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Abstract
In this work we investigate how to extract alternating time bounds from ‘focussed’ proof
systems. Our main result is the obtention of fragments of MALLw (MALL with weaken-
ing) complete for each level of the polynomial hierarchy. In one direction we encode QBF
satisfiability and in the other we encode focussed proof search, and we show that the com-
position of the two encodings preserves quantifier alternation, yielding the required result.
By carefully composing with well-known embeddings of MALLw into MALL, we obtain a
similar delineation of MALL formulas, again carving out fragments complete for each level
of the polynomial hierarchy. This refines the well-known results that bothMALLw andMALL
are PSPACE-complete. A key insight is that we have to refine the usual presentation of
focussing to account for deterministic computations in proof search, which correspond to
invertible rules that do not branch. This is so that we may more faithfully associate phases
of focussed proof search to their alternating time complexity. This presentation seems to
uncover further dualities, at the level of proof search, than usual presentations, so could be
of proof theoretic interest in its own right.

Keywords Focussing · Linear logic · QBFs · Alternation · Polynomial hierarchy

1 Introduction andMotivation

Proof search is one of the most general ways of deciding formulas of expressive logics,
both automatically and interactively. In particular, proof systems can often be found to yield
optimal decision algorithms, in terms of asymptotic complexity. To this end, we now know
how to extract bounds for proof search in terms of various properties of the proof system at
hand. For instance we may establish:

– nondeterministic time bounds via proof complexity, e.g. [6,7,13];
– (non)deterministic space bounds via the depth of proofs or search spaces, and loop-

checking, e.g. [3,12,23];
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– deterministic or co-nondeterministic time bounds via systems of invertible rules, see e.g.
[21,28].

However, despite considerable progress in the field, there still remains a gap between the
obtention of (co-)nondeterministic time bounds, such as NP or coNP, and space bounds
such as PSPACE. Phrased differently, while we have many logics we know to be PSPACE-
complete (intuitionistic propositional logic, various modal logics, etc.), we have very little
understanding of their fragments corresponding to subclasses of PSPACE.

An alternative view of space complexity is in terms of alternating time complexity,
where a Turing machine may have both existential (i.e. nondeterminstic) and universal (i.e.
co-nondeterministic) branching states. In this way PSPACE is known to be equivalent to
alternating polynomial time [4]. This naturally yields a hierarchy of classes delineated by
the number of alternations permitted in an accepting run, known as the polynomial hierarchy
(PH) [26], of which bothNP and coNP are special cases. An almost exact instantiation of this
(in a non-uniform setting) is the QBF hierarchy, where formulae are distinguished by their
number of quantifier alternations in prefix notation. This raises the following open-ended
question:

Question 1 How do we identify natural fragments of PSPACE-complete logics complete for
levels of the polynomial hierarchy? In particular, can proof theoretic methods help?

In previous work, [8], we considered this question for intuitionistic propositional logic,
obtaining partial answers for certain expressive fragments. In this work we consider the case
of multiplicative additive linear logic (MALL) [11], and its affine variant which admits weak-
ening (MALLw); both of these are often seen as the prototypical systems for PSPACE since
their inference rules constitute the abstract templates of terminating proof search. Indeed,
both MALL and MALLw are well-known to be PSPACE-complete [17,18], results that are
subsumed by this work.1 By considering a ‘focussed’ presentation of MALL(w), we analyse
proof search to identify classes of theorems belonging to each level of PH. To demonstrate
the accuracy of this method, we also show that these classes are, in fact, complete for their
respective levels, via encodings from true quantified Boolean formulas (QBFs) of appropriate
quantifier complexity, cf. [4].

The notion of focussing is a relatively recent development in structural proof theory that
has emerged over the last 20-30 years, e.g. [1,14,16].

Focussed systems elegantly delineate the phases of invertible and non-invertible inferences
in proofs, allowing the natural obtention of alternating time bounds for a logic. Furthermore,
they significantly constrain the number of local choices available, resulting in reduced non-
determinism during proof search, while remaining complete. This result is known as the
‘focussing’ or ‘focalisation’ theorem. Such systems thus serve as a natural starting point for
identifying fragments of PSPACE-complete logics complete for levels of PH.

One shortfall of focussed systems is that, in their usual form, they do not make adequate
consideration for deterministic computations, which correspond to invertible rules that do
not branch, and so the natural measure of complexity there (‘decide depth’) can considerably
overestimate the alternating time complexity of a theorem. In the worst case this can lead to
rather degenerate bounds, exemplified in [8] where an encoding of SAT in intuitionistic logic
requires a linear decide depth, despite being NP-complete.2 To deal with this issue [8] pro-
posed a more controlled form of focussing called over-focussing, which allows deterministic

1 The result for MALLw is not explicitly stated in [17,18], but it is a folklore result that follows from those
methods.
2 Indeed, a similar gross overestimation presents in this work if we had used decide depth as our measure of
complexity, cf. Fig. 3.
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From QBFs to MALL and Back via Focussing 1223

steps within synchronous phases, but as noted there this method is not available inMALL due
to the context-splitting � rule. Instead, in this work we retain the classical abstract notion
of focussing, but split the usual invertible, or ‘asynchronous’, phase into a ‘deterministic’
phase, with non-branching invertible rules, and a ‘co-nondeterministic’ phase, with branch-
ing invertible rules. In this way, when expressing proof search as an alternating predicate, a
∀ quantifier needs only be introduced in a co-nondeterministic phase. It turns out that this
adaptation suffices to obtain the tight bounds we are after.

This is an extended version of the conference paper Focussing, MALL and the polynomial
hierarchy [9] presented at IJCAR ’18. The main differences in this work are the following:

– More proof details are provided throughout, in particular for the various intermediate
results of Sects. 4, 5 and 6.

– A whole new section, Sect. 7, is included which extends the main results of [9] to pure
MALL, i.e. without weakening.

– The exposition is generally expanded, with further commentary and insights throughout.

In general, Sects. 2–6 of [9] cover the same content as their respective sections in this work,
although theorem numbers are different.

This paper is structured as follows. In Sect. 2 we present preliminaries on QBFs and alter-
nating time complexity, and in Sect. 3we present preliminaries onMALL(w) and focussing. In
Sect. 4 we present an encoding of true QBFs into MALLw, tracking the association between
quantifier complexity and alternation complexity of focussed proof search. In Sect. 5 we
explain how provability predicates for focussed systems may be obtained as QBFs, with
quantifier complexity calibrated appropriately with alternation complexity (the ‘focussing
hierarchy’). In Sect. 6 we show how this measure of complexity can be feasibly approxi-
mated to yield a bona fide encoding of MALLw back into true QBFs. Furthermore, we show
that the composition of the two encodings preserves quantifier complexity, thus yielding
fragments of MALLw complete for each level of the polynomial hierarchy. Sect. 7 extends
this approach to pureMALL via carefully composing with a certain encoding ofMALLw into
MALL. Finally, in Sect. 8 we give some concluding remarks and further perspectives on our
presentation of focussing.

2 Preliminaries on Logic and Computational Complexity

In this section we will recall some basic theory of Boolean logic, and its connections to
alternating time complexity.

This section follows Sect. 2 of [9], except that we include constants (or ‘units’) for gen-
erality here, and we also include a presentation of ‘Boolean Truth Trees’ in Sect. 2.2.

