
Journal of Automated Reasoning (2020) 64:1419–1444
https://doi.org/10.1007/s10817-020-09572-x

Fine-Grained Complexity of Safety Verification

Peter Chini1 · Roland Meyer1 · Prakash Saivasan1

Received: 19 June 2020 / Accepted: 26 June 2020 / Published online: 14 July 2020
© The Author(s) 2020

Abstract
Westudy thefine-grained complexity ofLeaderContributorReachability (LCR) andBounded-
Stage Reachability (BSR), two variants of the safety verification problem for shared memory
concurrent programs. For both problems, the memory is a single variable over a finite data
domain. Our contributions are new verification algorithms and lower bounds. The latter
are based on the Exponential Time Hypothesis (ETH), the problem Set Cover, and cross-
compositions. LCR is the questionwhether a designated leader thread can reach an unsafe state
when interacting with a certain number of equal contributor threads.We suggest two parame-
terizations: (1) By the size of the data domainD and the size of the leaderL, and (2) by the size
of the contributors C. We present algorithms for both cases. The key techniques are compact
witnesses and dynamic programming. The algorithms run in O∗((L · (D + 1))L·D · DD) and
O∗(2C) time, showing that both parameterizations are fixed-parameter tractable. We comple-
ment the upper bounds by (matching) lower bounds based on ETH and Set Cover. Moreover,
we prove the absence of polynomial kernels. For BSR, we consider programs involving t dif-
ferent threads. We restrict the analysis to computations where the write permission changes
s times between the threads. BSR asks whether a given configuration is reachable via such an
s-stage computation. When parameterized by P, the maximum size of a thread, and t, the
interesting observation is that the problem has a large number of difficult instances. Formally,
we show that there is no polynomial kernel, no compression algorithm that reduces the size
of the data domain D or the number of stages s to a polynomial dependence on P and t. This
indicates that symbolic methods may be harder to find for this problem.

Keywords Parameterized verification · Parameterized complexity · Fine-grained
complexity · Safety verification

B Peter Chini
p.chini@tu-bs.de

Roland Meyer
roland.meyer@tu-bs.de

Prakash Saivasan
p.saivasan@tu-bs.de

1 TU Braunschweig, Brunswick, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-020-09572-x&domain=pdf

1420 P. Chini et al.

1 Introduction

We study the fine-grained complexity of two safety verification problems [1,18,32] for shared
memory concurrent programs. The motivation to reconsider these problems are recent devel-
opments in fine-grained complexity theory [7,12,35,39]. They suggest that classifications
such as NP or even FPT are too coarse to explain the success of verification methods. Instead,
it should be possible to identify the precise influence that parameters of the input have on the
verification time. Our contribution confirms this idea. We give new verification algorithms
for the two problems that, for the first time, can be proven optimal in the sense of fine-grained
complexity theory. To state the results, we need some background. Aswe proceed, we explain
the development of fine-grained complexity theory.

There is a well-known gap between the success that verification tools see in practice
and the judgments about computational hardness that worst-case complexity is able to give.
The applicability of verification tools steadily increases by tuning them towards industrial
instances. The complexity estimation is stuckwith considering the input size or at best assum-
ing certain parameters to be constant. However, the latter approach is not very enlightening
if the runtime is nk , where n is the input size and k the parameter.

The observation of a gap between practical algorithms and complexity theory is not
unique to verification but made in every field that has to solve hard computational problems.
Complexity theory has taken up the challenge to close the gap. So-called fixed-parameter
tractability (FPT) [13,15] proposes to identify parameters k so that the runtime is f (k)poly(n),
where f is a computable function and poly(n) denotes any polynomial dependent on n. These
parameters are powerful in the sense that they dominate the complexity.

For an FPT-result to be useful, function f should only bemildly exponential, and of course
k should be small in the instances of interest. Intuitively, they are what one needs to optimize.
Fine-grained complexity is the study of upper and lower bounds on the function. Indeed,
the fine-grained complexity of a problem is written as O∗(f (k)), emphasizing f and k and
suppressing the polynomial part. For upper bounds, the approach is still to come up with an
algorithm.

For lower bounds, fine-grained complexity has taken anewandvery pragmatic perspective.
For the problem of n-variable 3-SAT the best known algorithm runs inO(2n), and this bound
has not been improved since 1970. The idea is to take improvements on this problem as
unlikely, known as the exponential-time hypothesis (ETH) [35]. Formally, it asserts that there
is no 2o(n)-time algorithm for 3-SAT. ETH serves as a lower bound that is reduced to other
problems [39]. An even stronger assumption about SAT, called SETH [7,35], and a similar
one about Set Cover[12] allow for lower bounds like the absence ofO∗((2−δ)n) algorithms.

In this work, we contribute fine-grained complexity results for verification problems on
concurrent programs. The first problem is reachability for a leader thread that is interacting
with an unbounded number of contributors (LCR) [18,32]. We show that, assuming a param-
eterization by the size of the leader L and the size of the data domain D, the problem can
be solved in O∗((L · (D + 1))L·D · DD). At the heart of the algorithm is a compression of
computations into witnesses. To check reachability, our algorithm then iterates over candi-
dates for witnesses and checks each of them for being a proper witness. Interestingly, we can
formulate a variant of the algorithm that seems to be suited for large state spaces.

Using ETH, we show that the algorithm is (almost) optimal. Moreover, the problem is
shown to have a large number of hard instances. Technically, there is no polynomial kernel
[5,6]. Experience with kernel lower bounds is still limited. This notion of hardness seems to

123

Fine-Grained Complexity of Safety Verification 1421

indicate that symbolic methods are hard to apply. The lower bounds that we present share
similarities with the reductions from [8,29,30].

If we consider the size C of the contributors as a parameter, we obtain an O∗(2C) upper
bound. Our algorithm is based on dynamic programming. We use the technique to solve a
reachability problem on a graph that is shown to be a compressed representation for LCR. The
compression is based on a saturation argumentwhich is inspired by thread-modular reasoning
[23,24,31,34]. With the hardness assumption on Set Cover we show that the algorithm is
indeed optimal. Moreover, we prove the absence of a polynomial kernel.

Parameterizations of LCR involving just a single parameter D or L are intractable.We show
that these problems are W[1]-hard. This proves the existence of an FPT-algorithm for those
parameterizations unlikely.

The second problem we study generalizes bounded context switching. Bounded stage
reachability (BSR) asks whether a state is reachable if there is a bound s on the number of
times the write permission is allowed to change between the threads [1]. Again, we show
the new form of kernel lower bound. The result is tricky and highlights the power of the
computation model.

The results are summarized by the table below. Main findings are highlighted in gray. We
present two new algorithms for LCR. Moreover, we suggest kernel lower bounds as hardness
indicators for verification problems. The corresponding lower bound for BSR is particularly
difficult to achieve.

The conference version of this paper appeared in [10]. The paper at hand presents new
results. This includes an improved algorithm for LCR running in O∗(2C) time instead of
O∗(4C) and a new (2 − δ)C lower bound based on Set Cover. Together, upper and lower
bound show that the optimal algorithm for the problem has been found. Moreover, we give
proofs for the intractability of certain parameterizations of LCR and BSR. This justifies our
choice of parameters.

We provide a full version of the paper at hand in [11], including missing proofs and details
of formal constructions.

RelatedWork

Concurrent programs communicating through a shared memory and having a fixed number
of threads have been extensively studied [2,16,27,33]. The leader contributor reachability
problem as considered in this paper was introduced as parametrized reachability in [32].
In [18], it was shown to be NP-complete when only finite state programs are involved and
PSPACE-complete for recursive programs. In [36], the parameterized pairwise reachability
problem was considered and shown to be decidable. Parameterized reachability under a
variant of round robin scheduling was proven decidable in [38].

123

1422 P. Chini et al.

The bounded stage restriction on the computations of concurrent programs as considered
here was introduced in [1]. The corresponding reachability problem was shown to be NP-
complete when only finite state programs are involved. The problem remains in NEXP-time
and PSPACE-hard for a combination of counters and a single pushdown. The bounded stage
restriction generalizes the concept of bounded context switching from [40], whichwas shown
to be NP-complete in that paper. In [9], FPT-algorithms for bounded context switching were
obtained under various parameterization. In [3], networks of pushdowns communicating
through a shared memory were analyzed under topological restrictions.

There have been few efforts to obtain fixed-parameter tractable algorithms for automata
and verification-related problems. FPT-algorithms for automata problems have been studied
in [21,22,41]. In [14], model checking problems for synchronized executions on parallel
components were considered and proven intractable. In [17], the notion of conflict serial-
izability was introduced for the TSO memory model and an FPT-algorithm for checking
serializability was provided. The complexity of predicting atomicity violation on concurrent
systems was considered in [20]. The finding is that FPT-solutions are unlikely to exist. In
[19], the problem of checking correctness of a program along a pattern is investigated. The
authors conduct an analysis in several parameters. The results range from NP-hardness even
for fixed parameters to FPT-algorithms.

2 Preliminaries

We introduce our model for programs, which is fairly standard and taken from [1,18,32], and
give the basics on fixed-parameter tractability.

Programs

A program consists of finitely many threads that access a shared memory. The memory is
modeled to hold a single value at a time. Formally, a (shared memory) program is a tuple
A = (D, a0, (Pi)i∈[1..t]). Here, D is the data domain of the memory and a0 ∈ D is the initial
value. Threads are modeled as control-flow graphs that write values to or read values from the
memory. These operations are captured by Op(D) = {!a, ?a | a ∈ D}. We use the notation
W(D) = {!a | a ∈ D} for the write operations and R(D) = {?a | a ∈ D} for the read
operations. A thread Pid is a non-deterministic finite automaton (Op(D), Q, q0, δ) over the
alphabet of operations. The set of states is Q with q0 ∈ Q the initial state. The final states will
depend on the verification task. The transition relation is δ ⊆ Q × (Op(D) ∪ {ε}) × Q. We
extend it to words and also write q

w−→ q ′ for q ′ ∈ δ(q, w). Whenever we need to distinguish
between different threads, we add indices and write Qid or δid .

