥ for all i then
27 if xe[seinit] ∼ p then
28 B+ ← B+ ∪ {e}
29 else
30 B− ← B− ∪ {e}

31 b ← b + 1

32 return gen�
(
B+)

Algorithm 2: Multi-dimensional quantile computation.

limit (i.e. e ∈ N
m), the epoch is added to either B+ or B−, depending on whether the

probability threshold is satisfied in e or not (lines 26 to 30). In this way, B+ and B− gather
satisfying cost limits for the quantile query � and its complementary query �, respectively.
Due to the condition in line 10, we never analyse the same epoch model twice. The condition
in line 6 ensures that we do not analyse epochs which are already known to be satisfying for
either � or �. The procedure stops as soon as we find a b ∈ N such that all new candidate
epochs with maximum entry b are already in cl�

(
B+) ∪ cl�(B−).

Lemma 6 During the execution of Algorithm 2 the following invariant holds:

cl�
(
B+) ⊆ cl� (Sat(�)) and cl�

(
B−) ⊆ cl�

(
Sat(�)

)
.

123

1506 A. Hartmanns et al.

Proof As in the proof of Theorem 1, it can be shown that in lines 11–25, the algorithm
computes P

opt
M (ϕe) where ϕe arises from ϕ? by inserting the cost limits from e. The algorithm

checks whether this probability meets the threshold given in � and inserts it in either B+ or
B−, accordingly. Hence, B+ (B−) only contains (non-)satisfying cost limits.

Lemma 7 If Algorithm 2 terminates, it returns a generator of �.

Proof We first show that upon termination, N
m ⊆ cl�

(
B+)∪ cl�

(
B−)

. The proof is based
on the following observation: When the algorithm terminates, there is a b ∈ N such that

max
i

(b[i]) = b implies b ∈ cl�
(
B+) ∪ cl�

(
B−)

and b /∈ B+ ∪ B− for any epoch b.

In particular, for b ∈ B+ ∪ B− we have maxi (b[i]) < b. Consider the smallest such b (i.e.
the value of the variable b upon termination). Assume b ∈ N

m . If maxi (b[i]) < b, b has
already been considered as a candidate epoch in line 6, therefore b ∈ cl�

(
B+)∪ cl�

(
B−)

.
Otherwise, maxi (b[i]) ≥ b. Let b′ ∈ N

m be given such that b′[i] = min(b[i], b) for all i .
Since maxi (b′[i]) = b, we have b′ ∈ cl�

(
B+) ∪ cl�

(
B−)

. Assume b′ ∈ cl�
(
B+)

(the

case where b′ ∈ cl�
(
B−)

is completely analogous). According to the definition of closure,
there has to be a b′′ ∈ B+ with b′′ � b′, where � is as in Definition 14. We also have b′ � b
since for all i ∈ {1, . . . ,m} one of the following cases holds:

– If b[i] < b, we have b[i] = b′[i].
– If b[i] ≥ b, we have b′[i] = b and b > b′′[i]. The latter follows from b′′ ∈ B+, yielding

maxi (b′′[i]) < b. As b′′ � b′ and b′′[i] < b′[i], we have to be in a case where either
(∼i ∈ {<,≤} and ∼ ∈ {>,≥}) or (∼i ∈ {>,≥} and ∼ ∈ {<,≤}).

By transitivity of �, we get b′′ � b and thus b ∈ cl�
(
B+)

.
Next, we show that upon termination cl�

(
B+) = cl� (Sat(�)). Lemma 7 follows as

sets with the same closure must have the same unique generator. cl�
(
B+) ⊆ cl� (Sat(�))

follows already from Lemma 6. For the other direction, let b ∈ cl� (Sat(�)), i.e. there
exists b′ ∈ Sat(�) with b′ � b. As b′ is satisfying for �, b′ /∈ cl�

(
B−)

holds. With

b′ ∈ N
m ⊆ cl�

(
B+) ∪ cl�

(
B−)

(as shown above), this yields b′ ∈ cl�
(
B+)

. It follows
that there is b′′ ∈ B

+ with b′′ � b′ � b. Hence, b ∈ cl�
(
B+)

. ��

Lemma 8 Algorithm 2 terminates if � and � have finite natural generators.

Proof Eventually all points of the finite set gen� (Sat(�)) ⊆ N
m are considered in line 6 and

inserted in B+, yielding cl�
(
B+) = cl� (Sat(�)). Similarly, cl�

(
B−) = cl�

(
Sat(�)

)

holds eventually. Hence, all b ∈ N
m are contained in cl�

(
B+) ∪ cl�

(
B−)

, which leads to
termination of the procedure. ��
Lemmas 7 and 8 yield correctness.

Theorem 3 Algorithm 2 yields a generator of �, if � and � have finite natural generators.

If the algorithm terminates, it analyses at most (bmax)
m epoch models, where

bmax = max
{
b[i] | 1 ≤ i ≤ m,b ∈ gen� (Sat(�)) ∪ gen�

(
Sat(�)

)}
.

123

Multi-cost Bounded Tradeoff Analysis in MDP 1507

Remark 1 (on quantiles with partially known cost limits) Algorithm 2 can be extended to

quantiles of the formQu
(
P
opt
M (ϕ? ∧ ϕ) ∼ p

)
, where ϕ? = ∧m∈N

i=1 (〈C ji 〉∼i ? Gi) has unknown

cost limits while ϕ = ∧n∈N
i=m+1(〈C ji 〉∼i bi Gi) considers cost limits bi that are known in

advance. This can be achieved by considering proper epoch sequences E in line 8 with
last(E) = 〈ecand[1], . . . , ecand[m], bm+1, . . . , bn〉.
Finite natural generators are only required for Lemma 8, i.e. to guarantee termination of the
algorithm. Intuitively, Algorithm 2 lacks a mechanism to analyse the resulting reachability
probability when one or more cost limits approach infinity. For the single-cost case, [2,57]
suggest preprocessing steps to check whether Sat(�) �= ∅ and Sat(�) �= ∅ holds before
invoking their variant of sequential value iteration. The preprocessing steps ensures that
sequential value iteration always finds a b ∈ N with gen� (Sat(�)) = {b}. We next lift these
ideas to multi-dimensional quantiles.

5.3 Upper Cost-Bounded Quantiles

Here, we consider upper cost-bounded quantile queries of the form

� = Qu

(

P
opt
M

(
m∈N∧

i=1

(〈C ji 〉≤? Gi)

)

> p

)

.