2.1 Second-Order Boolean Logic

Quantified Boolean formulas (QBFs) are obtained from the language of classical proposi-
tional logic by adding ‘second-order’ quantifiers, varying over propositions. Formally, let
us fix some set Var of propositional variables, written x, y etc. QBFs, written ϕ,ψ etc., are
generated as follows:

ϕ ::= f | t | x | x | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ∃x .ϕ | ∀x .ϕ

We write f and t for the classical truth constants false and true respectively, so that they are
not confused with the units from linear logic later.
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The formula x stands for the negation of x , and all formulas we deal with will be in
De Morgan normal form, i.e. with negation restricted to variables as in the grammar above.
Nonetheless, we may sometimes write ϕ to denote the De Morgan dual of ϕ, generated by
the following identities:

x := x
f := t
t := f

(ϕ ∨ ψ) := ϕ ∧ ψ

(ϕ ∧ ψ) := ϕ ∨ ψ

∃x .ϕ := ∀x .ϕ

∀x .ϕ := ∃x .ϕ

A formula is closed (or a sentence) if all its variables are bound by a quantifier (∃ or ∀). We
write |ϕ| for the number of occurrences of literals (i.e. x or x) in ϕ.

An assignment is a function α : Var → {0, 1}, here construed as a set α ⊆ Var in the usual
way. We define the satisfaction relation between an assignment α and a formula ϕ, written
α � ϕ, in the usual way:
– α � f.
– α � t.

– α � x if x ∈ α.
– α � x if x /∈ α.

– α � ϕ ∨ ψ if α � ϕ or α � ψ .
– α � ϕ ∧ ψ if α � ϕ and α � ψ .

– α � ∃x .ϕ if α \ {x} � ϕ or α ∪ {x} � ϕ.
– α � ∀x .ϕ if α \ {x} � ϕ and α ∪ {x} � ϕ.

Definition 2 (Second-order Boolean logic) AQBF ϕ is satisfiable if there is some assignment
α ⊆ Var such that α � ϕ. It is valid if α � ϕ for every assignment α ⊆ Var. If ϕ is closed,
then we may simply say that it is true, written � ϕ, when it is satisfiable and/or valid.

Second-order Boolean logic (CPL2) is the set of true QBFs.

In practice,whendealingwith a given formulaϕ,wewill only need to consider assignments
α that contain variables occurring in ϕ. We will assume this later when we discuss predicates
(or ‘languages’) computed by open QBFs.

We point out that, from the logical point of view, it suffices to workwith only closedQBFs,
with satisfiability recovered by prenexing ∃ quantifiers and validity recovered by prenexing
∀ quantifiers.

Definition 3 (QBF hierarchy) For k ≥ 0 we define the following classes:

– Σ
q
0 = Π

q
0 is the set of quantifier-free QBFs.

– Σ
q
k+1 ⊇ Π

q
k and, if ϕ ∈ Σ

q
k+1, then so is ∃x .ϕ.

– Π
q
k+1 ⊇ Σ

q
k and, if ϕ ∈ Π

q
k+1, then so is ∀x .ϕ.

Notice that ϕ ∈ Σ
q
k if and only if ϕ ∈ Π

q
k , by the definition of De Morgan duality.

We have only defined the classes above for ‘prenexed’ QBFs, i.e. with all quantifiers at
the front. It is well known that any QBF is equivalent to such a formula. For this reason we
will henceforth assume that any QBF we deal with is in prenex normal form. In this case we
call its quantifier-free part, i.e. its largest quantifier-free subformula, the matrix.

2.2 Boolean Truth Trees

In this work we will not need to formally deal with any deduction system for CPL2, although
we point out that there is a simple system whose proof search dynamics closely match
quantifier complexity, e.g. studied in [15]. We will briefly present a simplified system in
order to exemplify the connection with alternating time complexity.
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From QBFs to MALL and Back via Focussing 1225

Boolean Truth Trees (BTTs) are a proof system whose lines are closed prenexed QBFs.
Its inference rules are as follows,

tr
τ

ϕ[f/x]
∃ ∃x .ϕ

ϕ[t/x]
∃ ∃x .ϕ

ϕ[f/x] ϕ[t/x]
∀ ∀x .ϕ

where τ varies over true quantifier-free sentences, i.e. true (∨,∧)-combinations of f and t.
Note that we could have further broken down the tr rule into several local computation rules,
but that is independent of the current analysis.

Example 4 Temporarily write � for the exclusive-or function, i.e. x � y is true if either x is
true or y is true but not both. The following is a BTT proving ∀x .∃y.(x � y):

tr
f � t

∃ ∃y.(f � y)

tr
t � f

∃ ∃y.(t � y)
∀ ∀x .∃y.(x � y)

Notice that a ∀ step is invertible, i.e. its conclusion is true just if every premiss is true.
On the other hand, an existential formula is true just if some ∃ step applies. In this way we
can describe the proof search process itself by some ‘alternating’ predicate whose matrix is
just a truth-checker for quantifier-free sentences, a deterministic computation. It is not hard
to see that the alternations between ∀ and ∃ in such a predicate will, in this case, match the
quantifier complexity of the input formula, by inspection of the rules. In order to make all
of this more precise, we will need to speak more formally about alternating predicates and
alternating complexity.

2.3 Alternating Time Complexity

In computation we are used to the distinction between deterministic and nondeterminis-
tic computation. Intuitively, co-nondeterminism is just the ‘dual’ of nondeterminism: at the
machine level it is captured by ‘nondeterministic’ Turingmachines where every run is accept-
ing, not just some run as in the case of usual nondeterminism. From here alternating Turing
machines generalise both the nondeterministic and co-nondeterministic models by allowing
both universally branching states and existentially branching states.

Intuitions aside, we will now introduce the necessary concepts assuming only a familiarity
with deterministic and nondeterministic Turingmachines and their complexitymeasures. The
reader may find a comprehensive introduction to relevant machine models and complexity
classes in [24].

For a language L of strings over some finite alphabet, we write NP(L) for the class of
languages accepted in polynomial time by some nondeterministic Turing machine which
may, at any point, query in constant time whether some word is in L or not. We extend this
to classes of languages C, writing NP(C) for

⋃

L∈C
NP(L). We also write coC for the class of

languages whose complements are in C.
Definition 5 (Polynomial hierarchy, [26]) We define the following classes:

– Σ
p
0 = Π

p
0 :=P.

– Σ
p
k+1:=NP(Σ

p
k ).

123



1226 A. Das

– Π
p
k+1:=coΣ p

k+1.

The polynomial hierarchy (PH) is
∞⋃

k=0
Σ

p
k =

∞⋃
k=0

Π
p
k .

We may more naturally view the polynomial hierarchy as the bounded-quantifier-
alternation fragments of QBFs we introduced earlier. For this we construe Σ

q
k and Π

q
k as

classes of finite languages, by associating with a QBF ϕ(x1, . . . , xn) (with all free variables
indicated) the class of (finite) assignments α ⊆ {x1, . . . , xn} satisfying it. These assignments
may themselves may be seen as binary strings of length n which encode their characteristic
functions in the usual way.

Definition 6 (Evaluation problems) Let C be a set of QBFs. C-evaluation is the problem of
deciding, given a formula ϕ(x) ∈ C, with all free variables indicated, and an assignment
α ⊆ x, whether α � ϕ(x).

Theorem 7 (cf. [4]) For k ≥ 1, we have the following:

1. Σ
q
k -evaluation is Σ

p
k -complete.

2. Π
q
k -evaluation is Π

p
k -complete.

Corollary 8 For k ≥ 1, we have the following:

1. {ϕ ∈ Σ
q
k : ϕ is closed and true} is Σ

p
k -complete.

2. {ϕ ∈ Π
q
k : ϕ is closed and true} is Π

p
k -complete.