The semantics of a program is given in terms of labeled transitions between configurations.
A configuration is a pair (pc, a) ∈ (Q1 × · · ·× Qt)×D. The program counter pc is a vector
that shows the current state pc(i) ∈ Qi of each thread Pi . Moreover, the configuration gives
the current value in memory. We call c0 = (pc0, a0) with pc0(i) = q0i for all i ∈ [1..t]
the initial configuration. Let C denote the set of all configurations. The program’s transition
relation among configurations → ⊆ C × (Op(D) ∪ {ε}) × C is obtained by lifting the
transition relations of the threads. To define it, let pc1 = pc[i = qi], meaning thread Pi is
in state qi and otherwise the program counter coincides with pc. Let pc2 = pc[i = q ′

i]. If
thread Pi tries to read with the transition qi

?a−→ q ′
i , then (pc1, a)

?a−→ (pc2, a). Note that the

123

Fine-Grained Complexity of Safety Verification 1423

memory is required to hold the desired value. If the thread has the transition qi
!b−→ q ′

i , then

(pc1, a)
!b−→ (pc2, b). Finally, qi

ε−→ q ′
i yields (pc1, a)

ε−→ (pc2, a). The program’s transition

relation is generalized to words, c
w−→ c′. We call such a sequence of consecutive labeled

transitions a computation. To indicate that there is a word justifying a computation from c to
c′, we write c →∗ c′. We may use an index

w−→i to indicate that the computation was induced
by thread Pi . Where appropriate, we also use the program as an index,

w−→A.

Fixed-Parameter Tractability

We wish to study the fine-grained complexity of safety verification problems for the above
programs. This means our goal is to identify parameters of these problems that satisfy two
properties. First, in practical instances they are small. Second, assuming that these parameters
are small, show that efficient verification algorithms canbeobtained.Parametrized complexity
is a branch of complexity theory that makes precise the idea of being efficient relative to a
parameter.

Fix a finite alphabet Σ . A parameterized problem L is a subset of Σ∗ × N. The problem
is fixed-parameter tractable if there is a deterministic algorithm that, given (x, k) ∈ Σ∗ ×N,
decides (x, k) ∈ L in time f (k) · |x |O(1). We use FPT for the class of all such problems and
say a problem is FPT to mean it is in that class. Note that f is a computable function only
depending on the parameter k. It is common to denote the runtime byO∗(f (k)) and suppress
the polynomial part. We will be interested in the precise dependence on the parameter, in
upper and lower bounds on the function f . This study is often referred to as fine-grained
complexity.

Lower bounds on f are usually obtained from assumptions about SAT. The most famous
is the Exponential Time Hypothesis (ETH). It assumes that there is no algorithm solving n-
variable 3-SAT in 2o(n) time. Then, the reasoning is as follows: If f drops below a certain
bound, ETH would fail. Other standard assumptions for lower bounds are the Strong Expo-
nential Time Hypothesis (SETH) and the hardness assumption of Set Cover. We postpone the
definition of the latter and focus on SETH. This assumption is more restrictive than ETH. It
asserts that n-variable SAT cannot be solved in O∗((2 − δ)n) time for any δ > 0.

While many parameterizations of NP-hard problems were proven to be fixed-parameter
tractable, there are problems that are unlikely to be FPT. Such problems are hard for the
complexity classW[1]. For a theory of relative hardness, the appropriate notion of reduction
is called parameterized reduction. Given parameterized problems L, L ′ ⊆ Σ∗ × N, we
say that L is reducible to L ′ via a parameterized reduction if there is an algorithm that
transforms an input (x, k) to an input (x ′, k′) in time g(k) · |x |O(1) such that (x, k) ∈ L if
and only if (x ′, k′) ∈ L ′. Here, g is a computable function and k′ is computed by a function
only dependent on k.

3 Leader Contributor Reachability

We consider the leader contributor reachability problem for shared memory programs. The
problem was introduced in [32] and shown to be NP-complete in [18] for the finite state
case.1 We contribute two new verification algorithms that target two parameterizations of the

1 The problem is called parameterized reachability in these works. We renamed it to avoid confusion with
parameterized complexity.

123

1424 P. Chini et al.

problem. In both cases, our algorithms establish fixed-parameter tractability. Moreover, with
matching lower bounds we prove them to be optimal even in the fine-grained sense.

An instance of the leader contributor reachability problem is given by a shared memory
program of the form A = (D, a0, (PL , (Pi)i∈[1..t])). The program has a designated leader
thread PL and several contributor threads P1, . . . , Pt . In addition, we are given a set of unsafe
states for the leader. The task is to check whether the leader can reach an unsafe state when
interacting with a number of instances of the contributors. It is worth noting that the problem
can be reduced to having a single contributor. Let the corresponding thread PC be the union
of P1, . . . , Pt (constructed using an initial ε-transition). We base our complexity analysis on
this simplified formulation of the problem.

For the definition, let A = (D, a0, (PL , PC)) be a program with two threads. Let
FL ⊆ QL be a set of unsafe states of the leader. For any t ∈ N, define the program
At = (D, a0, (PL , (PC)i∈[1..t])) to have exactly t copies of PC . Further, let C f be the
set of configurations where the leader is in an unsafe state (from FL). The problem of interest
is as follows:

Leader Contributor Reachability (LCR)
Input: A program A = (D, a0, (PL , PC)) and a set of states FL ⊆ QL .
Question: Is there a t ∈ N such that c0 →∗

At c for some c ∈ C f ?

We consider two parameterizations of LCR. First, we parameterize by D, the size of the
data domainD, and L, the number of states of the leader PL . We denote the parameterization
by LCR(D,L). The second parameterization that we consider is LCR(C), a parameterization
by the number of states of the contributor PC . For both, LCR(D,L) and LCR(C), we present
fine-grained analyses that include FPT-algorithms as well as lower bounds for runtimes and
kernels.

While for LCR(D,L) we obtain an FPT-algorithm, it is not likely that LCR(D) and LCR(L)

admit the same. We prove that these parameterizations areW[1]-hard.

3.1 Parameterization byMemory and Leader

Wegive an algorithm that solves LCR in timeO∗((L·(D+1))L·D ·DD), whichmeans LCR(D,L)

is FPT. We then show how to modify the algorithm to solve instances of LCR as they are likely
to occur in practice. Interestingly, the modified version of the algorithm lends itself to an
efficient implementation based on off-the-shelf sequential model checkers.We conclude with
lower bounds for LCR(D,L).

Upper Bound

We give an algorithm for the parameterization LCR(D,L). The key idea is to compactly
represent computations that may be present in an instance of the given program. To this end,
we introduce a domain of so-called witness candidates. The main technical result, Lemma 6,
links computations and witness candidates. It shows that reachability of an unsafe state holds
in an instance of the program if and only if there is a witness candidate that is valid (in a
precise sense). With this, our algorithm iterates over all witness candidates and checks each
of them for being valid. To state the overall result, let Wit(L,D) = (L · (D + 1))L·D · DD · L
be the number of witness candidates and let Valid(L,D,C) = L3 ·D 2 ·C2 be the time it takes
to check validity of a candidate. Note that it is polynomial.

123

Fine-Grained Complexity of Safety Verification 1425

Theorem 1 LCR can be solved in time O(Wit(L,D) · Valid(L,D,C)).

Let A = (D, a0, (PL , PC)) be the program of interest and FL be the set of unsafe states
in the leader. Assume we are given a computation ρ showing that PL can reach a state in
FL when interacting with a number of contributors. We explain the main ideas to find an
efficient representation for ρ that still allows for the reconstruction of a similar computation.
To simplify the presentation, we assume the leader never writes !a and immediately reads ?a
(same value). If this is the case, the read can be replaced by ε.

In a first step, we delete most of the moves in ρ that were carried out by the contributors.

We only keep first writes. For each value a, this is the write transitions fw(a) = c
!a−→ c′

where a is written by a contributor for the first time. The reason we can omit subsequent
writes of a is the following: If fw(a) is carried out by contributor P1, we can assume that there
is an arbitrary number of other contributors that all mimicked the behavior of P1. This means
whenever P1 did a transition, they copycatted it right away. Hence, there are arbitrarily many
contributors pending to write a. Phrased differently, the symbol a is available for the leader
whenever PL needs to read it. The idea goes back to the Copycat Lemma stated in [18]. The
reads of the contributors are omitted as well. We will make sure they can be served by the
first writes and the moves done by PL .

After the deletion, we are left with a shorter expression ρ′. We turn it into a word w over
the alphabet QL ∪ D⊥ ∪ D̄ with D⊥ = D ∪ {⊥} and D̄ = {ā | a ∈ D}. Each transition

c
!a/?a/ε−−−−→L c′ in ρ′ that is due to the leader moving from q to q ′ is mapped (i) to q.a.q ′

if it is a write and (ii) to q.⊥.q ′ otherwise. A first write fw(a) = c
a−→ c′ of a contributor

is mapped to ā. We may assume that the resulting word w is of the form w = w1.w2 with
w1 ∈ ((QL .D⊥)∗.D̄)∗ andw2 ∈ (QL .D⊥)∗.FL . Note thatw can still be of unbounded length.

In order to find a witness of bounded length, we compress w1 and w2 to w′
1 and w′

2.
Between two first writes ā and b̄ in w1, the leader can perform an unbounded number of
transitions, represented by a word in (QL .D⊥)∗. Hence, there are states q ∈ QL repeating
between ā and b̄. We contract the word between the first and the last occurrence of q into
just a single state q . This state now represents a loop on PL . Since there are L states in the
leader, this bounds the number of contractions. Furthermore, we know that the number of
first writes is bounded by D, each symbol can be written for the first time at most once. Thus,
the compressed string w′

1 is a word in the language ((QL .D⊥)≤L.D̄)≤D.
The word w2 is of the form w2 = q.u for a state q ∈ QL and a word u. We truncate the

word u and only keep the state q . Then we know that there is a computation leading from
q to a state in FL where PL can potentially write any symbol but read only those symbols
which occurred as a first write in w′

1. Altogether, we are left with a word of bounded length.

Definition 2 The set of witness candidates is E = ((QL .D⊥)≤L.D̄)≤D.QL .

Before we elaborate on the precise relation between witness candidates and computations,
we turn to an example. It shows how an actual computation is compressed to a witness
candidate following the above steps.

Example 3 Consider the program A = (D, a0, (PL , PC)) with domain D, leader thread PL ,
and contributor thread PC given in Fig. 1. We follow a computation in A2 that reaches the
unsafe state q4 of the leader. Note that the transitions are labeled by L and C , depending on
whether the leader or a contributor moved.