For the single-cost case the preprocessing checks the unbounded reachability probability [2,
57]. Example 14 shows that the complementary query � might have a non-natural generator.
To guarantee termination of Algorithm 2, it suffices to initialise the set B− to the points from

B−
init = {b ∈ gen�

(
Sat(�)

) | b[i] = ∞ for some i}, i.e. B−
init = gen�

(
Sat(�)

) \ N
m .

Lemma 9 Algorithm 2 terminates and returns a generator of upper cost-bounded quantile
query � if initially B− = gen�

(
Sat(�)

) \ N
m.

Proof � can only have a finite natural generator. Naturality follows from the definition
of closure. We show finiteness by contradiction. Suppose that � has an infinite generator
G ⊆ N

m . As G is infinite, we can show that it contains two different points b1 and b2 with
b1[i] ≤ b2[i] for all i , i.e. b1 � b2 with � as in Definition 14. Since b1 ∈ G , the definition
of closure yields cl� (G \ {b2 }) = cl� (G) which contradicts the assumption that G is a
generator. Similarly, we can show that the generator of � is finite. It follows that all points in
gen� (Sat(�)) and gen�

(
Sat(�)

) ∩ N
m are eventually considered in line 6 of Algorithm 2

and inserted into either B+ or B−. ��
We now discuss how to compute B−

init: Consider b ∈ B−
init, i.e. there is a non-empty set

I ⊆ { 1, . . . ,m } with b[i] = ∞ if and only if i ∈ I . Intuitively, this reflects a situation
in which the cost-bounded reachability probability is always below the threshold p, for any
amount of cost collected towards the cost limits given by I . Formally, we have

∀b ∈ N : P
opt
M

(∧

i /∈I
(〈C ji 〉≤b[i] Gi) ∧

∧

i∈I
(〈C ji 〉≤b Gi)

)
≤ p

⇔ lim
b→∞

(

P
opt
M

(∧

i /∈I
(〈C ji 〉≤b[i] Gi) ∧

∧

i∈I
(〈C ji 〉≤b Gi)

)
)

≤ p

123

1508 A. Hartmanns et al.

Input : MDP M = 〈S, T , sinit〉, quantile � = Qu
(
P
opt
M (

∧m∈N
i=1 (〈C ji 〉≤? Gi)) > p

)

Output : A generator of �

1 B− ← ∅
2 if m = 1 then
3 if P

opt
M (〈·〉≥0 Gm) ≤ p then

4 B− = { 〈∞〉 }
5 else

// Solve m − 1-dimensional quantile queries
6 foreach k ∈ {1, . . . ,m} do
7 �k ← Qu

(
P
opt
M (

∧
i∈{ 1,...,m }\{ k }(〈C ji 〉≤? Gi) ∧ 〈·〉≥0 Gk) > p

)

8 B− ← B− ∪ {〈b1, . . . , bk−1,∞, bk+1, . . . , bm−1〉 | 〈b1, . . . , bm−1〉 ∈ gen�k
(
Sat(�k)

)}
9 Call Algorithm 2 on M , � with B+ = ∅ and B− initialised as above

10 return gen�
(
B+)

Algorithm 3: Quantile computation with upper cost bounds.

⇔ P
opt
M

(∧

i /∈I
(〈C ji 〉≤b[i] Gi) ∧

∧

i∈I
(〈·〉≥0 Gi)

)
)

≤ p.

Here, upper cost bounds with arbitrarily high cost limits are replaced by unbounded
reachability, following ideas from the single-dimensional case [2,57]. This transformation
yields an (m − |I |)-dimensional quantile query for which the point 〈b[i1], . . . ,b[in]〉 for
{ 1, . . . ,m } \ I = {i1, . . . , in} is a satisfying cost limit.

This observation provides the basis of our algorithm, outlined as Algorithm 3. In case
of single-cost queries, it analyses the unbounded reachability probability to check whether
there is some cost limit that satisfies the probability threshold in lines 2-4. For quantiles with
m ≥ 2 cost dimensions, we find the points b ∈ gen�

(
Sat(�)

)
with b[k] = ∞ by checking

allm many (m−1)-dimensional quantile queries �k where the k-th cost bound is replaced by
an unbounded reachability constraint (lines 6-8). These quantiles with partially known cost
limits (cf. Remark 1) can be solved by calling Algorithm 3, recursively. We cache the results
of the recursive calls, i.e. each of the occurring quantile queries is only processed once. Since
each of the m cost bounds can be replaced by an unbounded reachability constraint or not,
this results in roughly 2m different calls to Algorithm 2. However, the recursive calls consider
a simpler quantile with only m′ < m dimensions.

Theorem 4 Algorithm 3 yields a generator of upper cost-bounded quantile query �.

Proof We show that before calling Algorithm 2 in line 9, B− = B−
init holds. For m = 1, this

is ensured in lines 2-4. For m ≥ 2, observe that

b = 〈b1, . . . , bm〉 ∈ B− ⇔ ∃ k : bk = ∞ and 〈b1, . . . , bk−1, bk+1, bm〉 ∈ gen�k
(
Sat(�k)

)

⇔ b ∈ gen�
(
Sat(�)

) \ N
m = B−

init.

The statement than follows from Lemma 9. ��

123

Multi-cost Bounded Tradeoff Analysis in MDP 1509

(a) (b)

Fig. 10 Example MDP M ′′ and satisfying cost limits for � ′′
ex

5.4 Lower Cost-Bounded Quantiles

We now consider lower cost-bounded quantile queries of the form

� = Qu

(

P
max
M (

m∈N∧

i=1

(〈C ji 〉≥? Gi)) > p

)

.

Remark 2 We restrict to maximising schedulers. In Sect. 5.5, we discuss issues with lower
cost-bounded quantiles under minimising schedulers, i.e. quantile queries with P

min
M (ϕ).

The following example shows that � might have a finite non-natural generator.

Example 15 Consider the MDP M ′′
Qu given in Fig. 10a and the quantile query

� ′′
ex = Qu

(
P
max
M ′′

Qu

(〈C1〉≥? { st } ∧ 〈C2〉≥? { st }
)

> 0.5
)

.

The (lower-left, brighter) green area in Fig. 10b indicates the set of satisfying cost limits for
� ′′

ex , given by

Sat(� ′′
ex) = { c ∈ N

2 | ∃b ∈ { 〈0, 6〉, 〈1, 5〉, 〈2, 4〉, 〈3, 3〉, 〈∞, 2〉 } : b[1] ≥ c[1] ∧ b[2] ≥ c[2] }.
Similar to quantiles with upper cost bounds, we ensure termination of Algorithm 2 by

initialising B+ with B+
init = gen� (Sat(�)) \ N

m .

Lemma 10 Algorithm 2 terminates and returns a generator of lower cost-bounded quantile
query � if initially B+ = gen� (Sat(�)) \ N

m.