Proof Membership is immediate from Theorem 7, evaluating under the assignment ∅. For
hardness, notice that we may always simplify a QBF under an assignment α to a closed
formula as follows: first, replace all free variable occurrences x with t if x ∈ α and f
otherwise. Now simply apply the following rewrite rules,

f ∨ ϕ → ϕ ← ϕ ∨ f f ∧ ϕ → f ← ϕ ∧ f
t ∨ ϕ → t ← ϕ ∨ t t ∧ ϕ → ϕ ← ϕ ∧ t

(1)

��

3 Linear Logic and Proof Search

Linear logic was introduced by Girard [11] to decompose the mechanics of cut-elimination
bymeans of different connectives. It naturally subsumes both classical and intuitionistic logic
by various embeddings, and has furthermore been influential in the theoretical foundations of
logic programming via the study of focussing, which constrains the level of nondeterminism
in proof search, cf. [1,5,10]. In thisworkwe only consider the fragmentmultiplicative additive
linear logic (MALL) and its version with ‘weakening’(MALLw).

This section mostly follows Sect. 3 of [9], mainly differing in that we here include units
in the formulation of MALL and MALLw, for generality, and give some further proof details.

3.1 Multiplicative Additive Linear Logic

For convenience, we work with the same set Var of variables that we used for QBFs. To
distinguish them from QBFs, we use the metavariables A, B, etc. for MALL(w) formulas,
generated as follows:

A ::= ⊥ | 0 | 1 | � | x | x | (A � B) | (A � B) | (A � B) | (A � B)
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From QBFs to MALL and Back via Focussing 1227

Fig. 1 The system (cut-free) MALL, where i ∈ {0, 1}

⊥, 1, �, � are called multiplicative connectives, and 0,�, �, � are called additive connec-
tives. Like for QBFs, we have restricted negation to the variables, thanks to De Morgan
duality in MALL. Again, we may write A for the De Morgan dual of A, which is generated
similarly to the case of QBFs:

x := x

⊥ := 1
1 := ⊥
0 := �
� := 0

(A � B) := A � B

(A � B) := A � B

(A � B) := A � B
(A � B) := A � B

Due to De Morgan duality, we will work only with ‘one-sided’ calculi for MALL and
MALLw, where all formulas occur to the right of the sequent arrow. This means we will have
fewer cases to consider for formal proofs, although later we will also informally adopt a
two-sided notation when it is convenient, cf. Rmk. 14.

Definition 9 (MALL(w))A cedent, written Γ ,Δ etc., is a multiset of formulas, delimited by
commas ‘,’, and a sequent is an expression � Γ .3 The system (cut-free) MALL is given in
Fig. 1. MALLw, a.k.a. affine MALL, is defined in the same way, only with the (id) rule and
(1) rule replaced by the following analogues:

wid � Γ , x, x
w1 � Γ , 1

(2)

We have not included the ‘cut’ rule, thanks to cut-elimination for linear logic [11]. We will
only study cut-free proofs in this paper. Notice that, following the tradition in linear logic,
we write ‘�’ for the sequent arrow, though we point out that the deduction theorem does not
actually hold w.r.t. linear implication. For the affine variant, we have simply built weakening
into the initial steps, since it may always be permuted upwards in a proof:

Proposition 10 (Weakening admissibility) The following rule, called weakening, is admissi-
ble in MALLw:

� Γ
w � Γ , A

Proof This is a routine (and indeed well-known) argument by induction on the size of a
subproof that roots a weakening step. The initial sequents of MALLw are already closed
under weakening, and have the following inductive cases:

3 We will often identify cedents and sequents, since we are in a one-sided setting.
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� Γ , A, B
� � Γ , A � B

w � Γ , A � B, C

�
� Γ , A, B

w � Γ , A, B, C
� � Γ , A � B, C

� Γ , Ai
� � Γ , A0 � A1

w � Γ , A0 � A1, C

�
� Γ , Ai

w � Γ , A0, A1, C
� � Γ , A0 � A1, C

� Γ , A Δ, B
� � Γ ,Δ, A � B

w � Γ ,Δ, A � B, C

�
� Γ , A

w � Γ , A, C � Δ, B
� � Γ ,Δ, A � B, C

� Γ , A � Γ , B
� � Γ , A � B

w � Γ , A � B, C

�
� Γ , A

w � Γ , A, C

� Γ , B
w � Γ , B, C

� � Γ , A � B, C

��

3.2 (Multi-)focussed Systems for Proof Search

Focussed systems forMALL (and linear logic in general) have beenwidely studied [1,5,10,14].
The idea is to associate polarities to the connectives based on whether their introduction rule
is invertible (negative) or their dual’s introduction rule is invertible (positive). Now bottom-up
proof search can be organised in a manner where, once we have chosen a positive principal
formula to decompose (the ‘focus’), we may continue to decompose its auxiliary formulas
until the focus becomes negative. The main result herein is the completeness of such proof
search strategies, known as the focussing theorem (a.k.a. the ‘focalisation theorem’).

It is known that ‘multi-focussed’ variants, where one may have many foci in parallel, lead
to certain ‘canonical’ representations of proofs for MALL [5]. Furthermore, the alternation
behaviour of focussed proof search can be understood via a game theoretic approach [10].
However, such frameworks unfortunately fall short of characterising the alternating com-
plexity of proof search in a faithful way. The issue is that the usual focussing methodology
does not make any account for deterministic computations, which correspond to invertible
rules that do not branch. Such rules are usually treated just like the other invertible rules,
which in general comprise the ‘co-nondeterministic’ stages of proof search.

For these reasonswe introduce a bespoke presentation of (multi-)focussing forMALL, with
a designated deterministic phase dedicated to invertible non-branching rules, in particular the
� rule. To avoid conflicts with more traditional presentations, we call the other two phases
nondeterministic and co-nondeterministic rather than ‘synchronous’ and ‘asynchronous’
respectively. This terminology also reinforces the intended connections to computational
complexity.

Henceforth we use a, b, etc. to vary over atomic formulas. We also use the following
metavariables to vary over formulas with the indicated main connectives:

M : ‘negative and not deterministic’ �

N : ‘negative’ �, �

O : ‘deterministic’ �, �, a
P : ‘positive’ �, �

Q : ‘positive and not deterministic’ �
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From QBFs to MALL and Back via Focussing 1229

Fig. 2 The system (cut-free) FMALL, where P′ andM must be nonempty and i ∈ {0, 1}

‘Vectors’ are used to vary overmultisets of associated formulas, e.g.P varies overmultisets
of P-formulas. We may sometimes view these as sequences or even sets for convenience.
Sequents may now contain a single delimiter ⇓ or ⇑.
Definition 11 (Multi-focussed proof system) We define the (multi-focussed) system FMALL
in Fig. 2. The system FMALLw is the same as FMALL but with the (id) and (1) rules replaced
by the rules (wid) and (w1) from (2).

A proof of a formula A is simply a proof of the sequent � A, i.e. there is no need to pre-
decorate with arrows, as opposed to usual presentations, thanks to the deterministic phase.
The rules D and D̄ are called decide and co-decide respectively, while R and R̄ are called
release and co-release respectively.

Notice that the determinism of � plays no role in this one-sided calculus, but in a two-
sided calculus we would have a deterministic left � rule that is analogous to the given � rule
(on the right). This is the same as how the ‘negativity’ (in the sense of non-invertibility on
the left) of � plays no role in this calculus. One may argue that a � on the left is morally just
a �, but such a simplification sacrifices the duality of connectives being reflected in terms
of duality in computational complexity: if � is deterministic, then so should be its dual, �.
Indeed, in the above classification, O-formulas are dual to O-formulas, P-formulas dual to
N -formulas, and Q-formulas dual to M-formulas.