123

1426 P. Chini et al.

q0 q1 q2 q3 q4

PL

?a
!b

ε

?c ?a p0

p1

p2

PC !a !a

?b !c

Fig. 1 Leader thread PL (left) and contributor thread PC (right) over the data domain D = {a0, a, b, c}. The
only unsafe state of the leader is given by FL = {q4}

(q0, p0, p0, a
0)

!a−→C (q0, p1, p0, a)
?a−→L (q1, p1, p0, a)

!b−→L

(q2, p1, p0, b)
?b−→C (q2, p1, p2, b)

!c−→C (q2, p1, p2, c)
?c−→L

(q3, p1, p2, c)
!a−→C (q3, p1, p2, a)

?a−→L (q4, p1, p2, a).

We construct a witness candidate out of the computation. To this end, we only keep the
first writes of the contributors. These are the write !a in the first transition and the write !c in
the fifth transition. Both are marked red. They will be represented in the witness candidate
by the symbols ā, c̄ ∈ D̄.

Nowwemap the transitions of the leader to words.Writes are preserved, reads are mapped
to ⊥. Then we obtain the witness candidate

ā . q0 .⊥ . q1 . b . c̄ . q2.

Note that we omit the last two transitions of the leader. The reason is as follows. After
the first write c̄, the leader is in state q2. From this state, the leader can reach q4 while only
reading from first writes that have already appeared in the witness candidate, namely a and
c. Hence, we can truncate the witness candidate at that point and do not have to keep the
remaining computation to q4.

To characterize computations in terms of witness candidates, we define the notion of
validity. This needs some notation. Consider a word w = w1 . . . w� over some alphabet Γ .
For i ∈ [1..�], we set w[i] = wi and w[1..i] = w1 . . . wi . If Γ ′ ⊆ Γ , we use w↓Γ ′ for the
projection of w to the letters in Γ ′.

Consider a witness candidate w ∈ E and let i ∈ [1..|w|]. We use D̄(w, i) for the set of
all first writes that occurred in w up to position i . Formally, we define it to be D̄(w, i) =
{a | ā is a letter in w[1..i]↓D̄}. We abbreviate D̄(w, |w|) as D̄(w). Let q ∈ QL and S ⊆ D.
Recall that the state represents a loop in PL . The set of all letters written within a loop from
q to q when reading only symbols from S is Loop(q, S) = {a | a ∈ D and ∃v1, v2 ∈
(W(D) ∪ R(S))∗ : q v1!av2−−−→L q}.

The definition of validity is given next. Technical details of the three requirements are
made precise in the text below.

Definition 4 A witness candidate w ∈ E is valid if it satisfies the following properties: (1)
First writes are unique. (2) The word w encodes a run on PL . (3) There are supportive
computations on the contributors.

(1) If w↓D̄ = c̄1 . . . c̄�, then the c̄i are pairwise different.

(2) Let w ↓QL∪D⊥= q1a1q2a2 . . . a�q�+1. If ai ∈ D, then qi
!ai−→L qi+1 ∈ δL is a write

transition of PL . If ai = ⊥, then we have an ε-transition qi
ε−→L qi+1. Alternatively,

there is a read qi
?a−→L qi+1 of a symbol a ∈ D̄(w,pos(ai)) that already occurred within

123

Fine-Grained Complexity of Safety Verification 1427

a first write (the leader does not read its own writes). Here, we use pos(ai) to access
the position of ai in w. State q1 = q0L is initial. There is a run from q�+1 to a state
q f ∈ FL . During this run, reading is restricted to symbols that occurred as first writes in
w. Formally, there is a word v ∈ (W(D) ∪ R(D̄(w)))∗ leading to an unsafe state q f . We

have q�+1
v−→L q f .

(3) For each prefix vā of w with ā ∈ D̄ there is a computation q0C
u!a−→C q on PC so that the

reads in u can be obtained from v. Formally, let u′ = u↓R(D). Then there is an embedding
of u′ into v, a monotone map μ : [1..|u′|] → [1..|v|] that satisfies the following. Let
u′[i] = ?awith a ∈ D. The read is served in one of the following threeways.Wemay have
v[μ(i)] = a, which corresponds to a write of a by PL . Alternatively, v[μ(i)] = q ∈ QL

and a ∈ Loop(q, D̄(w,μ(i))). This amounts to reading from a leader’s write that was
executed in a loop. Finally, we may have a ∈ D̄(w,μ(i)), corresponding to reading from
another contributor.

Our goal is to prove that a validwitness candidate exists if and only if there is a computation
leading to an unsafe state. Before we state the corresponding lemma, we provide some
intuition for the three requirements along an example.

Example 5 Reconsider the program A from Fig. 1. We elaborate on why the three require-
ments for validity are essential. To this end, we present three witness candidates, each
violating one of the requirements. Thus, these candidates cannot correspond to an actual
computation of the program.

Thewitness candidatew1 = ā . q0 .⊥ . q1 . b . ā . q2 clearly violates requirement (1) due to
the repetition of ā. Since first writes are unique there cannot exist a computation of program
A following candidate w1.

Requirement (2) asks for a proper run on the leader thread PL . Hence, thewitness candidate
w2 = ā . q0 . a . q1 . b . c̄ . q2 violates the requirement although it satisfies (1). The subword

q0 . a . q1 ofw2 encodes that the leader should take the transitionq0
!a−→L q1. But this transition

does not exist in PL . Consequently, there is no computation of A which corresponds to the
witness candidate w2.

For requirement (3), consider the candidate w3 = ā . q0 .⊥ . q1 .⊥ . c̄ . q2. It clearly sat-
isfies (1). Requirement (2) is also fulfilled. In fact, the subwords encoding transitions of the

leader are q0 .⊥ . q1 and q1 .⊥ . q2. The first subword corresponds to transition q0
?a−→L q1

which can be taken since a already appeared as a first write inw3. The second subword refers
to the transition q1

ε−→L q2.
To explain that w3 does not satisfy requirement (3), we show that c cannot be provided

as a first write. To this end, assume that w3 satisfies (3). Then, for the prefix v.c̄ with

v = ā . q0 .⊥ . q1 .⊥, there is a computation of the form p0
u!c−→C p2. The reads in u are

either first writes in v or writes provided by the leader (potentially in loops). Symbol b is not
provided as such: It is neither a first write in v nor a symbol written by the leader (in a loop)
along v. However, a computation u leading to state p2 in PC needs to read b once. Hence,
such a computation does not exist and c cannot be provided as a first write.

Thewitness candidatew = ā . q0 .⊥ . q1 . b . c̄ . q2 fromExample 3 satisfies all the require-

ments. In particular (3) is fulfilled since b is written by the leader in the transition q1
!b−→ q2.

Hence, in this case, c can be provided as a first write.

Lemma 6 There is a t ∈ N so that c0 →∗
At c with c ∈ C f if and only if there is a valid

witness candidate w ∈ E .

123

1428 P. Chini et al.

Our algorithm iterates over all witness candidatesw ∈ E and tests whetherw is valid. The
number of candidatesWit(L,D) is (L · (D + 1))L·D ·DD ·L. This is due to the fact that we can
force a witness candidate to have maximum length via inserting padding symbols. Hence,
the number of candidates constitutes the first factor of the complexity estimation stated in
Theorem 1. The polynomial factor Valid(L,D,C) is due to the following lemma.

Lemma 7 Validity of w ∈ E can be checked in time O(L3 · D 2 · C 2).

Practical Algorithm

We improve the above algorithm so that it should work well on practical instances. The idea
is to factorize the leader along its strongly connected components (SCCs), the number of
which is assumed to be small in real programs. Technically, our improved algorithm works
with valid SCC-witnesses. They symbolically represent SCCs rather than loops in the leader.
To state the complexity, we first define the straight line depth, the number of SCCs the leader
may visit during a computation. The definition needs a graph construction.

Let V ⊆ D̄≤D contain only words that do not repeat letters. Let r = c̄1 . . . c̄� ∈ V and
i ∈ [0..�]. By PL ↓i we denote the automaton obtained from PL by removing all transitions
that read a value outside {c1, . . . , ci }. Let SCC(PL ↓i) denote the set of all SCCs in this
automaton. We construct the directed graph G(PL , r) as follows. The vertices are the SCCs
of all PL ↓i , i ∈ [0..�]. There is an edge between S, S′ ∈ SCC(PL ↓i), if there are states

q ∈ S, q ′ ∈ S′ with q
?a/!a/ε−−−−→ q ′ in PL ↓i . If S ∈ SCC(PL ↓i−1) and S′ ∈ SCC(PL ↓i), we

only get an edge if we can get from S to S′ by reading ci . Note that the graph is acyclic.
The depth d(r) of PL relative to r is the length of the longest path inG(PL , r). The straight

line depth is d = max{d(r) | r ∈ V}. The number of SCCs s is the size of SCC(PL ↓0). With
these values at hand, the number of SCC-witness candidates (the definition of which can be
found in the full version of the paper) can be bounded byWitSCC(s,D,d) ≤ (s · (D+ 1))d ·
DD · 2D+d. The time needed to test whether a candidate is valid is ValidSCC(L,D,C,d) =
L2 · D · C2 · d2.

Theorem 8 LCR can be solved in time O(WitSCC(s,D,d) · ValidSCC(L,D,C,d)).

For this algorithm, what matters is that the leader’s state space is strongly connected. The
number of states has limited impact on the runtime.

Lower Bound

We prove that the algorithm from Theorem 1 is only a root-factor away from being optimal:
A 2o(

√
L·D·log(L·D))-time algorithm for LCRwould contradict ETH. We achieve the lower bound

by a reduction from k × k Clique, the problem of finding a clique of size k in a graph the
vertices of which are elements of a k × k matrix. Moreover, the clique has to contain one
vertex from each row. Unless ETH fails, the problem cannot be solved in time 2o(k·log(k)) [39].

Technically, we construct from an instance (G, k) of k × k Clique an instance (A =
(D, a0, (PL , PC)), FL) of LCR such that D = O(k) and L = O(k). Furthermore, we show
that G contains the desired clique of size k if and only if there is a t ∈ N such that c0 →∗

At

c with c ∈ C f . Suppose we had an algorithm for LCR running in time 2o(
√
L·D·log(L·D)).

Combined with the reduction, this would yield an algorithm for k × k Clique with runtime

2o(
√
k2·log(k2)) = 2o(k·log k). But unless the exponential timehypothesis fails, such an algorithm

cannot exist.