Points b ∈ B+
init satisfy

lim
b→∞

(

P
max
M

(∧

i /∈I
(〈C ji 〉≥b[i] Gi) ∧

∧

i∈I
(〈C ji 〉≥b Gi)

)
)

> p,

where I ⊆ { 1, . . . ,m } is a non-empty set with b[i] = ∞ if and only if i ∈ I . For the
single-cost case, the computation of limb→∞ P

max
M (〈C j 〉≥b G) has been addressed in [2]:

The approach relies on the notion of end components (Definition 3). For a finite path πfin =
s0 μ0 c0 s1 . . . μn−1 cn−1 sn , we consider the costs accumulated in end components, given
by

costECi (πfin) =
n−1∑

j=0

c j [i] · [μ j ∈ T ′(s j) for some EC T ′].

123

1510 A. Hartmanns et al.

Input : MDP M = 〈S, T , sinit〉, quantile � = Qu
(
P

max
M (

∧m∈N
i=1 (〈C ji 〉≥? Gi)) > p

)

Output : A generator of �

1 B+ ← ∅
2 if m = 1 then
3 if P

max
M (〈CEC

j1
〉>0 Gm) > p then

4 B+ = { 〈∞〉 }
5 else

// Solve m − 1-dimensional quantile queries
6 foreach k ∈ {1, . . . ,m} do
7 �k ← Qu

(
P

max
M (

∧
i∈{ 1,...,m }\{ k }(〈C ji 〉≥? Gi) ∧ 〈CEC

jk
〉>0 Gk) > p

)

8 B+ ← B+ ∪ {〈b1, . . . , bk−1,∞, bk+1, . . . , bm−1〉 | 〈b1, . . . , bm−1〉 ∈ gen�k (Sat(�k))}
9 Call Algorithm 2 on M , � with B− = ∅ and B+ initialised as above

10 return gen�
(
B+)

Algorithm 4: Quantile computation with lower cost bounds.

We write 〈CEC
j 〉>b G to characterise the set of paths Π where every π ∈ Π has a prefix

πfin with last(πfin) ∈ G and costECj (πfin) > b. If we reach an EC in which costs can be
collected, we can accumulate arbitrarily more cost by staying in that EC. We thus have
P

max
M (〈CEC

j 〉>0 G) = P
max
M (〈CEC

j 〉>b G) for all b ∈ N as shown in [2].
We lift this observation to multiple lower cost bounds. In this case, any visit of an EC can

be extended to accumulating more costs, without violating other (lower) cost bounds. Thus,
we get:

lim
b→∞ P

max
M

(m−1∧

i=1

(〈C ji 〉≥b[i] Gi) ∧ 〈C jm 〉≥b Gm

)

= P
max
M

(m−1∧

i=1

(〈C ji 〉≥b[i] Gi) ∧ 〈CEC
jm 〉>0 Gm

)

Our procedure for lower cost-bounded quantiles is shown in Algorithm 4. Similar to Algo-
rithm 3, it adds points b to B+

init with b[i] = ∞ for some i . In order to compute probabilities
for arbitrarily high cost limits, it replaces the corresponding cost bound by 〈CEC

jk
〉>0 Gk .

Theorem 5 Algorithm 4 yields a generator of lower cost-bounded quantile query �.

5.5 Intricate Quantile Queries

Above, we have considered only a subset of the possible quantile queries. Many more com-
binations are possible. These combinations do not easily fit into the framework provided
above. We illustrate this mismatch with some cases.
Lower Cost-Bounded Quantiles Under Minimising Schedulers To lift the results from the
previous section to quantile queries that consider P

min
M (ϕ), we need to compute probabilities

when one or more cost limits approach infinity. For the single-cost case, [2] proposes a
transformation that instead computes the maximal probability to reach an end component in
which either no goal state is visited or no cost is accumulated. However, in the multi-cost
case, such a transformation does not preserve the other cost bounds.
Mixtures of Lower and Upper Cost Bounds Quantile queries that consider mixtures of lower-
and upper cost bounds might have infinite generators, as shown in Example 14. In this
case, a finite representation of the satisfying cost limits cannot be achieved with our explicit

123

Multi-cost Bounded Tradeoff Analysis in MDP 1511

construction of the generator. A procedure to check the subset of such queries that still yield
finite generators is left for future work.
Quantiles overMulti-objective TradeoffsWe considered quantile queries with a single proba-
bility operator P

opt
M (ϕ). An extension inspired by multi-objective queries considers quantiles2

over several conflicting objectives:

Qu
(
∃S : P

S
M (ϕ?,1) ∼1 p1 ∧ · · · ∧ P

S
M (ϕ?,�) ∼� p�

)

Such a query asks for the cost limits for which there is a scheduler that satisfies all probability
thresholds. This introduces two sources of tradeoffs: A tradeoff between different resolutions
of nondeterminism and a tradeoff between different cost limits. Handling such a tradeoff
requires to analyse the tradeoffs at each epoch model, and propagating the results through
the epochs requires great care and is outside the scope of this paper.

6 Visualisations

The aim of visualising the results of a multi-objective model checking analysis is to present the
tradeoffs between the different objectives such that the user can make an informed decision
about the system design or pick a scheduler for implementation. However, the standard
Pareto set visualisations alone may not provide sufficient information, about e.g. which
objectives are aligned or conflicting (see e.g. [43] for a discussion in the non-probabilistic
case). Cost bounds furthermore add an extra dimension for each cost structure. In particular,
for each Pareto-optimal scheduler, our method has implicitly computed the probabilities of all
objectives for all reachable epochs as well, i.e. for all bounds on all quantities below the bounds
required in the tradeoff. In this section, we first show the standard Pareto curve visualisation,
which provides the user with an easy-to-understand but very high-level overview of the
solution space of a multi-objective query. We then propose a way to visualise the behaviour
of individual Pareto-optimal schedulers w.r.t. the probabilities of the individual objectives
and the bound values in two-dimensional heatmap plots. These plots provide deep insights
into the behaviour of each scheduler, its robustness w.r.t. the bounds, and its preferences for
certain objectives depending on the remaining budget for each quantity. Yet due to the need
to reduce the dimensionality of the available information, they can be difficult to understand
at a first glance. We offer them both as a first straightforward attempt at visualising all the
available data as well as an urgent call to visualisation experts to develop more perspicuous
ways to present this wealth of data to users.