As usual for multi-focussed systems, the analogous focussed system can be recovered
by restricting rules to only one focussed formula in nondeterministic phases. Moreover, in
our presentation, we may also impose the dual restriction, that there is only one formula in
‘co-focus’ during a co-nondeterministic phase:

Definition 12 (Simply (co-)focussed subsystems) A FMALL proof is focussed if P′ in D
is always a singleton. It is co-focussed if M in D̄ is always a singleton. If a proof is both
focussed and co-focussed then we say it is bi-focussed.

The notion of ‘co-focussing’ is not usually possible for (multi-)focussed systems since the
invariant of being a singleton is not usually maintained in an asynchronous phase, due to the
� rule. However we treat � as deterministic rather than co-nondeterministic, and we can see
that the �-rule indeed maintains the invariant of having just one formula on the right of ⇑.
Theorem 13 (Focussing theorem) We have the following:
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1230 A. Das

1. The class of bi-focussed FMALL-proofs is complete for MALL.
2. The class of bi-focussed FMALLw-proofs is complete for MALLw.

Evidently, this immediately means that FMALL (FMALLw), as well as its focussed and co-
focussed subsystems, are also complete forMALL (resp.MALLw). The proof of Theroem 13
follows routinely from any other completeness proof for focussed MALL, e.g. [1,14]. The
only change in our presentation is in the organisation of phases, for which we may think of
bi-focussed proofs as certain annotated focussed proofs.

To aid our exposition, we will sometimes use a ‘two-sided’ notation and extra connectives
so that the intended semantics of sequents are clearer. Strictly speaking, this is just a shorthand
for one-sided sequents: the calculi defined in Figs. 1 and 2 are the formal systems we are
studying.

Remark 14 (Two-sided notation) We write Γ � Δ as shorthand for the sequent � Γ ,Δ,
where Γ is {A : A ∈ Γ }. We extend this notation to sequents with ⇑ or ⇓ symbols in the
natural way, writing Γ ⇑ Δ � Σ ⇑ Π for � Γ ,Σ ⇑ Δ,Π and Γ ⇓ Δ � Σ ⇓ Π for
� Γ ,Σ ⇓ Δ,Π . In all cases, (co-)foci are always written to the right of ⇓ or ⇑.

We write A � B as shorthand for the formula A � B, and A �+ B as shorthand for the
formula A � B. Sometimes we will write, e.g., a step,

Γ � Δ ⇓ A Γ ′ ⇓ B � Δ′
�l

Γ , Γ ′ ⇓ A � B � Δ,Δ′

which, by definition, corresponds to a correct application of � in FMALL(w).

4 An Encoding From CPL2 toMALLw

In this section we present an encoding of true QBFs into MALLw. (We will later adapt this
into an encoding intoMALL in Sect. 7.) The former were also used for the original proof that
MALL is PSPACE-complete [17,18], though our encoding differs from theirs and leads to a
more refined result, cf. Sect. 6.

This section mostly follows Sect. 4 from [9], except with some further details in proofs
and the exposition. Henceforth we assume that all QBFs are in prenex normal form and free
of truth constants f and t (e.g. by Eqn. 1).

4.1 Positive and Negative Encodings of Quantifier-Free Evaluation

The base cases of our translation from QBFs to MALLw will be quantifier-free Boolean
formula evaluation. This is naturally a deterministic computation, being polynomial-time
computable. (In fact, Boolean formula evaluation is known to be ALOGTIME-complete
[2].) However one issue is that this determinism cannot be seen from the point of view of
MALLw, since the only deterministic connective (�, on the right) is not expressive enough
to encode evaluation.

Nonetheless we are able to circumvent this problem since MALLw is at least able to see
that quantifier-free evaluation is in NP ∩ coNP, via a pair of corresponding encodings. For
non-base levels of PH this is morally the same as being deterministic, as we will see more
formally over the course of this section.

Definition 15 (Positive and negative encodings) Let ϕ be a quantifier-free Boolean formula.
We define:
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– ϕ− is the result of replacing every ∨ in ϕ by � and every ∧ in ϕ by �.
– ϕ+ is the result of replacing every ∨ in ϕ by � and every ∧ in ϕ by �.

For an assignment α ⊆ Var and a list of variables x = (x1, . . . , xk), we write α(x) for the
cedent {xi : xi ∈ α, i ≤ k} ∪ {xi : xi /∈ α, i ≤ k}. We write αn(x) for the cedent consisting
of n copies of each literal in α(x).

Proposition 16 Let ϕ be a quantifier-free Boolean formula with free variables x and let α be
an assignment. For n ≥ |ϕ|, the following are equivalent:

1. α � ϕ.
2. MALLw proves α(x) � ϕ−.
3. MALLw proves αn(x) � ϕ+.

Proof 2 �⇒ 1 and 3 �⇒ 1 are immediate from the ‘soundness’ of MALLw with respect
to classical logic, by interpreting � or � as ∧ and � or � as ∨.

Intuitively, 1 �⇒ 2 follows directly from the invertibility of rules, while for 1 �⇒ 3
wemay appeal to the usual properties of satisfactionwhile controlling linearity appropriately.
Formally we prove the following more general statements:

– For any multiset Λ of quantifier-free Boolean formulas, if α �
∨

Λ thenMALLw proves
α(x) � Λ−, where Λ− is the MALLw cedent {ϕ− : ϕ ∈ Λ}.

– For any quantifier-free Boolean formula ϕ with |ϕ| ≤ n, if α � ϕ then MALLw proves
αn(x) � ϕ+.

We proceed by induction on the number of connectives in Λ or ϕ. The bases case is simple
(relying on affinity) and the inductive cases are as follows,

IH

α(x) � Λ,ϕ−, ψ−
�

α(x) � Λ,ϕ−
� ψ−

IH

α(x) � Λ,ϕ−
IH

α(x) � Λ,ψ−
�

α(x) � Λ,ϕ−
� ψ−

IH

αn(x) � ϕ+
i

�

αn(x) � ϕ+
0 � ϕ+

1

IH

αl(x) � ϕ+
IH

αm(x) � ψ+
�

αn(x) � ϕ+
� ψ+

where:

– i = 0 or i = 1, depending on whether α � ϕ0 or α � ϕ1, respectively; and,
– l and m are chosen so that l ≥ |ϕ| and m ≥ |ψ |; and,
– the derivations marked IH are obtained from the inductive hypothesis.

��

4.2 Encoding Quantifiers inMALLw

As we said before, we do not follow the ‘locks-and-keys’ approach of [17,18]. Instead
we follow a similar approach to Statman’s proof that intuitionistic propositional logic is
PSPACE-hard [25], adapted to minimise proof search complexity.

The basic idea is that we would like to encode quantifiers as follows:

∃x .ϕ � (x � ϕ) � (x � ϕ)

∀x .ϕ � (x � ϕ) � (x � ϕ)
(3)
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Fig. 3 Proof of ∃ case for
left-right direction of Lemma 18

The issue is that such a naive approach would induce an exponential blowup, due to the
two occurrences of ϕ in each line above. This idea was considered by Statman in [25], for
intuitionistic propositional logic, where he avoided the blowup by using Tseitin extension
variables, essentially fresh variables used to abbreviate complex formulas, e.g. (x ≡ ϕ). The
issue is that this can considerably complicate the structure of proofs, since, in order to access
the abbreviated formula, we must pass both a positive and negative phase induced by ≡.

Instead, we use an observation from [8] that ϕ occurs only positively in (3) above, and so
we only need one direction of Tseitin extension. Doing this carefully will allow us to control
the structure proofs in a way that is consistent with the alternation complexity of the initial
QBF, as we will see later.