123

Fine-Grained Complexity of Safety Verification 1429

Proposition 9 LCR cannot be solved in time 2o(
√
L·D·log(L·D)) unless ETH fails.

We assume that the vertices V of G are given by tuples (i, j) with i, j ∈ [1..k], where
i denotes the row and j denotes the column in the matrix. In the reduction, we need the
leader and the contributors to communicate on the vertices of G. However, we cannot store
tuples (i, j) in the memory as this would cause a quadratic blow-up D = O(k2). Instead, we
communicate a vertex (i, j) as a string row(i).col(j). We distinguish between row- and
column-symbols to avoid stuttering, the repeated reading of the same symbol. With this, it
cannot happen that a thread reads a row-symbol twice and takes it for a column.

The program starts its computation with each contributor choosing a vertex (i, j) to store.
For simplicity, we denote a contributor storing the vertex (i, j) by P(i, j). Note that there can
be copies of P(i, j).

Since there are arbitrarily many contributors, the chosen vertices are only a superset of
the clique we want to find. To cut away the false vertices, the leader PL guesses for each
row the vertex belonging to the clique. Contributors storing other vertices than the guessed
ones will be switched off bit by bit. To this end, the program performs for each i ∈ [1..k]
the following steps: If (i, ji) is the vertex of interest, PL first writes row(i) to the memory.
Each contributor that is still active reads the symbol and moves on for one state. Then PL
communicates the column by writing col(ji). Again, the active contributors P(i ′, j ′) read.

Upon transmitting (i, ji), the contributors react in one of the following three ways: (1) If
i ′
= i , the contributor P(i ′, j ′) stores a vertex of a different row. The computation in P(i ′, j ′)
can only go on if (i ′, j ′) is connected to (i, ji) in G. Otherwise it will stop. (2) If i ′ = i
and j ′ = ji , then P(i ′, j ′) stores exactly the vertex guessed by PL . In this case, P(i ′, j ′) can
continue its computation. (3) If i ′ = i and j ′
= j , thread P(i ′, j ′) stores a different vertex
from row i . The contributor has to stop.

After k such rounds, there are only contributors left that store vertices guessed by PL .
Furthermore, each two of these vertices are connected. Hence, they form a clique. To transmit
this information to PL , each P(i, ji) writes #i to the memory, a special symbol for row i . After
PL has read the string #1 . . . #k , it moves to its final state. A formal construction can be found
in the full version of the paper.

Note that the sizeO(k) of the data domain cannot be avoided, even if we encoded the row
and column symbols in binary. The reason is that PL needs a confirmation of k contributors
that were not stopped during the guessing and terminated correctly. Since contributors do
not have final states, we need to transmit this information in the form of k different memory
symbols.

Absence of a Polynomial Kernel

A kernelization of a parameterized problem is a compression algorithm. Given an instance,
it returns an equivalent instance the size of which is bounded by a function only in the
parameter. From an algorithmic perspective, kernels put a bound on the number of hard
instances. Indeed, the search for small kernels is a key interest in algorithmics, similar to the
search for FPT-algorithms. It can be shown that kernels exist if and only if a problem admits
an FPT-algorithm [13].

Let Q be a parameterized problem. A kernelization of Q is an algorithm that given an
instance (B, k), runs in polynomial time in B and k, and outputs an equivalent instance
(B ′, k′) such that |B ′| + k′ ≤ g(k). Here, g is a computable function. If g is a polynomial,
we say that Q admits a polynomial kernel.

123

1430 P. Chini et al.

Unfortunately, for many problems the community failed to come up with polynomial
kernels. This lead to the contrary approach, namely disproving their existence [5,6,28]. The
absence of a polynomial kernel constitutes an exponential lower bound on the number of
hard instances. Like computational hardness results, such a bound is seen as an indication
of general hardness of the problem. Technically, the existence of a polynomial kernel for the
problem of interest is shown to implyNP ⊆ coNP/poly. However, the inclusion is considered
unlikely as it would cause a collapse of the polynomial hierarchy to the third level [42].

In order to link the existence of a polynomial kernel for LCR(D,L)with the above inclusion,
we follow the framework developed in [6]. Let Γ be an alphabet. A polynomial equivalence
relation is an equivalence relationR on Γ ∗ with the following properties: Given x, y ∈ Γ ∗,
it can be decided in time polynomial in |x | + |y| whether (x, y) ∈ R. Moreover, for n ∈ N

there are at most polynomially many equivalence classes in R restricted to Γ ≤n .
The key tool for proving kernel lower bounds are cross-compositions. Let L ⊆ Γ ∗ be a

language and Q ⊆ Γ ∗ ×N be a parameterized language. We say that L cross-composes into
Q if there exists a polynomial equivalence relation R and an algorithm C, together called
the cross-composition, with the following properties: C takes as input ϕ1, . . . , ϕI ∈ Γ ∗, all
equivalent under R. It computes in time polynomial in

∑I
�=1 |ϕ�| a string (y, k) ∈ Γ ∗ × N

such that (y, k) ∈ Q if and only if there is an � ∈ [1..I]with ϕ� ∈ L . Furthermore, parameter
k is bounded by p(max�∈[1..I] |ϕ�| + log(I)), where p is a polynomial.

It was shown in [6] that a cross-composition of anyNP-hard language into a parameterized
language Q prohibits the existence of a polynomial kernel for Q unless NP ⊆ coNP/poly.
In order to make use of this result, we show how to cross-compose 3-SAT into LCR(D,L).
This yields the following:

Theorem 10 LCR(D,L) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

The difficulty in coming up with a cross-composition is the restriction on the size of the
parameters. In our case, this affects D and L: Both parameters are not allowed to depend poly-
nomially on I , the number of given 3-SAT-instances. We resolve the polynomial dependence
by encoding the choice of such an instance into the contributors via a binary tree.

Proof (Idea) Assume some encoding of Boolean formulas as strings over a finite alphabet.
We use the polynomial equivalence relation R defined as follows: Two strings ϕ and ψ are
equivalent underR if both encode 3-SAT-instances, and the numbers of clauses and variables
coincide.

Let the given 3-SAT-instances be ϕ1, . . . , ϕI . Every two of them are equivalent under R.
This means all ϕ� have the same number of clauses m and use the same set of variables
{x1, . . . , xn}. We assume that ϕ� = C�

1 ∧ · · · ∧ C�
m .

We construct a program proceeding in three phases. First, it chooses an instance ϕ�, then
it guesses an evaluation for all variables, and in the third phase it verifies that the evaluation
satisfies ϕ�.While the second and the third phase do not cause a dependence of the parameters
on I , the first phase does. It is not possible to guess a number � ∈ [1..I] and communicate it
via the memory as this would provoke a polynomial dependence of D on I .

To implement the first phase without a polynomial dependence, we transmit the indices
of the 3-SAT-instances in binary. The leader guesses and writes tuples (u1, 1), . . . , (ulog(I),
log(I))with u� ∈ {0, 1} to the memory. This amounts to choosing an instance ϕ� with binary
representation bin(�) = u1 . . . ulog(I).

It is the contributors’ task to store this choice. Each time the leader writes a tuple (ui , i),
the contributors read and branch either to the left, if ui = 0, or to the right, if ui = 1. Hence,
in the first phase, the contributors are binary trees with I leaves, each leaf storing the index

123

Fine-Grained Complexity of Safety Verification 1431

of an instance ϕ�. Since we did not assume that I is a power of 2, there may be computations
arriving at leaves that do not represent proper indices. In this case, the computation deadlocks.

The size of D and PL in the first phase is O(log(I)). Note that this satisfies the size-
restrictions of a cross-composition.

For guessing the evaluation in the second phase, the program communicates on tuples
(xi , v) with i ∈ [1..n] and v ∈ {0, 1}. The leader guesses such a tuple for each variable and
writes it to the memory. Any participating contributor is free to read one of the tuples. After
reading, it stores the variable and the evaluation.

In the third phase, the satisfiability check is performed as follows: Each contributor that
is still active has stored in its current state the chosen instance ϕ�, a variable xi , and its
evaluation vi . Assume that xi when evaluated to vi satisfies C�

j , the j-th clause of ϕ�. Then
the contributor loops in its current state while writing the symbol # j . The leader waits to read
the string #1 . . . #m . If PL succeeds, we are sure that them clauses of ϕ� were satisfied by the
chosen evaluation. Thus, ϕ� is satisfiable and PL moves to its final state. For details of the
construction and a proof of correctness, we refer to the full version. ��

3.2 Parameterization by Contributors

The size of the contributorsC has substantial influence on the complexity of LCR.We show that
the problem can be solved in timeO∗(2C) via dynamic programming. Moreover, we present
a matching lower bound proving it unlikely that LCR can be solved in timeO∗((2− δ)C), for
any δ > 0. The result is obtained by a reduction from Set Cover. Finally, a lower bound for
the kernel of LCR(C) is provided.

Upper Bound

Our algorithm is based on dynamic programming. Intuitively, we cut a computation of the
program along the states reached by the contributors. To this end, we keep a table with an
entry for each subset of the contributors’ states. The entry of set S ⊆ QC contains those states
of the leader that are reachable under a computation where the behavior of the contributors
is limited to S. We fill the table by a dynamic programming procedure and check in the end
whether a final state of the leader occurs in an entry. The result is as follows.

Theorem 11 LCR can be solved in time O(2C · C 4 · L2 · D 2).

To define the table, we first need a more compact way of representing computations that
allows for fast iteration. The observation is that keeping one set of states for all contributors
suffices. Let S ⊆ QC be the set of states reachable by the contributors in a given compu-
tation. By the Copycat Lemma [18], we can assume for each q ∈ S an arbitrary number of
contributors that are currently in q . This means that we do not have to distinguish between
different contributor instances.

Formally, we reduce the search space to V = QL × D × P(QC). Instead of explicit
configurations, we consider tuples (q, a, S), where q ∈ QL , a ∈ D, and S ⊆ QC . Between

these tuples, we define an edge relation E . If PL writes a ∈ D with transition q
!a−→ q ′, we

get (q, b, S) →E (q ′, a, S) for each b ∈ D and S ⊆ QC . Reads of the leader are similar.
Contributors also change the memory but saturate set S instead of changing the state: If there

is a transition p
!a−→ p′ in PC with p ∈ S, then (q, b, S) →E (q, a, S ∪ {p′}) for each b ∈ D

and q ∈ QL . Reads are similar.