6.1 Pareto Curves

The results of a multi-objective model checking analysis are typically presented as a single
(approximation of a) Pareto curve. As a running example for this section, consider the Mars
rover MDP Mr and tradeoff multi

(
obj100, obj140

)
with

objv = P
max
Mr

(〈Ctime〉≤175 B ∧ 〈Cenergy〉≤100 B ∧ 〈Cvalue〉≥v B)

where B is the set of states where the rover has safely returned to its base. That is, we ask for
the tradeoff between performing experiments of scientific value at least 100 before returning
to base within 175 time units and maximum energy consumption of 100 units (obj100) versus

2 Technically, these objects are not quantiles in the classical sense.

123

1512 A. Hartmanns et al.

(a) (b)

Fig. 11 Pareto curves

achieving the same with scientific value at least 140 (obj140). The corresponding Pareto curve
is shown in Fig. 11a. Every point 〈x, y〉 in the green area on the bottom left corresponds to
a scheduler under which the probability to satisfy obj100 is x and the probability to satisfy
obj140 is y. The thick blue line is the frontier of Pareto-optimal schedulers: for any scheduler
on this line, there is no other scheduler that achieves strictly higher probabilities for both
objectives (cf. Sect. 2.4). Overall, this Pareto curve clearly shows that there is a tradeoff
between achieving obj100 and obj140; more risky behaviour is necessary to increase the
chance of reaching obj140, thereby decreasing the chance of reaching the “easier” objective
obj100. For more than two objectives, the performance of a set of concrete Pareto-optimal
schedulers can be displayed in a bar chart as in Fig. 11b, where the colours reflect different
objectives and the groups different schedulers.

6.2 Visualising BoundedMulti-Objective Schedulers

Pareto curves and bar charts as presented above reduce schedulers to the probabilities of
reaching each of the objectives. However, in a cost-bounded setting, users may arguably not
only be interested in the probability for the exact cost limit, but also in the behaviour of the
scheduler for lower limits: in essence, the probability distribution over the limits. As our
method implicitly computes the probabilities of the objectives for all reachable epochs, this
information is to a large extent available “for free” at no extra computational effort (limited
only by which epochs are reachable).

We visualise this information via plots for individual Pareto-optimal schedulers as shown
in Fig. 12. We restrict to two-dimensional plots since they are easier to grasp than complex
three-dimensional visualisations. In each plot, we can thus show the relationship between
three different quantities: one on the x-axis, one on the y-axis, and one encoded as the colour
of the points (z, where we use blue for high values, red for low values, black for probability
zero, and white for unreachable epochs). Our example tradeoffmulti

(
obj100, obj140

)
however

already contains five quantities: the probability for obj100, the probability for obj140, the
available time and energy to be spent, and the remaining scientific value to be accumulated.
We thus need to project out some quantities. We do this by showing at every 〈x, y〉 coordinate
themaximum orminimum value of the z quantity when ranging over all reachable values of the
hidden costs at this coordinate. That is, we show a best- or worst-case situation, depending on
the semantics of the respective quantities. Out of the 30 possible combinations of quantities

123

Multi-cost Bounded Tradeoff Analysis in MDP 1513

(a)

(b)

(c)

(d)

Fig. 12 Two-dimensional plots of individual Pareto-optimal schedulers for different quantities

123

1514 A. Hartmanns et al.

for multi
(
obj100, obj140

)
, we showcase four in Fig. 12 to illustrate the added value of the

obtained information.
Comparing Schedulers on Value Required to Achieve Objectives First, in Fig. 12a, we plot
for the two Pareto-optimal schedulers S1 and S2 (cf. Fig. 11a) the probabilities of the two
objectives on the x- and y-axes versus the scientific value that still needs to be accumulated
in the z (colour) dimension. White areas thus indicate that no epoch for the particular com-
bination of probabilities is reachable from the tradeoff’s cost limits of 175 for time, 100 for
energy, and 140 as the higher limit for scientific value. In principle, a point 〈x, y, z〉 in these
two plots reads as follows: there is an epoch in which scientific value 140-z has already
been achieved, the probability to reach obj100 (i.e. achieve scientific value 100) is x , and the
probability to reach obj140 is y. However, two cost dimensions—the remaining budget for
time and the remaining budget for energy—are not shown and need to be projected out. The
two plots in fact show in the z dimension the maximum scientific value that still needs to be
accumulated over all reachable time and energy budgets for the respective probability values.
To be precise, a point 〈x, y, z〉 thus actually needs to be read as follows: among all epochs
in which the probability to reach obj100 is x and the probability to reach obj140 is y, the
maximum difference between 140 and the already accumulated scientific value is z. Since a
higher amount of scientific value to be accumulated is easier to reach (less value needs to
be accumulated), these plots actually show a “best-case” scenario: the point where enough
scientific value has been accumulated to achieve a certain combination of probabilities. The
plots for the minimum values are almost the same in this case, though.

We see that S1 and S2 are white above the diagonal, as are in fact all other Pareto-optimal
schedulers, which means that obj100 implies obj140, i.e. the objectives are aligned. ForS1, we
further see that all blue-ish areas are associated to low probabilities for both objectives: this
scheduler achieves only low probabilities when it still needs to make the rover accumulate a
high amount of value. However, it overall achieves higher probabilities for obj140 at medium
value requirements, whereasS2 is “safer” and focuses on satisfying obj100. The erratic spikes
for S1 correspond to combinations of probabilities for the objectives that are reached only
via unlikely paths.
Comparing Schedulers on Objectives Depending on Budgets Figure 12b again contrasts
schedulers S1 and S2, but this time in terms of the probability for obj100 (z colour) only,
depending on the remaining time (x-axis) and energy budget (y-axis). We plot the minimum
probability over the hidden scientific value requirement, i.e. a worst-case view. The plots show
that time is of little use in case of low remaining energy but helps significantly when there is
sufficient energy. The comparison of the two schedulers mainly confirms, but also explains,
their positions in Fig. 11a: S1 achieves overall lower probabilities for obj100 than S2. If we
were to compare each of these plots with the corresponding plot where the z colour is the
probability for obj140 (not shown here), we would see that the visual difference between the
plots forS1 is small whereas the two plots forS2 are noticeably different—again confirming
the Pareto curve plot.
Comparing Best and Worst Case Projections In Fig. 12c, we show for S1 the probability
to achieve obj100 (z colour) depending on the remaining scientific value to be accumulated
(x-axis) and the remaining energy budget (y-axis). There is a white vertical line for every
odd x-value: over all branches in the model, the gcd of all scientific value costs is 2. The
remaining time has to be projected out. The left plot shows the minimum probabilities over
the hidden costs, i.e. we see the probability for the worst-case remaining time; the right plot
shows the best-case scenario. Not surprisingly, we see that when time is low, only a lot of
energy makes it possible to reach the objective with non-zero probability. We also observe
that without significant time restrictions (i.e. in the best case), only very limited energy is