Definition 17 (CPL2 to MALLw) Given a QBF ϕ = Qk xk . · · · .Q1x1.ϕ0 with |ϕ0| = n and
all quantifiers indicated, we define [ϕ] by induction on k as follows,

[ϕ0] :=
{

ϕ+
0 if Q1 is ∃

ϕ−
0 if Q1 is ∀

[Qk xk .ϕ
′] :=

{
([ϕ′] � yk) � ((xn

k � yk) � (xn
k � yk)) if Qk is ∃

([ϕ′] �+ yk) � ((xn
k � yk) � (xn

k � yk)) if Qk is ∀
where yk is always fresh.

Lemma 18 Let ϕ(x) be a QBF with all free variables displayed and matrix ϕ0, with |ϕ0| = n.
Then α � ϕ if and only if MALLw proves αn(x) � y, [ϕ] for any assignment α and any y
disjoint from x.

Proof Weproceed by induction on the number of quantifiers inϕ. For the base case, when ϕ is
quantifier-free, we appeal to Prop. 16. The left-right direction follows directly by weakening
(cf. Prop. 10), while the right-left direction follows after observing that y does not occur in [ϕ]
or αn(x); thus y may be deleted from a proof (along with its descendants) while preserving
correctness.

For the inductive step, in the left-right direction we give appropriate bi-focussed proofs in
Figs. 3 and 4, where:±x in Fig. 3 is chosen to be x if x ∈ α and x otherwise; the derivations
marked IH are obtained by the inductive hypothesis; and the derivation marked . . . in Fig. 4
is analogous to the one on the left of it.4

4 Note that, for the derivations for the innermost quantifier (∃ or ∀), the topmost R or R̄ step of Figs. 3 or 4
(resp.) does not occur.
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Fig. 4 Proof of ∀ case for left-right direction of Lemma 18

For the right-left direction, we need only consider the other possibilities that could occur
during bi-focussed proof search, by the focussing theorem, Theorem 13. For the ∃ case,
bottom-up, one could have chosen to first decide on [ϕ] � y in the antecedent. The associated
�l step would have to send the formula (xn � y) � (xn � y) to the right premiss (for y),
since otherwise every variable occurrence in that premiss would be distinct and there would
be no way to correctly finish proof search. Thus, possibly after weakening, we may apply
the inductive hypothesis to the left premiss (for [ϕ]). A similar analysis of the upper �l step
in Fig. 3 means that any other split will allow us to appeal to the inductive hypothesis after
weakening. For the ∀ case the argument is much simpler, since no matter which order we
‘co-decide’, we will end up with the same leaves. (This is actually exemplary of the more
general phenomenon that invertible phases of rules are ‘confluent’, cf. [1,5,16].) In particular,
�-steps may be permuted as follows:

� Γ , A, C � Γ , B, C
� � Γ , A � B, C

� Γ , A, D � Γ , B, D
� � Γ , A � B, D

� � Γ , A � B, C � D

�
� Γ , A, C � Γ , A, D

� � Γ , A, C � D

� Γ , B, C � Γ , B, D
� � Γ , B, C � D

� � Γ , A � B, C � D

��

Theorem 19 A closed QBF ϕ is true if and only if MALLw proves [ϕ].

Proof Follows immediately from Lemma 18, setting y = ∅. ��

5 Focussed Proof Search as Alternating Time Predicates

In this section we show how to express focussed proof search as an alternating polynomial-
time predicate that will later allow us to calibrate the complexity of proof search with levels
of the QBF and polynomial hierarchies. The notions we develop apply equally to eitherMALL
or MALLw.
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This section mostly follows Sect. 5 of [9] except that, as well as further general details,
we include a proof of Theorem 21 (essentially Theorem 20 in [9]).

We will now introduce ‘provability predicates’ that delineate the complexity of proof
search in a similar way to the QBF and polynomial hierarchies we presented earlier. Recall
the notions of deterministic, nondeterministic and co-nondeterministic rules from Dfn. 11,
cf. Fig. 2.

Definition 20 (Focussing hierarchy) A cedent Γ of MALL(w) is:

– Σ
f
0 -provable, equivalently Π

f
0 -provable, if � Γ is provable using only deterministic

rules.
– Σ

f
k+1-provable if there is a derivation of � Γ , using only deterministic and nondeter-

ministic rules, from sequents � Γi which are Π
f

k -provable.

– Π
f

k+1-provable if every maximal path from � Γ , bottom-up, through deterministic and

co-nondeterministic rules ends at a Σ
f

k -provable sequent.

We sometimes simply say “Γ is Σ
f

k ” or even “Γ ∈ Σ
f

k ” if Γ is Σ
f

k -provable.

The definition above is robust under the choice of multi-focussed, (co-)focussed or bi-
focussed proof systems: while the number of D or D̄ steps may increase, the number of
alternations of nondeterministic and co-nondeterministic phases is the same. This robustness
will also apply to other concepts introduced in this section.

From the definition it is not hard to see that we have a natural correspondence between
the focussing hierarchy and the other hierarchies we have discussed:

Theorem 21 For k ≥ 0, we have the following:

1. Π
f

k -provability is computable in Π
p
k .

2. Σ
f

k -provability is computable in Σ
p
k .

An analogous result has been presented in previous work, [8]. An interesting point is that,
for the � rule, even though there are two premisses, the rule is context-splitting, and so
a nondeterministic machine may simply split into two parallel threads with no blowup in
complexity.

Proof of Theorem 21 We proceed by induction on k.
In the base case, a cedent is Σ

f
0 -provable (equivalently Π

f
0 -provable) just if it has a proof

using only deterministic rules. Upon inspection of Fig. 2, we notice that it does not matter
which order we apply deterministic rules, bottom-up, since maximal application will always
lead to the same sequent at the top. This follows from a simple rule permutation argument:

� Γ , A, B, C, D
� � Γ , A � B, C, D

� � Γ , A � B, C � D

�
� Γ , A, B, C, D

� � Γ , A, B, C � D
� � Γ , A � B, C � D

Thus, since deterministic rules must terminate after a linear number of steps (bottom-up), we
may verify deterministic-provability by simply applying deterministic steps maximally (in
any order bottom-up) and verifying that the end result is a correct initial sequent. Thus we
indeed have that Σ f

0 -provability (equivalently Π
f
0 -provability) is computable in P = Σ

p
0 =

Π
p
0 .
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For the inductive step for 1, a cedent Γ is notΠ f
k+1-provable just if there is some maximal

branch of co-nondeterministic steps applied to Γ , bottom-up, that terminates in a sequent Γ ′
that is not Σ

f
k -provable. Any such branch has polynomial-size (by inspection of the rules),

andwe have from the inductive hypothesis thatΣ f
k -provability is computable inΣ

p
k . Thuswe

have that non-Π f
k+1-provability is computable in Σ

p
k+1 and so, by Dfn. 5, Π f

k+1-provability
is computable in Π

p
k+1.

For the inductive step for 2, a cedent Γ is Σ
f

k+1-provable just if there is a derivation of
the form,

� Γ1 · · · � Γn

Φ

� Γ

using only deterministic and nondeterministic rules such that each Γi is Π
f

k -provable.
Notice that such Φ has polynomial-size in |Γ | with ∑n

i=1 |Γi | ≤ |Γ |, by inspection of

the (non)determinstic rules in Fig. 2. Thus, to check that Γ is Σ
f

k+1-provable we need only
guess the appropriate derivation Φ and sequents Γ1, . . . , Γn , and then check that each Γi

is Π
f

k -provable. By the inductive hypothesis, we have that Π
f

k -provability is a Π
p
k prop-

erty, so we may check on a Πk-machine that all these Γi s are actually Π
f

k -provable in time
∑n

i=1 |Γi |O(1) ≤ |Γ |O(1). Thus we have that Σ f
k+1-provability is indeed computable in Σ

p
k .��

Corollary 22 For k ≥ 1, we have the following:

1. There are Σ
q
k formulas Σ

f
k -Provn, constructible in time polynomial in n ∈ N, computing

Σ
f

k -provability on all formulas A s.t. |A| = n.