123

1432 P. Chini et al.

q0 q1 q2 q3

PL

!a ?b ?c p0

p1

p2

PC ?a !c

?a

!b

Fig. 2 Leader thread PL (left) and contributor thread PC (right). The data domain is given byD = {a0, a, b, c}
and the only unsafe state is FL = {q3}

The set V together with the relation E form a finite directed graph G = (V , E). We call
the node v0 = (q0L , a0, {q0C }) the initial node. Computations are represented by paths in G
starting in v0. Hence, we reduced LCR to the problem of checking whether the set of nodes
FL × D × P(QC) is reachable from the initial node in G.

Lemma 12 There is a t ∈ N so that c0 →∗
At c with c ∈ C f if and only if there is a path in G

from v0 to a node in FL × D × P(QC).

Before we elaborate on the algorithm solving reachability on G we turn to an example. It
shows how G is constructed from a program and illustrates Lemma 12.

Example 13 We consider the program A = (D, a0, (PL , PC)) from Fig. 2. The nodes of
the corresponding graph G are given by V = QL × D × P({p0, p1, p2}). Its edges E
are constructed following the above rules. For instance, we get an edge (q1, a, {p0}) →E

(q1, a, {p0, p1}) since PC has a read transition p0
?a−→ p1. Intuitively, the edge describes

that currently, the leader is in state q1, the memory holds a, and an arbitrary number of
contributors is waiting in p0. Then, some of these read a and move to p1. Hence, we might
assume an arbitrary number of contributors in the states p0 and p1.

The complete graph G is presented in Fig. 3. For the purpose of readability, we only show
the nodes that are reachable from v0 = (q0, a0, {p0}). Moreover, we omit self-loops and we
present the graph as a collection of subgraphs. The latter means that for each subset S of
P({p0, p1, p2}), we consider the induced subgraph G[QL ×D× {S}]. It contains the nodes
QL ×D×{S} and all edges that start and end in this set. Note that we omit the last component
from a node (q, a, S) in G[QL × D × {S}]. The induced subgraphs are connected by edges
that saturate S.

The red marked nodes are those which contain the unsafe state q3 of the leader. Consider
a path from v0 to one of these nodes. It starts in G[QL × D × {{p0}}]. To reach one of the
red nodes, the path has to traverse via G[QL × D × {{p0, p1}}] to G[QL × D × {QC }] or
via G[QL × D × {{p0, p2}}]. Phrased differently, the states of the contributors need to be
saturated two times along the path. This means that in an actual computation, there must be
contributors in p0, p1, and p2. These can then provide the symbols b and c which are needed
by the leader to reach q3.

Constructing G for a program and solving reachability takes timeO∗(4C) [10]. Hence, we
have to solve reachability without constructing G explicitly. Our algorithm computes a table
T which admits a recurrence relation that simplifies the reachability query: Instead of solving
reachability directly on G, we can restrict to so-called slices of G. These are subgraphs of
polynomial size where reachability queries can be decided efficiently.

We define the table T . For each set S ⊆ QC , we have an entry T [S], given by:
T [S] = {(q, a) ∈ QL × D | v0 →∗

E (q, a, S)}.

123

Fine-Grained Complexity of Safety Verification 1433

(q0, a0)

(q1, a)

G[QL ×D × {{p0}}]

(q1, a)

(q1, c)

G[QL × D × {{p0, p1}}]

(q1, a)

(q1, b) (q2, b)

G[QL × D × {{p0, p2}}]

(q1, a)

(q1, b) (q2, b) (q3, b)

(q1, c) (q2, c) (q3, c)

G[QL × D × {QC}]

Fig. 3 Graph G summarizing the computations of the program in Fig. 2. Self-loops and nodes not reachable
from v0 = (q0, a

0, {p0}) are omitted. We further omit the third component of nodes since it is clear from the
context. Nodes that are marked red involve the unsafe state q3 of the leader. The blue highlighted area shows
the slice G{p0},{p0,p1}. (Color figure online)

Intuitively, T [S] contains all nodes in G[QL × D × {S}] that are reachable from v0.
Assume we have already computed T . By Lemma 12 we get: There is a t ∈ N so that

c0 →∗
At c ∈ C f if and only if there is an S ⊆ QC such that T [S] ∩ FL × D
= ∅. The latter

can be checked in time O(2C · L2 · D2) as there are 2C candidates for S.
It remains to compute the table. Our goal is to employ a dynamic programming based on

a recurrence relation over T . To formulate the relation, we need the notion of slices of G. Let
W ⊆ QC be a subset and p ∈ QC \ W be a state. We denote by S the union S = W ∪ {p}.
The slice GW ,S is the induced subgraph G[QL ×D× {W , S}]. We denote its set of edges by
EW ,S .

The main idea of the recurrence relation is saturation. When traversing a path π in G, the
set of contributor states gets saturated over time. Assume we cut π each time after a new state
gets added. Then we obtain subpaths, each being a path in a slice: If p ∈ QC gets added to
W ⊆ QC , the corresponding subpath is in GW ,W∪{p}. Phrased differently, for a set S ⊆ QC ,
the entry T [S] is the union of those nodes that are reachable from T [S \{p}] in GS\{p},S , for
each p ∈ S.

Formally, we define sets R(W , S) for each W ⊆ QC , p ∈ QC \ W , and S = W ∪ {p}.
These sets collect the nodes that are reachable from T [W] in the slice GW ,S :

R(W , S) = {(q, a) ∈ QL × D | ∃(q ′, a′) ∈ T [W] with (q ′, a′,W) →∗
EW ,S

(q, a, S)}.
Lemma 14 Table T admits the recurrence relation T [S] = ⋃

p∈S R(S \{p}, S).

We illustrate the lemma and the introduced notions on an example. Afterwards, we show
how to compute the table T by exploiting the recurrence relation.

Example 15 Reconsider the program given in Fig. 2. The table T has eight entries, one
for each subset of QC . The entries that are non-empty can be seen in the graph of Fig. 3.

123

1434 P. Chini et al.

Each of the subgraphs contains exactly those nodes that are reachable from v0. For instance
T [{p0, p1}] = {(q1, a), (q1, c)}.

Let W = {p0} and S = {p0, p1}. Then, the slice GW ,S is shown in the figure as blue
highlighted area. Note that it also contains the edge from (q1, a, {p0}) to (q1, a, {p0, p1}),
leading from G[QL × D × {{p0}}] to G[QL × D × {{p0, p1}}].

The set R(W , S) contains those nodes in G[QL ×D×{S}] that are reachable from T [W]
in the slice GW ,S . According to the graph, these are (q1, a, S) and (q1, c, S) and hence we
get T [S] = R(W , S).

In general, not all nodes in T [S] are reachable from a single set T [W]. But if a node is
reachable, then it is reachable from some set T [S \ {p}] with p ∈ S. Note that this is covered
by the recurrence relation in Lemma 14. It branches over all sets S \ {p} and hence collects
all nodes that are reachable from such a set.

We apply the recurrence relation in a bottom-up dynamic programming to fill the table
T . Let S ⊆ QC be a subset and assume we already know T [S \{p}], for each p ∈ S. Then,
for a fixed p, we compute R(S \{p}, S) by a fixed-point iteration on the slice GS\{p},S . The
number of nodes in the slice is O(L · D). Hence, the iteration takes time at most O(L2 · D2).
It is left to construct GS\{p},S . We state the time needed in the following lemma. The proof is
postponed so as to finish the complexity estimation of Theorem 11.

Lemma 16 Slice GS\{p},S can be constructed in time O(C 3 · L2 · D 2).

Wrapping up, we need O(C3 · L2 · D2) time for computing a set R(S \{p}, S). Due to the
recurrence relation of Lemma 14, we have to compute at most C sets R(S \{p}, S) for a given
S ⊆ QC . Hence, an entry T [S] can be computed in time O(C4 · L2 · D2). The estimation
also covers the base case S = {p0C }, where T [S] can be computed by a fixed-point iteration
on the induced subgraph G[QL ×D× {S}]. Since the table T has 2C entries, the complexity
estimation of Theorem 11 follows. It is left to prove Lemma 16.

Proof The slice GS\{p},S consists of the two subgraphs GS\{p} = G[QL ×D× {S \{p}}] and
GS = G[QL × D × {S}], and the edges leading from GS\{p} to GS . We elaborate on how to
construct GS . The construction of GS\{p} is similar.

First, we write down the nodes of GS . This can be done in timeO(L ·D). Edges in the graph
are either induced by transitions of the leader or by the contributor. The former ones can be
added in timeO(|δL | ·D) = O(L2 ·D2) since a single transition of PL may lead to D edges. To

add the latter edges, we browse δC for transitions of the form s
!a−→ s′ with s, s′ ∈ S. Each such

transition may induce L ·D edges. Adding them takes timeO(|δC | ·C ·L ·D) = O(C3 ·L ·D2)

since we have to test membership of s, s′ in S. Note that we can omit transitions s
?a−→ s′

with s, s′ ∈ S as their induced edges are self-loops in GS .
To complete the construction, we add the edges from GS\{p} to GS . These are induced by

transitions r
?a/!a−−−→ p ∈ δC with r ∈ S \{p}. Since each of these may again lead to L · D

different edges, adding all of them takes time O(C3 · L · D2). In total, we estimate the time
for the construction by O(C3 · L2 · D2). ��

Lower Bound

We prove it unlikely that LCR can be solved inO∗((2− δ)C) time, for any δ > 0. This shows
that the algorithm from Sect. 3.2 has an optimal runtime. The lower bound is achieved by a

123

Fine-Grained Complexity of Safety Verification 1435

reduction from Set Cover, one of the 21 original NP-complete problems by Karp [37]. We
state its definition.

Set Cover
Input: A family of sets F ⊆ P(U) over a universe U , and r ∈ N.
Question: Are there sets S1, . . . , Sr in F such that U = ⋃

i∈[1..r] Si?

Besides itsNP-completeness, it is known that Set Cover admits anO∗(2n)-time algorithm
[25], where n is the size of the universeU . However, no algorithm solving Set Cover in time
O∗((2 − δ)n) for a δ > 0 is known so far. Actually, it is conjectured in [12] that such an
algorithm cannot exist unless the SETH breaks.