123

Multi-cost Bounded Tradeoff Analysis in MDP 1515

required to obtain positive probabilities (especially, of course, if only little more scientific
value needs to be accumulated, i.e. on the left side of the right-hand plot).
Comparing one Scheduler Over Two Objectives Finally, in Fig. 12d, we depict for scheduler
S2 the minimum remaining scientific value required (z colour) such that a certain probability
for obj100 (left) or obj140 (right) can be achieved (y-axis), given a certain remaining time
budget (x-axis). Note that this is a worst-case view: minimum remaining means maximum
accumulated scientific value, i.e. we show the value needed to achieve a probability for the
worst choice in hidden costs (i.e. in energy budget). The upper left corner for obj100 shows
that a high probability in little time is only achievable if we need to collect little more value
(red points); the value requirement gradually relaxes as we aim for lower probabilities or
have more time. We see white areas in the rightmost parts of both plots; for obj100, they are
in the lower probability ranges, while for obj140, they are in the higher probability ranges.
This reflects the tradeoff made by S2 to strongly favour obj100 over obj140: with a high time
budget, it has many choices available (on which experiments to perform), and it makes them
such that it achieves obj100 with a high probability, at the cost of obj140—and with a high
time budget, the probabilities are independent of the value and energy budget.

7 Experiments

We implemented the presented approaches into Storm [21], available at [20]. For multi-cost
bounded queries, the implementation computes extremal probabilities for the single-objective
and Pareto curves for the multi-objective case. In addition, Storm computes generators for
two-dimensional quantile queries with only upper or only lower cost bounds.

We evaluate the approaches on a wide range of Markov chain and MDP case studies.
Our benchmark selection includes DTMC models (Crowds and Nand) and MDP models
(FireWire and Wlan) from the Prism benchmark suite [40]. Moreover, we consider MDP
models that have been studied in the context of multi-objective model checking (Service and
UAV) and in the context of cost-bounded reachability (JobSched and Resources). Finally,
we consider the MDP model of the Rover from Sect. 1. The models are given in Prism’s [39]
guarded command language. Except for Crowds, all epoch models for cost epochs e ∈ N

m

are acyclic.
We ran our experiments on a single core (2 GHz) of a HP BL685C G7 system with 192 GB

of memory. We stopped each experiment after a time limit of 2 h.
Details on replicating the tables, as well as details on how to analyse multi-cost bounded

properties using Storm in general, are enclosed in the artifact [33].

7.1 Multi-cost Bounded Reachability Queries

Implementation Details We use the sparse engine of Storm, i.e. explicit data structures
such as sparse matrices. The expected costs (lines 14 to 16 of Algorithm 1) are computed
either numerically (via interval iteration over finite-precision floats) or exactly (via policy
iteration [26] over infinite-precision rationals3). To reduce memory consumption, the analysis
result of an epoch model Me

f is erased once its predecessor epochs have been processed.
Set-Up We compare the naive unfolding approach (UNF) as in Sect. 3 with the sequential
approach (SEQ) as in Sect. 4. Globally, we considered precision η = 10−4 for the Pareto
curve approximation and precision ε = 10−6 for interval iteration.

3 Storm uses the GNU MP Arithmetic Library available at https://gmplib.org.

123

https://gmplib.org

1516 A. Hartmanns et al.

(a) (b) (c)

Fig. 13 Runtime (y-axis) of SEQ (+) and UNF (×) for increasing cost bounds (x-axis) on three benchmarks

– For UNF, the unfolding of the model is applied at thePrism language level, by considering
a parallel composition with cost counting structures. For Crowds, Nand, and Wlan, these
unfolded models are part of the Prism benchmark suite [40]. On the unfolding we apply
the algorithms for unbounded reachability as available in Storm.

– For SEQ, we increased the precision for single epoch models as in Theorem 2.

For all MDP case studies we consider single- and multi-objective cost-bounded reachability
queries that yield non-trivial results, i.e. probabilities strictly between zero and one. For
DTMCs, we only consider single-objective queries: there are no tradeoffs between schedulers
since there is no nondeterminism.
Results Tables 1 and 2 show results for single- and multi-objective queries, respectively. The
first columns yield the number of states and transitions of the original MDP, then for the query,
the number of boundsm, the number of different cost structures r , and the number of reachable
cost epochs |E| (reflecting the magnitude of the bound values). |Sunf | denotes the number
of reachable states in the unfolding. For multi-objective queries, we additionally give the
number of objectives and the number of analysed weight vectors w. The remaining columns
depict the runtimes of the different approaches in seconds. For UNF, we considered both
the sparse (sp) and symbolic (dd) engine of Storm. The symbolic engine neither supports
multi-objective model checking nor exact policy iteration. For experiments that completed
within the time limit, we observed a memory consumption of up to 110 GB for UNF and up
to 8 GB for SEQ.
Evaluation On the majority of benchmarks, SEQ performs better than UNF. Typically, SEQ
is less sensitive to increases in the magnitude of the cost bounds, as illustrated in Fig. 13.
For three benchmark and query instances, we plot the runtime of both approaches against
different numbers |E| of reachable epochs. While for small cost bounds, UNF is sometimes
faster compared to SEQ, SEQ scales better with increasing |E|. It is not surprising that
SEQ scales better: ultimately, the increased state space size and the accompanying memory
consumption in UNF is a bottleneck. The most important reason that UNF performs better for
some (smaller) cost bounds is the induced overhead of checking the full epoch. In particular,
the epoch contains (often many) states that are not reachable from the initial state (in the
unfolding).

7.2 Multi-dimensional Quantiles

Implementation Details Storm computes generators for 2-dimensional queries with either
upper or lower cost bounds as presented in Sects. 5.3 and 5.4. We also allow for additional
cost bounds with fixed cost limits as in Remark 1. Similar to multi-cost bounded queries,
we consider Storm’s sparse engine and compute expected costs (line 25 of Algorithm 2)

123

Multi-cost Bounded Tradeoff Analysis in MDP 1517

Ta
bl
e
1

R
un

tim
e

co
m

pa
ri

so
n

fo
r

m
ul

ti-
co

st
si

ng
le

-o
bj

ec
tiv

e
qu

er
ie

s

B
en

ch
m

ar
k

in
st

an
ce

In
te

rv
al

It
Po

lic
y

It
.