2. There are Π
q
k formulas Π

f
k -Provn, constructible in time polynomial in n ∈ N, computing

Π
f

k -provability on formulas A s.t. |A| = n.

Proof Follows immediately from Theorem 21 under Theorem 7. ��
We now give a slightly different way to view the focussing hierarchy, based on a more

directly calculable measure of cedents that is similar to the notions of ‘decide depth’ and
‘release depth’ found in other works, e.g. [22]. We will use (a variation of) this to eventually
formulate our encoding from MALLw to CPL2 in the next section.

Definition 23 ((Co-)nondeterministic complexity) Let Φ be a FMALL(w) proof. We define
the following:

– The nondeterministic complexity of Φ, written σ(Φ), is the maximum number of alter-
nations, bottom-up, between D and D̄ steps in a branch through Φ, setting σ(Φ) = 1 if
Φ has only D steps.

– The co-nondeterministic complexity of Φ, written π(Φ), maximum number of alterna-
tions, bottom-up, between D and D̄ steps in a branch through Φ, setting π(Φ) = 1 if Φ

has only D̄ steps.

For a cedent Γ we further define the following:
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– σ(Γ ) is the least k ∈ N s.t. there is a FMALL(w) proof Φ of � Γ with σ(Φ) = k.
– π(Γ )) is the least k ∈ N s.t. there is a FMALL(w) proof Φ of � Γ with π(Φ) = k.

Putting together the results and notions of this section, we have:

Proposition 24 Let Γ be a cedent and k ≥ 0. We have the following:

1. Γ is Σ
f

k -provable if and only if σ(Γ ) ≤ k.

2. Γ is Π
f

k -provable if and only if π(Γ ) ≤ k.

6 An ‘Inverse’ Encoding fromMALLw into CPL2

In this section we will use the ideas of the previous section to give an explicit encoding from
MALLw to CPL2, i.e. a polynomial-time mapping from MALLw-formulas to QBFs whose
restriction to theorems has image in CPL2. Moreover, we will show that this encoding acts as
an ‘inverse’ to the one we gave in Sect. 4, and finally identify natural fragments of MALLw
complete for each level of PH.

This section mostly follows Sect. 6 of [9], except that we give significantly more proof
details.

6.1 Approximating (Co-)nondeterministic Complexity

The nondeterministic and co-nondeterministic complexities σ and π we introduced in the
previous section do not give us a bona fide encoding fromMALLw to true QBFs since they are
hard to compute. Instead we give an ‘overestimate’ here that will suffice for the encodings
we are after. This overestimate will be parametrised by some enumeration of all formulas,5

which will drive the possible choices during proof search. However we will later show that
the choice of this enumeration is irrelevant, meaning that the approximation can be flexibly
calculated and is in fact polynomial-time computable.

Another option might have been, rather than taking the ‘least’ formula in a sequent under
some enumeration, that we may view the sequent as a list instead in a calculus with an
exchange rule. We avoided this in the interest of having a terminating proof system.

Throughout, we will identify enumerations with total orders in the natural way.

Definition 25 (Approximating the complexity of a sequent) Let ≺ be a total order on all
MALL(w) formulas. We define the functions �σ�≺ and �π�≺ on sequents in Fig. 5.6

Proposition 26 (Confluence) For any two total orders ≺ and ≺′ on MALL(w) formulas, we
have that �σ�≺(Γ ) = �σ�≺′(Γ ) and �π�≺(Γ ) = �π�≺′(Γ ).

To prove this, we give essentially a confluence argument for terminating relations, but we
avoid using a formal rewriting argument for self-containedness.

Proof of Prop. 26 We proceed by induction on the number of connectives inΓ . The base case,
when Γ consists of only atomic formulas, is trivial, so we consider the inductive steps. When
invoking the inductive hypothesis, we may freely suppress the subscripts ≺ or ≺′.

5 Strictly speaking, we really mean ‘formula occurrences’ rather than just ‘formulas’, but we will sweep this
technicality under the carpet in the interest of a lighter exposition.
6 In the conference version, [9], there was an error in the base case, where 0 was written instead of 1.
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Fig. 5 Approximating (co-)nondeterminstic complexities

Suppose that, at some point along the definition of the approximations,≺ and≺′ disagree
on what the least formula is. Namely, the ≺-least formula is P0 and the ≺′-least formula is
P1. In this case we have the following situation:

�σ�≺(a,P, P0, P1) = �σ�≺(a,P, P0 ⇓ P1)
...

= δ1 + �σ�≺(a,P, P0,P1)

= δ1 + �σ�(a,P,P1 ⇓ P0) by inductive hypothesis
...

= δ0 + δ1 + �σ�(a,P,P1,P0)

where each δi is either 2 or 0 depending on whether a co-nondeterministic phase is entered
or not during the bi-pole induced by Pi . We will have a similar derivation for ≺′, with only
δ0 and δ1 swapped, whence we conclude by commutativity and associativity of addition.

The case where a M-formula is chosen in the definition of �π� is similar. ��
From now on, we may suppress the subscript ≺ for the notions �σ� and �π�.
Corollary 27 (Overapproximation) σ(Γ ) ≤ �σ�(Γ ) and π(Γ ) ≤ �π�(Γ ).

Proof A proof with the minimal number of alternations between nondeterministic and co-
nondeterministic phases will induce a strategy ≺ on which we may evaluate �σ� and �π�.
These will be bounded below by their actual σ and π values. ��
Notice that the over-estimation for the � case is particularly extreme: in the worst case we
have that the entire context is copied to one branch. In fact we could optimise this somewhat,
by only considering ‘plausible’ splittings, but it will not be necessary for our purposes.
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Corollary 28 (Feasibility) �σ� and �π� are polynomial-time computable.

Proof Clearly, �σ�≺ and �π�≺ are polynomial-time computable for any polynomial-time
enumeration ≺. So we may simply pick any polynomial-time enumeration of the formulas
and appeal to Prop. 26. ��

6.2 Tightness of Approximations in the Image of [·]

Since [ϕ] is always a relatively ‘balanced’ formula, we have that the overestimation just
defined is in fact tight in the image of [·] from MALLw:

Proposition 29 (Tightness) For k ≥ 1 we have the following:

1. If ϕ ∈ Σ
q
k \ Π

q
k then �σ�([ϕ]) = σ([ϕ]) = k and �π�([ϕ]) = π([ϕ]) = 1+ k.

2. If ψ ∈ Π
q
k \ Σ

q
k then �π�([ψ]) = π([ϕ]) = k and �σ�([ψ]) = π([ψ]) = 1+ k.

Intuitively, the tightness of the approximation follows from the following two properties of
the derivations in Figs. 3 and 4:

– There is only one non-atomic formula per sequent, so the �-overapproximation is not
significant.

– Weakening is only required on atomic formulas, so initial sequents need not be further
broken down in the definitions of �σ� and �π�.

Proof of Prop. 29 Wehave that σ(ϕ) = k andπ(ψ) = k already from the proof of Lemma 18,
so it remains to show that the approximations are tight. For this we show by induction on the
number of quantifiers in ϕ or ψ that, more generally:

– �σ�([ϕ], a) = k for any sequence a of atomic formulas.
– �π�([ψ], a) = k for any sequence a of atomic formulas.