While a proof for the conjecture in [12] is still missing, the authors provide evidence in the
form of relative hardness. They obtain lower bounds for prominent problems by tracing back
to the assumed lower bound of Set Cover. These bounds were not known before since SETH
is hard to apply: No suitable reductions from SAT to these problems are known so far. Hence,
Set Cover can be seen as an alternative source for lower bounds whenever SETH seems out
of reach. This made the problem a standard assumption for hardness which is widely used
[4,9,12].

To obtain the desired lower bound for LCR, we establish a polynomial time reduction from
Set Cover that strictly preserves the parameter n. Formally, if (F,U , r) is an instance of
Set Cover, we construct an instance (A = (D, a0, (PL , PC)), FL) of LCR where C = n + c
with c a constant. Note that even a linear dependence on n is not allowed. Moreover, the
instance satisfies the equivalence: There is a set cover if and only if there is a t ∈ N such that
c0 →∗

At c with c ∈ C f . Assume we had an O∗((2 − δ)C)-time algorithm for LCR. With the
reduction, this would immediately yield an O∗((2− δ)n+c) = O∗((2− δ)n)-time algorithm
for Set Cover.

Proposition 17 If LCR can be solved in O∗((2 − δ)C) time for a δ > 0, then Set Cover can
be solved in O∗((2 − δ)n) time.

For the proof of the proposition, we elaborate on the aforementioned reduction. The main
idea is the following: We let the leader guess r sets from F . The contributors store the
elements that got covered by the chosen sets. In a final communication phase, the leader
verifies that it has chosen a valid cover by querying whether all elements of U have been
stored by the contributors.

Leader and contributors essentially communicate over the elements of U . For guessing
r sets from F , the automaton PL consists of r similar phases. Each phase starts with PL
choosing an internal transition to a set S ∈ F . Once S is chosen, the leader writes a sequence
of all u ∈ S to the memory.

A contributor in the program consists of C = n + 1 states: An initial state and a state for
each u ∈ U . When PL writes an element u ∈ S to the memory, there is a contributor storing
this element in its states by reading u. Hence, each element that got covered by S is recorded
in one of the contributors.

After r rounds of guessing, the contributors hold those elements ofU that are covered by
the chosen sets. Now the leader verifies that it has really picked a cover of U . To this end,
it needs to check whether all elements of U have been stored by the contributors. Formally,
the leader can only proceed to its final state if it can read the symbols u#, for each u ∈ U .
A contributor can only write u# to the memory if it stored the element u before. Hence, PL
reaches its final state if and only if a valid cover of U was chosen.

123

1436 P. Chini et al.

Absence of a Polynomial Kernel

We prove that 3-SAT can be cross-composed into LCR(C). This shows that the problem is
unlikely to admit a polynomial kernel. The result is the following.

Proposition 18 LCR(C) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

For the cross-composition, let ϕ1, . . . , ϕI be the given 3-SAT-instances, each two equiva-
lent underR, whereR is the polynomial equivalence relation from Theorem 10. Then, each
formula has the same number of clauses m and variables x1, . . . , xn . Let us fix the notation
to be ϕ� = C�

1 ∧ · · · ∧ C�
m .

The basic idea is the following. Leader PL guesses the formula ϕ� and an evaluation for
the variables. The contributors store the latter. At the end, leader and contributors verify that
the chosen evaluation indeed satisfies formula ϕ�.

For guessing ϕ�, the leader has a branch for each instance. Note that we can afford the size
of the leader to depend on I since the cross-composition only restricts parameter C. Hence,
we do not face the problem we had in Theorem 10.

Guessing the evaluation of the variables is similar to Theorem 10: The leader writes tuples
(xi , vi) with vi ∈ {0, 1} to the memory. The contributors store the evaluation in their states.
After this guessing-phase, the contributors can write the symbols #�

j , depending on whether

the currently stored variable with its evaluation satisfies clause C�
j . As soon as the leader

has read the complete string #�
1 . . . #�

m , it moves to its final state, showing that the evaluation
satisfied all clauses of ϕ�.

Note that parameter C is of size O(n) and does not depend on I at all. Hence, the size-
restrictions of a cross-composition are met.

3.3 Intractability

We show the W[1]-hardness of LCR(D) and LCR(L). Both proofs rely on a parameterized
reduction from k - Clique, the problem of finding a clique of size k in a given graph. This
problem is known to beW[1]-complete [15]. Our result is the following.

Proposition 19 Both parameterizations, LCR(D) and LCR(L), are W[1]-hard.
We first reduce k - Clique to LCR(L). More precisely, we construct from an instance (G, k)

of k - Clique in polynomial time an instance (A = (D, a0, (PL , PC)), FL) of LCR with
L = O(k). This meets the requirements of a parameterized reduction.

ProgramA operates in three phases. In the first phase, the leader chooses k vertices of the
graph andwrites them to thememory. Formally, it writes a sequence (v1, 1).(v2, 2) . . . (vk, k)
with vi vertices of G. During this selection, the contributors non-deterministically choose to
store a suggested vertex (vi , i) in their state space.

In the second phase, the leader again writes a sequence of vertices using different symbols:
(w#

1 , 1)(w
#
2 , 2) . . . (w#

k , k). Note that the verticeswi do not have to coincide with the vertices
from the first phase. It is then the contributor’s task to verify that the new sequence constitutes
a clique. To this end, for each i , the program does the following: If a contributor storing (vi , i)
reads the value (w#

i , i), the computation on the contributor can only continue if wi = vi . If
a contributor storing (v j , j) with j
= i reads (w#

i , i), the computation can only continue if
v j
= wi and if there is an edge between v j and wi .

Finally, in the third phase, we need to ensure that there was at least one contributor
storing (vi , i) and that the above checks were all positive. To this end, a contributor that has

123

Fine-Grained Complexity of Safety Verification 1437

successfully gone through the second phase and stores (vi , i) writes the symbol #i to the
memory. The leader pends to read the sequence #1 . . . #k . This ensures the selection of k
different vertices, each two being adjacent.

For proving W[1]-hardness of LCR(D), we reuse the above construction. However, the
size of the data domain is |V | · k, where V is the set of vertices of G. Hence, it is not a
parameterized reduction for parameterD. The factor |V | appears since leader and contributors
communicate on the pure vertices. The main idea of the new reduction is to decrease the size
of D by transmitting the vertices in binary. To this end, we add binary branching trees to the
contributors that decode a binary encoding. We omit the details and refer to the full version
of the paper.

4 Bounded-Stage Reachability

The bounded-stage reachability problem is a simultaneous reachability problem. It asks
whether all threads of a program can reach an unsafe state when restricted to s-stage compu-
tations. These are computations where the write permission changes s times. The problem
was first analyzed in [1] and shown to be NP-complete for finite state programs. We give
matching upper and lower bounds in terms of fine-grained complexity and prove the absence
of a polynomial kernel.

Let A = (D, a0, (Pi)i∈[1..t]) be a program. A stage is a computation in A where only
one of the threads writes. The remaining threads are restricted to reading the memory. An
s-stage computation is a computation that can be split into s parts, each of which forming a
stage. We state the decision problem.

Bounded-Stage Reachability (BSR)
Input: A program A = (D, a0, (Pi)i∈[1..t]), a set C f ⊆ C , and s ∈ N.
Question: Is there an s-stage computation c0 →∗

A c for some c ∈ C f ?

We focus on a parameterization ofBSR byP, themaximumnumber of states of a thread, and
t, the number of threads. Let it be denoted by BSR(P,t). We prove that the parameterization
is FPT and present a matching lower bound. The main result in this section is the absence of
a polynomial kernel for BSR(P,t). The result is technically involved and shows what makes
the problem hard.

Parameterizations ofBSR involving onlyD ands are intractable.We show thatBSR remains
NP-hard even if both, D and s, are constants. This proves the existence of an FPT-algorithm
for those cases unlikely.

4.1 Parameterization by Number of States and Threads

We first give an algorithm for BSR, based on a product construction of automata. Then,
we present a lower bound under ETH. Interestingly, the lower bound shows that we cannot
avoid building the product. We conclude with proving the absence of a polynomial kernel.
As before, we cross-compose from 3-SAT but now face the problem that two important
parameters in the construction, P and t, are not allowed to depend polynomially on the
number of 3-SAT-instances.

123

1438 P. Chini et al.

Upper Bound

We show that BSR(P,t) is fixed-parameter tractable. The idea is to reduce to reachability on
a product automaton. The automaton stores the configurations, the current writer, and counts
up to the number of stages s. To this end, it hasO∗(Pt) many states. Details can be found in
the full version of the paper.

Proposition 20 BSR can be solved in time O∗(P 2t).

Lower Bound

By a reduction from k × k Clique, we show that a 2o(t·log(P))-time algorithm for BSR would
contradict ETH. The above algorithm is optimal.

Proposition 21 BSR cannot be solved in time 2o(t·log(P)) unless ETH fails.

The reduction constructs from an instance of k × k Clique an equivalent instance (A =
(D, a0, (Pi)i∈[1..t]),C f ,s) of BSR. Moreover, it keeps the parameters small. We have that
P = O(k2) and t = O(k). As a consequence, a 2o(t·log(P))-time algorithm for BSR would
yield an algorithm for k × k Clique running in time 2o(k·log(k2)) = 2o(k·log(k)). But this
contradicts ETH.

Proof (Idea) For the reduction, let V = [1..k] × [1..k] be the vertices of G. We define
D = V ∪ {a0} to be the domain of the memory. We want the threads to communicate on the
vertices of G. For each row we introduce a reader thread Pi that is responsible for storing a
particular vertex of the row.We also add onewriter Pch that is used to steer the communication
between the Pi . Our program A is given by the tuple (D, a0, ((Pi)i∈[1..k], Pch)).

Intuitively, the program proceeds in two phases. In the first phase, each Pi non-
deterministically chooses a vertex from the i-th row and stores it in its state space. This
constitutes a clique candidate (1, j1), . . . , (k, jk) ∈ V . In the second phase, thread Pch starts
to write a random vertex (1, j ′1) of the first row to the memory. The first thread P1 reads
(1, j ′1) from the memory and verifies that the read vertex is actually the one from the clique
candidate. The computation in P1 will deadlock if j ′1
= j1. The threads Pi with i
= 1 also
read (1, j ′1) from the memory. They have to check whether there is an edge between the
stored vertex (i, ji) and (1, j ′1). If this fails in some Pi , the computation in that thread will
also deadlock. After this procedure, the writer Pch guesses a vertex (2, j ′2), writes it to the
memory, and the verification steps repeat. In the end, after k repetitions of the procedure,
we can ensure that the guessed clique candidate is indeed a clique. Formal construction and
proof are available in the full version of the paper. ��

Absence of a Polynomial Kernel

We show that BSR(P,t) does not admit a polynomial kernel. To this end, we cross-compose
the problem 3-SAT into BSR(P,t).