C
as

e
st

ud
y

|S|
|T

|
r-
m

|E
|

|S u
nf

|
U

N
F-

dd
U

N
F-

sp
SE

Q
U

N
F-

sp
SE

Q

C
ro

w
ds

[5
0]

14
3

56
3

2–
2

24
1

·1
07

34
24

9
<

1
74

8
<

1

C
ro

w
ds

14
3

56
3

2–
2

66
2

·1
013

25
15

T
O

<
1

T
O

<
1

C
ro

w
ds

14
3

56
3

2–
2

30
6

?
T

O
T

O
<

1
T

O
5

N
an

d
[4

5]
2

·1
06

4
·1

06
1–

2
10

2
·1

07
T

O
14

5
55

75
7

55
1

N
an

d
2

·1
06

4
·1

06
1–

2
22

5
·1

07
T

O
36

3
60

33
60

23
90

N
an

d
2

·1
06

4
·1

06
1–

2
20

2
5

·1
08

T
O

40
82

11
8

T
O

T
O

Se
rv

ic
e

[4
2]

8
·1

04
2

·1
05

1–
1

16
2

6
·1

06
47

13
6

10
19

45
48

Jo
bS

ch
ed

2
[3

7]
34

9
66

0
2–

2
50

3
2

·1
04

<
1

<
1

<
1

1
<

1

Jo
bS

ch
ed

3
45

84
1

·1
05

2–
2

92
2

3
·1

06
4

10
4

26
13

Jo
bS

ch
ed

5
1

·1
06

4
·1

06
2–

2
21

14
4

·1
08

29
44

T
O

32
20

T
O

T
O

Fi
re

W
ir

e
[5

4]
77

6
1

41
1

2–
2

60
24

7
·1

05
7

8
2

27
4

14
4

Fi
re

W
ir

e
77

6
1

41
1

2–
2

1
·1

05
1

·1
07

16
5

14
7

45
T

O
28

03

R
es

ou
rc

es
[6

]
94

32
6

3–
3

2
·1

04
6

·1
05

<
1

18
5

46
9

R
es

ou
rc

es
94

32
6

3–
3

1
·1

07
6

·1
08

T
O

T
O

26
93

T
O

T
O

R
ov

er
16

30
3–

3
9

·1
04

1
·1

06
38

24
4

70
4

10
6

R
ov

er
16

30
3–

3
1

·1
07

2
·1

08
T

O
60

40
71

3
T

O
T

O

U
A

V
[2

4]
1

·1
05

6
·1

04
1–

1
52

4
·1

04
1

1
1

4
27

U
A

V
1

·1
05

6
·1

04
1–

1
10

2
4

·1
05

7
16

2
72

46

W
la

n3
[4

1]
1

·1
05

2
·1

05
1–

1
82

3
·1

06
9

63
8

12
6

80
0

W
la

n3
1

·1
05

2
·1

05
1–

1
20

2
1

·1
07

82
0

29
3

14
84

8
21

55

W
la

n6
5

·1
06

1
·1

07
1–

1
82

2
·1

07
12

36
3

98
9

64
3

T
O

W
la

n6
5

·1
06

1
·1

07
1–

1
20

2
6

·1
08

22
92

T
O

13
99

T
O

T
O

B
ol

d
nu

m
be

rs
de

no
te

th
e

fa
st

es
ta

pp
ro

ac
h

fo
r

ea
ch

be
nc

hm
ar

k
in

st
an

ce

123

1518 A. Hartmanns et al.

Table 2 Runtime comparison for multi-cost multi-objective queries

Benchmark instance Interval It. Policy It.

Case Study |S| |T | �-r -m |E| #w |Sunf | UNF-sp SEQ UNF-sp SEQ

Service 8 · 104 2 · 105 2–1–2 162 34 6 · 106 1918 543 TO 4679

JobSched2 349 660 2–4–4 4 · 104 2 1 · 105 3 54 15 183

JobSched3 4584 1 · 105 2–4–4 1 · 106 35 2 · 106 96 TO 6239 TO

JobSched5 1 · 106 4 · 106 2–4–4 3 · 105 ? ? TO TO TO TO

FireWire 776 1 411 2–2–2 6 024 3 7 · 105 32 17 TO 1159

FireWire 776 1 411 2–2–2 1 · 105 2 1 · 107 863 225 TO TO

Resources 94 326 2–3–4 2 · 105 3 6 · 105 25 16 2047 52

Resources 94 326 2–3–4 1 · 108 ? ? TO TO TO TO

Rover 16 30 2–3–3 9 · 105 7 1 · 106 177 39 5817 3328

Rover 16 30 2–3–3 1 · 108 7 2 · 108 TO 5785 TO TO

UAV 1 · 105 6 · 104 2–1–2 52 18 4 · 104 2 24 102 1098

UAV 1 · 105 6 · 104 2–1–2 102 22 4 · 105 70 39 2282 3062

Wlan3 1 · 105 2 · 105 3–1–2 82 68 3 · 106 5239 2231 TO TO

Wlan3 1 · 105 2 · 105 3–1–2 202 4 1 · 107 1769 185 TO TO

Wlan6 5 · 106 1 · 107 3–1–2 82 ? 2 · 107 TO TO TO TO

Bold numbers denote the fastest approach for each benchmark instance

via interval iteration over finite precision floats or via policy iteration over infinite precision
rationals.
Set-Up For interval iteration, we used precision ε = 10−6. The probability threshold for all
quantile queries was set to 0.95. We considered the benchmarks from Table 1 where supported
queries with a non-trivial generator (i.e. generators that contain a non-zero cost limit for each
cost bound) could be assembled. For FireWire, Resources, and Rover, we consider the same
cost-bounded reachability formulas as in Table 1.
Results Table 3 shows our results for multi-dimensional quantile queries. The columns depict
the number of states and transitions for each model, the dimension of the quantile query m,
the number of additional cost bounds with fixed cost limits n, the number of analysed cost
epochs |E|, the number of points in the computed generator |gen|, and the runtimes for interval
iteration and policy iteration, respectively. Experiments that finished within the time limit
required at most 7GB of memory.
Evaluation Our experiments indicate the practicability of our approach. Naturally, the run-
time largely depends on the epochs analysed. Comparing with the cost-bounded reachability
(single objective), we can see that the overhead of not knowing a priori which epochs to
check is significant, but manageable (a rough estimate is a factor of 2). The generators for
the considered quantile queries only contain a small number of points, allowing for a concise
representation of the set of satisfying cost limits. This small number raises hopes that a good
heuristic for selecting candidates might be able to properly approximate such a generator
quite fast.

123

Multi-cost Bounded Tradeoff Analysis in MDP 1519

Table 3 Runtime comparison for multi-dimensional quantile queries

Benchmark Instance Interval It. Policy It.