When ϕ and ψ are quantifier-free, notice that �σ�(ϕ+, a) = 1 = �π�(ϕ−, a), since ϕ+
has only positive connectives and ϕ− has only negative connectives.

If ϕ is ∃x .ϕ′ then �σ�([ϕ′],b) = k, for any b, by the inductive hypothesis so:

�σ�([ϕ], a) = �σ�(([ϕ′] � y) � ((xn � y) � (xn � y)), a) by definition of [·]
= �σ�([ϕ′] � y, (xn

� y) � (xn
� y), a) by definition of �

= �σ�([ϕ′] � y, xn
� y, a) by Prop. 26

= �σ�([ϕ′] � y, xn, y, a)
= �σ�([ϕ′], xn, y, a) since �σ�(y) = 1
= k by inductive hypothesis

We also have that �π�([ϕ], a) = 1+ �σ�([ϕ′], xn, y, a) = 1+ k, by a similar analysis.
If ψ is ∀x .ψ ′ then �π�([ψ ′],b) = k, for any b, by the inductive hypothesis so:

�π�([ψ], a) = �π�(([ψ ′] �+ y) � ((xn � y) � (xn � y)), a) by definition of [·]
= �π�([ψ ′] � y, (xn

� y) � (xn
� y), a) by definition of �,�+

= �π�([ψ ′] � y, xn
� y, a) by Prop. 26

= �π�([ψ ′] � y, xn, y, a)
= �π�([ψ ′], xn, y, a) since �π�(y) = 1
= k by inductive hypothesis

We also have that �σ�([ψ], a) = 1+ �π�([ψ ′], xn, y, a) = 1+ k, by a similar analysis. ��
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6.3 An Encoding fromMALLw to QBFs andMain Results

From Cor. 22, let us henceforth fix appropriate QBFs Σ
f

k -Provn and Π
f

k -Provn , for k ≥ 1,

computingΣ
f

k -provability andΠ
f

k -provability in FMALLw, respectively, for formulas of size
n. We are now ready to define our ‘inverse’ encoding of [·]:
Definition 30 (MALLw to CPL2) For a MALLw formula A, we define:

〈A〉 :=
{

Σ
f

k -Prov|A|(A) if k = �σ�(A) ≤ �π�(A)

Π
f

k -Prov|A|(A) if k = �π�(A) < �σ�(A)

Finally, we are able to present our main result:

Theorem 31 We have the following:

1. [·] is a polynomial-time encoding from CPL2 to MALLw.
2. 〈·〉 is a polynomial-time encoding from MALLw to CPL2.
3. The composition 〈·〉 ◦ [·] : CPL2 → CPL2 preserves quantifier complexity, i.e., for k ≥ 1,

it maps true Σ
q
k (Πq

k ) sentences to true Σ
q
k (resp. Π

q
k ) sentences.

Proof We already proved 1 in Theorem 19. 2 follows from the definitions of Σ
f

k -Prov and

Π
f

k -Prov (cf. Cor. 22), under Prop. 24 andCors. 27 and 28. Finally 3 then follows by tightness
of the approximations �σ�, �π� in the image of [·], Prop. 29. ��
Consequently, we may identify polynomial-time recognisable subsets of MALLw-formulas
whose theorems are complete for levels of the polynomial hierarchy:

Corollary 32 We have the following, for k ≥ 1:

1. {A : �σ�(A) ≤ k and MALLw proves A} is Σ
p
k -complete.

2. {A : �π�(A) ≤ k and MALLw proves A} is Π
p
k -complete.

7 Extending the Approach to (Non-affine) MALL

It is natural to wonder whether a similar result to Theorem 31 could be obtained forMALL, i.e.
without weakening. The reason we chose MALLw is that it allows for a robust and uniform
approach that highlights the capacity of focussed systems to obtain tight alternating time
bounds for logics, without too many extraneous technicalities. However, the same approach
does indeed extend toMALLwith only local adaptations.We give the argument in this section.

This section is comprised of new material not present in [9].

7.1 EncodingWeakening inMALL

There is a well-known embedding of MALLw into MALL by recursively replacing every
subformula A by ⊥ � A. However, doing this might considerably increase the alternation
complexity of proof search, adding up to one alternation per subformula. Instead, we notice
that we need only conduct this replacement on literals, since those are the only ones that are
weakened in the proofs of Sect. 4. From here we realise that the consideration of formulae of
the form⊥� a (or variants thereof) may be delayed to the end of proof search. To formalise
this appropriately, we first need the following notion:
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Definition 33 (Weakened formulas) Let Φ be a MALLw proof whose initial id-sequents are
{Γi , ai , ai }i<m and initial 1-sequents are {Γi , 1}m≤i<n The weakened formulas of Φ is the
set Ω:=⋃

i<n Γi .

We identify elements of Ω in the above definition with subformula occurrences of the con-
clusion of Φ in the natural way. We have the following folklore result:

Lemma 34 (Weakening lemma) We have the following:

1. MALL proves A � ⊥ � A.
2. MALLw proves ⊥ � A � A, with weakening only on A.
3. Let A be a MALL(w) formula and Ω a set of subformula occurrences of A. There is

a MALLw proof Φ of A with weakened formulas among Ω if and only if MALL proves
A[⊥ � B/B]B∈Ω .

Proof 1 and 2 are given by the following derivations:

A � A

A � ⊥ � A

⊥ � A A � A

⊥ � A � A

3 now follows immediately from 1 and 2 under the ‘deep inference’ property:

If MALL(w) proves A(B) and B � Cthen it proves A(C). (4)

This property iswell known (see, e.g., [27]) and follows by a routine induction on the structure
of A, in particular appealing to the cut-elimination property of MALL(w). For instance here
are the cases when A is a � or � formula,

� A0(B) � A1(B)

IH

A0(B) � A0(C)

IH

A1(B) � A1(C)
�l

A0(B) � A1(B) � A0(C), A1(C)
�r

A0(B) � A1(B) � A0(C) � A1(C)
cut � A0(C) � A1(C)

� A0(B) � A1(B)

IH

A0(B) � A0(C)
�r

A0(B) � A0(C) � A1(C)

IH

A1(B) � A1(C)
�r

A1(B) � A0(C) � A1(C)
�l

A0(B) � A1(B) � A0(C) � A1(C)
cut � A0(C) � A1(C)

where the derivations marked IH are obtained from the inductive hypothesis. The cases when
A is a � or � formula are similar to the two cases above. ��

7.2 Adapting the Translation [·] forMALL

It turns out that, in the arguments of Sect. 4, we only used weakenings on atomic formulae:
notice that, in the proofs of Prop. 16 and of Lemma 18, the only weakenings were applied
on literals, and all initial sequents had the form a.
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Observation 35 The proof of Theorem 19 requires weakening only on literals.

This motivates the following definition:

Definition 36 For a MALL(w) formula A, write A′ for the result of replacing every literal
occurrence a with ⊥ � a.

We now have the following immediately from Lemma 34:

Proposition 37 MALLw proves [ϕ] if and only if MALL proves [ϕ]′.

7.3 Dealing with⊥ � a Formulas Deterministically

Even thoughwe have restricted our treatment ofweakened formulas to only literals, thesemay
still a priori increase the alternation complexity of proof search linearly under the encoding
A′. To avoid this, we will work in a certain normal form of proofs that delays consideration of
formulas of the form⊥� a until the end of bottom-up proof search. To enforce this we must
slightly ‘hack’ the proof systems and complexity approximations previously introduced.