Theorem 22 BSR(P,t) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

In the present setting, coming up with a cross-composition is non-trivial. Both parameters,
P and t, are not allowed to depend polynomially on the number I of given 3-SAT-instances.
Hence, we cannot construct an NFA that distinguishes the I instances by branching into I

123

Fine-Grained Complexity of Safety Verification 1439

different directions. This would cause a polynomial dependence of P on I . Furthermore, it
is not possible to construct an NFA for each instance as this would cause such a dependence
of t on I . To circumvent the problems, some deeper understanding of the model is needed.

Proof (Idea) Let ϕ1, . . . , ϕI be given 3-SAT-instances, where each two are equivalent under
R, the polynomial equivalence relation of Theorem 10. Then each ϕ� has m clauses and n
variables {x1, . . . , xn}. We assume ϕ� = C�

1 ∧ · · · ∧ C�
m .

In the program that we construct, the communication is based on 4-tuples of the form
(�, j, i, v). Intuitively, such a tuple transports the following information: The j-th clause in
instance ϕ�, C�

j , can be satisfied by variable xi with evaluation v. Hence, our data domain is

D = ([1..I] × [1..m] × [1..n] × {0, 1}) ∪ {a0}.
For choosing and storing an evaluation of the xi , we introduce so-called variable threads

Px1 , . . . , Pxn . In the beginning, each Pxi non-deterministically chooses an evaluation for xi
and stores it in its state space.

We further introduce a writer Pw. During a computation, this thread guesses exactly m
tuples (�1, 1, i1, v1), . . . , (�m,m, im, vm) in order to satisfym clauses of potentially different
instances. Each (� j , j, i j , v j) is written to the memory by Pw. All variable threads then start
to read the tuple. If Pxi with i
= i j reads it, then the thread will just move one state further
since the suggested tuple does not affect the variable xi . If Pxi with i = i j reads the tuple,
the thread will only continue its computation if v j coincides with the value that Pxi guessed

for xi and, moreover, xi with evaluation v j satisfies clause C
� j
j .

Now suppose the writer did exactly m steps while each variable thread did exactly m + 1
steps. This proves the satisfiability of m clauses by the chosen evaluation. But these clauses
can be part of different instances: It is not ensured that the clauses were chosen from one
formula ϕ�. The major difficulty of the cross-composition lies in how to ensure exactly this.

We overcome the difficulty by introducing so-called bit checkers Pb, where b ∈
[1.. log(I)]. Each Pb is responsible for the b-th bit of bin(�), the binary representation
of �, where ϕ� is the instance we want to satisfy. When Pw writes a tuple (�1, 1, i1, v1) for
the first time, each Pb reads it and stores either 0 or 1, according to the b-th bit of bin(�1).
After Pw has written a second tuple (�2, 2, i2, v2), the bit checker Pb tests whether the b-th
bit of bin(�1) and bin(�2) coincide, otherwise it will deadlock. This will be repeated any
time Pw writes a new tuple to the memory.

Assume the computation does not deadlock in any of the Pb. Then we can ensure that the
b-th bit of bin(� j) with j ∈ [1..m] never changed during the computation. This means that
bin(�1) = · · · = bin(�m). Hence, the writer Pw has chosen clauses of just one instance
ϕ�. Moreover, the current evaluation satisfies the formula. Since the parameters are bounded,
P ∈ O(m) and t ∈ O(n + log(I)), the construction constitutes a proper cross-composition.
For a formal construction and proof, we refer to the full version of the paper. ��

Variable threads and writer thread are needed for testing satisfiability of clauses. The
need for bit checkers comes from ensuring that all clauses stem from the same formula. We
illustrate the notion with an example.

Example 23 Let four formulas ϕ1, ϕ2, ϕ3, ϕ4 with two clauses each be given. We show how
the bit checkers are constructed. To this end, we first encode the index of the instances as
binary numbers using two bits. The encoding is shown in Fig. 4 on the right hand side. Note
the offset by one in the encoding.

We focus on the bit checker Pb1 responsible for the first bit. It is illustrated in Fig. 4 on the
left hand side. Note that the label � = 1, � = 3 refers to transitions of the form ?(�, j, i, v)

123

1440 P. Chini et al.

= 1
= 3 = 2

= 4

= 1
= 3

= 2
= 4

Pb1
Binary encoding

bin(1) = 00

bin(2) = 01

bin(3) = 10

bin(4) = 11

Fig. 4 A binary encoding (right) of the numbers 1 up to 4 using two bits. First bits are either marked blue, if
they are 0, or red if they are 1. The bit checker Pb1 (left) focuses on the first bit. The label � = 1, � = 3 means
that Pb1 has transitions on ?(�, j, i, v) for � = 1, 3 and arbitrary values for i, j , and v. The blue marked states
store that the first bit b1 is 0. Red marked states store that b1 is 1. (Color figure online)

with � either 1 or 3 and arbitrary values for i , j , and v. On reading the first of these tuples,
Pb1 stores the first bit of � in its state space. The blue marked states store that b1 = 0, the
red states store b1 = 1. Then, the bit checker can only continue on reading tuples (�, j, i, v)

where the first bit of � matches the stored bit. In the case of b1 = 0, this means that Pb1 can
only read tuples (�, j, i, v) with � either 1 or 3.

Assume the writer thread has output two tuples (�1, 1, i1, v1) and (�2, 2, i2, v2) and the
bit checker Pb1 has reached a last state. Since the computation did not deadlock on Pb1 , we
know that the first bits of �1 and �2 coincide. If the bit checker for the second bit does not
deadlock as well, we get that �1 = �2. Hence, the writer has chosen two clauses from one
instance ϕ�1 .

4.2 Intractability

We show that parameterizations of BSR involving only s and D are intractable. To this end,
we prove that BSR remains NP-hard even if both parameters are constant. This is surprising
as the number of stages s seems to be a powerful parameter. Introducing such a bound in
simultaneous reachability lets the complexity drop from PSPACE to NP. But still, it is not
enough to guarantee an FPT-algorithm.

Proposition 24 BSR is NP-hard even if both s and D are constant.

Theproposition implies intractability:Assume there is anFPT-algorithm A forBSR running
in time f (s,D) · poly(|x |), where x denotes the input. Then BSR′, the variant of BSR where
s and D are constant, can also be solved by A. In this case, the runtime of A isO(poly(|x |))
since f (s,D) is a constant on every instance of BSR′. But this contradicts the NP-hardness
of BSR′ which is shown in the proposition.

Proof (Idea) We give a reduction from 3-SAT to BSR that keeps both parameters constant.
Let ϕ be a 3-SAT-instance with m clauses and variables x1, . . . , xn . We construct a program
A = (D, a0, P1, . . . , Pn, Pv)withD = 4 different memory symbols that can only run 1-stage
computations.

The program cannot communicate on literals directly, as this would cause a blow-up in
parameter D. Instead, variables and evaluations are encoded in binary in the following way.
Let � be a literal in ϕ. It consists of a variable xi and an evaluation v ∈ {0, 1}. The padded
binary encoding bin#(i) ∈ ({0, 1}.#)log(n)+1 of i is the usual binary encoding where each bit
is separated by a #. The string Enc(�) = v#bin#(i) encodes that variable xi has evaluation

123

Fine-Grained Complexity of Safety Verification 1441

v. We need the padding symbol # to prevent the threads in A from reading the same symbol
more than once. ProgramA communicates by passing messages of the form Enc(�). To this
end, we need the data domain D = {a0, #, 0, 1}.

The program contains threads Pi , i ∈ [1..n], called variable threads. Initially, these threads
choose an evaluation for the variables and store it: Each Pi can branch on reading a0 and
choose whether it assigns 0 or 1 to xi . Then, a verifier thread Pv starts to iterate over the
clauses. For each clause C , it picks a literal � ∈ C that should evaluate to true and writes its
encoding Enc(�) to the memory. Each of the Pi reads Enc(�). Note that reading and writing
Enc(�) needs a sequence of transitions. In the construction, we ensure that all the needed
states and transitions are provided. It is the task of each Pi to check whether the chosen literal
� is conform with the chosen evaluation for xi . To this end, we distinguish two cases.

(1) If � involves a variable x j with j
= i , variable thread Pi just continues its computation
by reading the whole string Enc(�).

(2) If � involves xi , Pi has to ensure that the stored evaluation coincides with the one sent
by the verifier. To this end, Pi can only continue its computation if the first bit in Enc(�)

shows the correct evaluation. Formally, there is only an outgoing path of transitions on
Enc(xi) if Pi stored 1 as evaluation and on Enc(¬xi) if it stored 0.

Note that each time Pv picks a literal �, all Pi read Enc(�), even if the literal involves a
different variable. This means that the Pi count how many literals have been seen already.
This is important for correctness: The threads will only terminate if they have read a word
of fixed length and did not miss a single symbol. Phrased differently, there is no loss in the
communication between Pv and the Pi .

Now assume Pv iterated through all m clauses and none of the variable threads got stuck.
Then, each of them read exactly m encodings without running into a deadlock. Hence, the
picked literals were all conform with the evaluation chosen by the Pi . This means that a
satisfying assignment for ϕ is found.

During a computation of A, the verifier Pv is the only thread that has write permission.
Hence, each computation ofA consists of a single stage. For a formal construction, we refer
to the full version of the paper. ��

5 Conclusion

We have studied several parameterizations of LCR and BSR, two safety verification problems
for shared memory concurrent programs. In LCR, a designated leader thread interacts with a
number of equal contributor threads. The task is to decide whether the leader can reach an
unsafe state. The problem BSR is a generalization of bounded context switching. A compu-
tation gets split into stages, periods where writing is restricted to one thread. Then, BSR asks
whether all threads can reach a final state simultaneously during an s-stage computation.

For LCR, we identified the size of the data domain D, the size of the leader L and the size
of the contributors C as parameters. Our first algorithm showed that LCR(D,L) is FPT. Then
we modified the algorithm to obtain a verification procedure valuable for practical instances.
The main insight was that due to a factorization along strongly connected components, the
impact of L can be reduced to a polynomial factor in the time complexity. We also proved
the absence of a polynomial kernel for LCR(D,L) and presented an ETH-based lower bound
which shows that the upper bound is a root-factor away from being optimal.