Case Study |S| |T | m-n |E| |gen|
JobSched2 349 660 2–1 8311 5 13 19

JobSched3 4584 1 · 105 2–1 4 · 104 5 289 631

JobSched5 1 · 106 4 · 106 2–1 ? ? TO TO

FireWire 776 1411 2–0 512 1 < 1 1

Resources 94 326 2–1 9791 7 3 6

Resources 94 326 2–1 1 · 105 16 104 146

Resources 94 326 2–1 1 · 106 31 2931 3489

Rover 16 30 2–1 4 · 104 12 27 33

Rover 16 30 2–1 3 · 105 24 873 889

Rover 16 30 2–1 8 · 105 34 6148 5315

Wlan3 1 · 105 2 · 105 2–0 2428 8 82 728

Wlan6 5 · 106 1 · 107 2–0 2428 8 5005 TO

8 Conclusion

Many real-world planning problems consider several limited resources and contain tradeoffs.
This article presented a practically efficient approach to analyse these problems. It has been
implemented in the Storm model checker and shows significant performance benefits. The
extension to quantiles enables the user to tackle the planning and optimisation problem from
an orthogonal angle. Our new algorithm implicitly computes a large amount of information
that is hidden in the standard plots of Pareto curves shown to visualise the results of a multi-
objective analysis. We have developed a new set of visualisations that exploit all the available
data to provide new insights to decision makers even for problems with many objectives and
cost dimensions; yet we also call for experts to improve on these visualisations, as we believe
that an intuitive presentation of the vast amount of result data needs to accompany an efficient
algorithm like ours to exploit its full usage potential.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Andova, S., Hermanns, H., Katoen, J.P.: Discrete-time rewards model-checked. In: FORMATS, LNCS,
vol. 2791, pp. 88–104. Springer (2003)

2. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quantiles. In: NFM, LNCS,
vol. 8430, pp. 285–299. Springer (2014)

123

http://creativecommons.org/licenses/by/4.0/

1520 A. Hartmanns et al.

3. Baier, C., Dubslaff, C.: From verification to synthesis under cost-utility constraints. SIGLOG News 5(4),
26–46 (2018)

4. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Maximizing the conditional expected reward for
reaching the goal. In: TACAS (2), LNCS, vol. 10206, pp. 269–285 (2017)

5. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reliability of your model
checker: Interval iteration for Markov decision processes. In: CAV (1), LNCS, vol. 10426, pp. 160–180.
Springer (2017)

6. Barrett, L., Narayanan, S.: Learning all optimal policies with multiple criteria. In: ICML, AICPS, vol.
307, pp. 41–47. ACM (2008)

7. Berthon, R., Randour, M., Raskin, J.F.: Threshold constraints with guarantees for parity objectives in
Markov decision processes. In: ICALP, LIPIcs, vol. 80, pp. 121:1–121:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017)

8. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on multiple mean-payoff objec-
tives in Markov decision processes. LMCS 10(1) (2014)

9. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský, J., Kwiatkowska, M.Z., Parker, D., Ujma,
M.: Verification of Markov decision processes using learning algorithms. In: ATVA, LNCS, vol. 8837,
pp. 98–114. Springer (2014)

10. Brázdil, T., Chatterjee, K., Forejt, V., Kucera, A.: Trading performance for stability in Markov decision
processes. J. Comput. Syst. Sci. 84, 144–170 (2017)

11. Bresina, J.L., Jónsson, A.K., Morris, P.H., Rajan, K.: Activity planning for the Mars exploration rovers.
In: ICAPS, pp. 40–49. AAAI (2005)

12. Bryce, D., Cushing, W., Kambhampati, S.: Probabilistic planning is multi-objective. Technical Report,
Arizona State Univ, CSE (2007)

13. Cao, Z., Guo, H., Zhang, J., Oliehoek, F.A., Fastenrath, U.: Maximizing the probability of arriving on
time: a practical q-learning method. In: AAAI, pp. 4481–4487. AAAI Press (2017)

14. Chatterjee, K., Chmelik, M., Gupta, R., Kanodia, A.: Optimal cost almost-sure reachability in POMDPs.
Artif. Intell. 234, 26–48 (2016)

15. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple objectives. In:
STACS, LNCS, vol. 3884, pp. 325–336. Springer (2006)

16. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic games with multiple
objectives. In: MFCS, LNCS, vol. 8087, pp. 266–277. Springer (2013)

17. Cheng, L., Subrahmanian, E., Westerberg, A.W.: Multiobjective decision processes under uncertainty:
applications, problem formulations, and solution strategies. Ind. Eng. Chem. Res. 44(8), 2405–2415
(2005)

18. Christman, A., Cassamano, J.: Maximizing the probability of arriving on time. In: ASMTA, LNCS, vol.
7984, pp. 142–157. Springer (2013)

19. Dai, P., Mausam, Weld, D.S., Goldsmith, J.: Topological value iteration algorithms. J. JAIR 42, 181–209
(2011)

20. Dehnert, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: Storm website (2018). http://stormchecker.
org

21. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: a modern probabilistic model checker.
In: CAV (2), LNCS, vol. 10427, pp. 592–600. Springer (2017)

22. Eastwood, R., Alexander, R., Kelly, T.: Safe multi-objective planning with a posteriori preferences. In:
HASE, pp. 78–85. IEEE Computer Society (2016)

23. Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov
decision processes. LMCS 4(4) (2008)

24. Feng, L., Wiltsche, C., Humphrey, L., Topcu, U.: Controller synthesis for autonomous systems interacting
with human operators. In: ICCPS, pp. 70–79. ACM (2015)

25. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model checking. In: ATVA, LNCS,
vol. 7561, pp. 317–332. Springer (2012)

26. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D.: Automated verification techniques for probabilis-
tic systems. In: SFM, LNCS, vol. 6659, pp. 53–113. Springer (2011)

27. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value iteration. In: RP, LNCS,
vol. 8762, pp. 125–137. Springer (2014)

28. Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded probabilistic model checking
techniques. SETTA, LNCS 9984, 85–100 (2016)

29. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis frame-
work for stochastic hybrid systems. Formal Methods in Syst. Des. 43(2), 191–232 (2013)

123

http://stormchecker.org
http://stormchecker.org

Multi-cost Bounded Tradeoff Analysis in MDP 1521

30. Hahn, E.M., Hashemi, V., Hermanns, H., Lahijanian, M., Turrini, A.: Multi-objective robust strategy
synthesis for interval Markov decision processes. In: QEST, LNCS, vol. 10503, pp. 207–223. Springer
(2017)

31. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for quantitative modelling
and verification. In: TACAS, LNCS, vol. 8413, pp. 593–598. Springer (2014)

32. Hartmanns, A., Junges, S., Katoen, J.P., Quatmann, T.: Multi-cost bounded reachability in MDP. In:
TACAS, LNCS, vol. 10806, pp. 320–339. Springer (2018). https://doi.org/10.1007/978-3-319-89963-
3_19

33. Hartmanns, A., Junges, S., Katoen, J.P., Quatmann, T.: Multi-cost bounded tradeoff analysis in MDP—
Artifact. Zenodo (2020). https://doi.org/10.5281/zenodo.3894716

34. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: CAV, Lecture Notes in Computer Science,
vol 12225, pp. 488–511. Springer (2020). https://doi.org/10.1007/978-3-030-53291-8_26

35. Hou, P., Yeoh, W., Varakantham, P.: Revisiting risk-sensitive MDPs: New algorithms and results. In:
ICAPS. AAAI (2014)

36. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.: Safety-constrained reinforcement learning for
MDPs. In: TACAS, LNCS, vol. 9636, pp. 130–146. Springer (2016)

37. Klein, J., Baier, C., Chrszon, P., Daum, M., Dubslaff, C., Klüppelholz, S., Märcker, S., Müller, D.:
Advances in probabilistic model checking with PRISM: variable reordering, quantiles and weak deter-
ministic Büchi automata. STTT pp. 1–16 (2017)

38. Kolobov, A., Mausam, Weld, D.S.: A theory of goal-oriented MDPs with dead ends. In: UAI, pp. 438–447.
AUAI Press (2012)

39. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems.
In: CAV, LNCS, vol. 6806, pp. 585–591. Springer (2011)

40. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: QEST, pp. 203–204. IEEE
CS Press (2012)

41. Kwiatkowska, M.Z., Norman, G., Sproston, J.: Probabilistic model checking of the IEEE 802.11 wireless
local area network protocol. In: PAPM-PROBMIV, LNCS, vol. 2399, pp. 169–187. Springer (2002)

42. Lacerda, B., Parker, D., Hawes, N.: Multi-objective policy generation for mobile robots under probabilistic
time-bounded guarantees. In: ICAPS, pp. 504–512. AAAI Press (2017)

43. Lankaites Pinheiro, R., Landa-Silva, D., Atkin, J.: A technique based on trade-off maps to visualise and
analyse relationships between objectives in optimisation problems. J. Multi-Criteria Decis. Anal. 24(1–2),
37–56 (2017)

44. Laroussinie, F., Sproston, J.: Model checking durational probabilistic systems. In: FoSSaCS, LNCS, vol.
3441, pp. 140–154. Springer (2005)

45. Norman, G., Parker, D., Kwiatkowska, M.Z., Shukla, S.K.: Evaluating the reliability of NAND multi-
plexing with PRISM. IEEE Trans. CAD of Integ. Circuits Syst. 24(10), 1629–1637 (2005)

46. Puterman, M.L.: Markov Decision Processes. Wiley, HobokenD (1994)
47. Quatmann, T., Junges, S., Katoen, J.P.: Markov automata with multiple objectives. In: CAV (1), LNCS,

vol. 10426, pp. 140–159. Springer (2017)
48. Quatmann, T., Katoen, J.P.: Sound value iteration. In: CAV, LNCS, vol. 10981, pp. 643–661. Springer

(2018)
49. Randour, M., Raskin, J.F., Sankur, O.: Percentile queries in multi-dimensional Markov decision processes.

FMSD 50(2–3), 207–248 (2017)
50. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans. Inf. Syst. Secur. 1(1),

66–92 (1998)
51. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective sequential decision-

making. J. Artif. Intell. Res. 48, 67–113 (2013)
52. Sardar, M.U., Dubslaff, C., Klüppelholz, S., Baier, C., Kumar, A.: Performance evaluation of thermal-

constrained scheduling strategies in multi-core systems. In: EPEW, LNCS, vol. 12039, pp. 133–147.
Springer (2019). https://doi.org/10.1007/978-3-030-44411-2_9

53. Steinmetz, M., Hoffmann, J., Buffet, O.: Goal probability analysis in probabilistic planning: exploring
and enhancing the state of the art. J. Artif. Intell. Res. 57, 229–271 (2016)

54. Stoelinga, M., Vaandrager, F.W.: Root contention in IEEE 1394. In: ARTS Formal Methods for Real-Time
and Probabilistic Systems, LNCS, vol. 1601, pp. 53–74. Springer (1999)

55. Teichteil-Königsbuch, F.: Stochastic safest and shortest path problems. In: AAAI. AAAI Press (2012)
56. The International Probabilistic Planning Competition. http://www.icaps-conference.org/index.php/Main/

Competitions
57. Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: FOSSACS, LNCS, vol. 7794,

pp. 353–368. Springer (2013)

123

https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.5281/zenodo.3894716
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-44411-2_9
http://www.icaps-conference.org/index.php/Main/Competitions
http://www.icaps-conference.org/index.php/Main/Competitions

1522 A. Hartmanns et al.

58. Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., Dekker, E.: Empirical evaluation methods for multi-
objective reinforcement learning algorithms. Mach. Learn. 84(1–2), 51–80 (2011)

59. Yu, S.X., Lin, Y., Yan, P.: Optimization models for the first arrival target distribution function in discrete
time. J. Math. Anal. Appl. 225(1), 193–223 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Multi-cost Bounded Tradeoff Analysis in MDP
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Mathematical Notation
	2.2 Markov Decision Processes
	2.3 Paths and Schedulers
	2.4 Cost-Bounded Reachability

	3 The Unfolding Approach Revisited
	3.1 Epochs and Goal Satisfaction
	3.2 The Unfolding Approach
	3.3 Multi-objective Model Checking on the Unfolding

	4 Multi-cost Multi-objective Sequential Value Iteration
	4.1 An Epoch Model Approach without Unfolding
	4.2 Runtime and Memory Requirements
	4.3 Error Propagation
	4.3.1 General Models
	4.3.2 Acyclic Epoch Models

	4.4 Different Bound Types

	5 Multi-cost Quantiles
	5.1 Quantiles in Multiple Dimensions
	5.2 Computing Finite Natural Generators
	5.3 Upper Cost-Bounded Quantiles
	5.4 Lower Cost-Bounded Quantiles
	5.5 Intricate Quantile Queries

	6 Visualisations
	6.1 Pareto Curves
	6.2 Visualising Bounded Multi-Objective Schedulers

	7 Experiments
	7.1 Multi-cost Bounded Reachability Queries
	7.2 Multi-dimensional Quantiles

	8 Conclusion
	References