For LCR(C)we presented a dynamic programming, running inO∗(2C) time. The algorithm
is based on slice-wise reachability. This reduces a reachability problem on a large graph to

123

1442 P. Chini et al.

reachability problems on subgraphs (slices) that are solvable in polynomial time. Moreover,
we gave a tight lower bound based on Set Cover and proved the absence of a polynomial
kernel.

Parameterizations different from LCR(D,L) and LCR(C) were shown to be intractable. We
gave reductions from k - Clique and proved W[1]-hardness.

The parameters of interest for BSR are the maximum size of a thread P and the number
of threads t. We have shown that a parameterization by both parameters is FPT and gave
a matching lower bound. The main contribution was to prove it unlikely that a polynomial
kernel exists for BSR(P,t). The proof relies on a technically involved cross-composition that
avoids a polynomial dependence of the parameters on the number of given 3-SAT-instances.

Parameterizations involving other parameters like s or Dwere proven to be intractable for
BSR. We gave an NP-hardness proof where s and D are constant.

Extension of theModel

In this work, the considered model for programs allows the memory to consist of a sin-
gle cell. We discuss whether the presented results carry over when the number of memory
cells increases. Having multiple memory cells is referred to as supporting global variables.
Extending the definition of programs in Sect. 2 to global variables is straightforward.

For the problem LCR, allowing global variables is a rather powerful mechanism. Let
LCRVar denote the problem LCR where the input is a program featuring global variables. The
interesting parameters for the problem are D, L, C, and v, the number of global variables. It
turns out that LCRVar isPSPACE-hard, evenwhenC is constant.One can reduce the intersection
emptiness problem for finite automata to LCRVar . The reduction makes use only of the leader,
contributors are not needed.

A program A with global variables can always be reduced to a program A′ with a single
memory cell [26]. Roughly, the reduction constructs the leader ofA′ in such a way that it can
store the memory contents ofA and manage contributor accesses to the memory. This means
the new leader needs exponentially many states since there are Dv many possible memory
valuations. The domain and the contributor ofA′ are of polynomial size. In fact, we can then
apply the algorithm fromSect. 3.1 to the programA′. The runtime depends exponentially only
on the parameters D, L, and v. This shows that LCRVar(D,L,v) is fixed-parameter tractable.
It is an interesting question whether this algorithm can be improved. Moreover, it is open
whether there are other parameterizations of LCRVar that have an FPT-algorithm. A closer
investigation is considered future work.

For BSR, allowing global variables also leads to PSPACE-hardness. The problem BSRVar ,
defined similarly to LCRVar , is PSPACE-hard already for a constant number of threads. In
fact, the proof is similar to the hardness of LCRVar where only one thread is needed. To
obtain an algorithm for the problem, we modify the construction from Proposition 20. The
resulting product automaton then alsomaintains the values of the global variables. This shows
membership in PSPACE. But the size of the product now also depends exponentially on D and
v. The interesting question is whether we can find an algorithm that avoids an exponential
dependence on one of the parameters P,t,D or v. It is a matter of future work to examine
the precise complexity of the different parameterizations.

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

123

Fine-Grained Complexity of Safety Verification 1443

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Atig, M.F., Bouajjani, A., Kumar, K.N., Saivasan, P.: On bounded reachability analysis of shared memory
systems. In: FSTTCS, LIPIcs, vol. 29, pp. 611–623. Schloss Dagstuhl (2014)

2. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent programs with dynamic
creation of threads. In: TACAS, LNCS, vol. 5505, pp. 107–123. Springer, Berlin (2009)

3. Atig,M.F., Bouajjani, A., Touili, T.:On the reachability analysis of acyclic networks of pushdown systems.
In: CONCUR, LNCS, vol. 5201, pp. 356–371. Springer, Berlin (2008)

4. Björklund, A., Kaski, P., Kowalik, L.: Constrained multilinear detection and generalized graph motifs.
Algorithmica 74(2), 947–967 (2016)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels.
JCSS 75(8), 423–434 (2009)

6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIDAM
28(1), 277–305 (2014)

7. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small depth circuits. In:
IWPEC, LNCS, vol. 5917, pp. 75–85. Springer, Berlin (2009)

8. Cantin, J.F., Lipasti, M.H., Smith, J.E.: The complexity of verifying memory coherence. In: SPAA, pp.
254–255. ACM (2003)

9. Chini, P., Kolberg, J., Krebs, A., Meyer, R., Saivasan, P.: On the complexity of bounded context switching.
In: ESA, LIPIcs, vol. 87, pp. 27:1–27:15. Schloss Dagstuhl (2017)

10. Chini, P., Meyer, R., Saivasan, P.: Fine-grained complexity of safety verification. In: TACAS, LNCS, vol.
10806, pp. 20–37. Springer, Berlin (2018)

11. Chini, P., Meyer, R., Saivasan, P.: Fine-grained complexity of safety verification. CoRR 2018.
arXiv:1802.05559

12. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S.,
Wahlström, M.: On problems as hard as CNF-SAT. ACM TALG 12(3), 41:1–41:24 (2016)

13. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer, Berlin (2015)

14. Demri, S., Laroussinie, F., Schnoebelen, P.: A parametric analysis of the state explosion problem in model
checking. In: STACS, LNCS, vol. 2285, pp. 620–631. Springer, Berlin (2002)

15. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)
16. Durand-Gasselin, A., Esparza, J., Ganty, P., Majumdar, R.: Model checking parameterized asynchronous

shared-memory systems. In: CAV, LNCS, vol. 9206, pp. 67–84. Springer, Berlin (2015)
17. Enea, C., Farzan., A.: On atomicity in presence of non-atomic writes. In: TACAS, LNCS, vol. 9636, pp.

497–514. Springer, Berlin (2016)
18. Esparza, J., Ganty, P.,Majumdar, R.: Parameterized verification of asynchronous shared-memory systems.

In: CAV, LNCS, vol. 8044, pp. 124–140. Springer, Berlin (2013)
19. Esparza, J., Ganty, P., Poch, T.: Pattern-based verification for multithreaded programs. ACM TOPLAS

36(3), 9:1–9:29 (2014)
20. Farzan, A., Madhusudan, P.: The complexity of predicting atomicity violations. In: TACAS, LNCS, vol.

5505, pp. 155–169. Springer, Berlin (2009)
21. Fernau, H., Heggernes, P., Villanger, Y.: A multi-parameter analysis of hard problems on deterministic

finite automata. JCSS 81(4), 747–765 (2015)
22. Fernau, H., Krebs, A.: Problems on finite automata and the exponential time hypothesis. In: CIAA, LNCS,

vol. 9705, pp. 89–100. Springer, Berlin (2016)
23. Flanagan, C., Freund, S.N., Qadeer, S.: Thread-modular verification for shared-memory programs. In:

ESOP, LNCS, vol. 2305, pp. 262–277. Springer, Berlin (2002)
24. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: SPIN, LNCS, vol. 2648, pp. 213–224.

Springer, Berlin (2003)
25. Fomin, F.V., Kratsch, D.,Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem.

In: WG, LNCS, vol. 3353, pp. 245–256. Springer, Berlin (2004)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1802.05559

1444 P. Chini et al.

26. Fortin, M., Muscholl, A., Walukiewicz, I.: On parametrized verification of asynchronous, shared-memory
pushdown systems. CoRR (2016). arXiv:1606.08707

27. Fortin, M., Muscholl, A., Walukiewicz, I.: Model-checking linear-time properties of parametrized asyn-
chronous shared-memory pushdown systems. In: CAV, LNCS, vol. 10427, pp. 155–175. Springer, Berlin
(2017)

28. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. JCSS 77(1),
91–106 (2011)

29. Furbach, F.,Meyer,R., Schneider,K., Senftleben,M.:Memory-model-aware testing:Aunified complexity
analysis. ACM TECS 14(4), 63:1–63:25 (2015)

30. Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4), 1208–1244 (1997)
31. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In: PLDI, pp. 266–277.

ACM (2007)
32. Hague, M.: Parameterised pushdown systems with non-atomic writes. In: FSTTCS, LIPIcs, vol. 13, pp.

457–468. Schloss Dagstuhl (2011)
33. Hague, M., Lin, A.W.: Synchronisation- and reversal-bounded analysis of multithreaded programs with

counters. In: CAV, LNCS, vol. 7358, pp. 260–276. Springer, Berlin (2012)
34. Holík, L., Meyer, R., Vojnar, T., Wolff, S.: Effect summaries for thread-modular analysis–sound analysis

despite an unsound heuristic. In: SAS, LNCS, vol. 10422, pp. 169–191. Springer, Berlin (2017)
35. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. JCSS 62(2), 367–375 (2001)
36. Kahlon, V.: Parameterization as abstraction: a tractable approach to the dataflow analysis of concurrent

programs. In: LICS, pp. 181–192. IEEE (2008)
37. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations,

The IBM Research Symposia Series, pp. 85–103. Plenum Press (1972)
38. La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concurrent programs using

linear interfaces. In: CAV, LNCS, vol. 6174, pp. 629–644. Springer, Berlin (2010)
39. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. In: SODA,

pp. 760–776. SIAM (2011)
40. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: TACAS, LNCS, vol.

3440, pp. 93–107. Springer, Berlin (2005)
41. Wareham, T.: The parameterized complexity of intersection and composition operations on sets of finite-

state automata. In: CIAA, LNCS, vol. 2088, pp. 302–310. Springer, Berlin (2000)
42. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. TCS 26, 287–300 (1983)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1606.08707

	Fine-Grained Complexity of Safety Verification
	Abstract
	1 Introduction
	Related Work

	2 Preliminaries
	Programs
	Fixed-Parameter Tractability

	3 Leader Contributor Reachability
	3.1 Parameterization by Memory and Leader
	Upper Bound
	Practical Algorithm
	Lower Bound
	Absence of a Polynomial Kernel

	3.2 Parameterization by Contributors
	Upper Bound
	Lower Bound
	Absence of a Polynomial Kernel

	3.3 Intractability

	4 Bounded-Stage Reachability
	4.1 Parameterization by Number of States and Threads
	Upper Bound
	Lower Bound
	Absence of a Polynomial Kernel

	4.2 Intractability

	5 Conclusion
	Extension of the Model

	Acknowledgements
	References