For generality, let us introduce new metavariables c, d etc. varying over �-clauses con-
taining at least one ⊥:

c ::= ⊥ | c � x | x � c | x � c | c � x | c � c

Our intention is to treat c-formulas much like atoms in proof search, in particular not decom-
posing them until the end. To this end, we will introduce a new focussed system FMALL′ that
enforces this within the rules.

Definition 38 (FMALL′) We temporarily redefine the metavariables M, N , O, P, Q so that
only O is permitted to vary over c-formulas,i.e. if P or Q is a �-formula it must not be a
c-formula. The proof system FMALL′ is hence defined just as FMALL in Fig. 2, under this
revision of metavariables, with the following exceptions:

– a in Fig. 2 is everywhere replaced by a, c, i.e. FMALL′ has the following rules,

� a, c,P ⇓ P′
D � a, c,P,P′

� a, c,P ⇑ M
D̄ � a, c,P,M

� Γ , a, c,N
R � Γ ⇑ a, c,N

instead of their analogous versions written in Fig. 2.
– FMALL′ has the following additional initial sequents:

� c, c(x), d(x) � c, c(x), x � c, c(x), x � c, x, x � c, 1

where literals in parentheses must occur in their respective formulas. These new initial
sequents are deterministic.

(Co-)focussed and bi-focussed proofs of FMALL′ are defined analogously to Dfn. 12.

Proposition 39 (Bi-focussed) FMALL′ is sound and complete for MALL.

Proof Soundness is routine, with the new initial sequents proved using simple� and⊥ steps,
along with the other initial rules.
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For completeness, we proceed by induction on the size of a FMALL proof, by essentially
a rule permutation argument. The critical cases are when a FMALL proof focusses on a
c-formula, which we adapt as follows:

Φ

� a, c,P

� a, c,P,⊥
� a, c,P ⇓ ⊥

...

� a, c,P ⇓ c

� a, c,P, c

� c,Φ

� a, c, c,P

Φ

� a, c,P, a

� a, c,P ⇓ a
...

� a, c,P ⇓ c

� a, c,P, c

� Φ[c/a]

� a, c,P, c

where,

– c, Φ is obtained from Φ by inductively adding c to each premiss of an inference step in
Φ, bottom-up, except at � steps where we must only add c to one premiss, say the left
one. This transformation preserves the local correctness of the proof, in particular since
initial sequents are closed under addition of c-formulas.

– a is a literal and Φ[c/a] is obtained from Φ by replacing every (indicated) occurrence of
a by c. Since c contains a as a subformula, each initial sequent transformed in this way
will again be an initial sequent.

All other cases are routine, simply mimicking the given FMALL proof. ��

7.4 Adapting the Translation 〈·〉 andMain Results

Finally we adapt the approximations of (co-)nondeterministic complexity to reflect the proof
search dynamics of FMALL′:

Definition 40 (Approximating alternating complexity in FMALL′) �σ�′≺ and �π�′≺ are defined
exactly as �σ�≺ and �π�≺ in Fig. 5, under the metavariable conventions of Dfn. 38, with the
following exception: a and a are replaced everywhere by a, c and “a or c”, respectively. I.e.
we have the following clauses,

�σ�′≺(a, c) := 1
�σ�′≺(a, c,P, P) := �σ�′≺(a, c,P ⇓ P) P is ≺-least in P, P

�σ�′≺(a, c,P,M, M) := 1+ �π�′≺(a, c,P,M, M)

�π�′≺(a, c) := 1
�π�′≺(a, c,P, P) := 1+ �σ�′≺(a, c,P)

�π�′≺(a, c,P,M, M) := �π�′≺(a, c,P,M,⇑ M) M is ≺-least in M, M
�σ�′≺(Γ ⇓ X) := �σ�′≺(Γ , X) X is a or c or N

instead of their analogous versions written in Fig. 5.

It is not hard to see that the results of Sect. 5 are applicable also to the notions �σ�′ and
�π�′ developed here. In particular Prop. 26 holds also for �σ�′ and �π�′ and wemay similarly
omit the≺-subscript henceforth. All together, this allows us to define a similar encoding from
MALL formulas to QBFs.
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First, appealing to Cor. 22,7 let us henceforth fix appropriate QBFs Σ
f

k -Prov′n and

Π
f

k -Prov′n , for k ≥ 1, computing Σ
f

k -provability and Π
f

k -provability in FMALL′, respec-
tively, for formulas of size n.

Definition 41 (MALL to CPL2) For a MALL formula A, we define:

〈A〉′ :=
{

Σ
f

k -Prov′|A|(A) if k = �σ�′(A) ≤ �π�′(A)

Π
f

k -Prov′|A|(A) if k = �π�′(A) < �σ�′(A)

We now have the following analogues of the main results of the previous section, proved by
essentially the same arguments:

Theorem 42 We have the following:

1. [·]′ is a polynomial-time encoding from CPL2 to MALL.
2. 〈·〉′ is a polynomial-time encoding from MALL to CPL2.
3. The composition 〈·〉′ ◦ [·]′ : CPL2 → CPL2 preserves quantifier complexity, i.e. for k ≥ 1,

it maps true Σ
q
k (Πq

k ) sentences to true Σ
q
k (resp. Π

q
k ) sentences.

Corollary 43 We have the following, for k ≥ 1:

1. {A : �σ�′(A) ≤ k and MALL proves A} is Σ
p
k -complete.

2. {A : �π�′(A) ≤ k and MALL proves A} is Π
p
k -complete.

8 Conclusions and Further Remarks

We gave a refined presentation of (multi-)focussed systems for multiplicative-additive linear
logic, and its affine variant, that accounts for deterministic computations in proof search,
cf. Sect. 3.We showed that it admits rather controlled normal forms in the form of bi-focussed
proofs, and highlighted a duality between focussing and ‘co-focussing’ that emerges thanks
to this presentation. The main reason for using focussed systems such as ours was to better
reflect the alternating time complexity of bottom-up proof search, cf. Sect. 5. We justified
the accuracy of these bounds by showing that natural measures of proof search complexity
for FMALLw tightly delineate the theorems of MALLw according to associated levels of the
polynomial hierarchy, cf. Sects. 4 and 6. We were also able to obtain a similar delineation for
MALL too, cf. Sect. 7. These results exemplify how the capacity of proof search to provide
optimal decision procedures for logics extends to important subclasses of PSPACE. As far
as we know, this is the first time such an investigation has been carried out.

Our presentation of FMALL(w) should extend to logics with quantifiers and exponentials,
following traditional approaches to focussed linear logic, cf. [1,14]. It would be interesting
to see what could be said about the complexity of proof search for such logics. For instance,
the usual ∀ rule becomes deterministic in our analysis, since it does not branch:

Γ , A(y)
∀ y is fresh
Γ ,∀x .A(x)

As a result, the alternation complexity of proof search is not affected by the ∀-rule, but rather
interactions between positive connectives, including ∃, and negative connectives such as �.
Interpreting this over a classical setting could even give us new ways to delineate true QBFs

7 Notice that this holds also for the system FMALL′.
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according to the polynomial hierarchy, determined by the alternation of ∃ and propositional
connectives rather than ∀. One issue here is that witnessing ∃ steps seems to significantly
impact the complexity proof search. Nonetheless this would be an interesting line of future
research.

Much of the literature on logical frameworks via focussed systems is based around the
idea that an inference rulemay be simulated by a ‘bi-pole’, i.e. a single alternation between an
invertible and non-invertible phase of inference steps. However accounting for determinism
might yield more refined simulations where, say, non-invertible rules are simulated by phases
of deterministic and nondeterministic rules, but not co-nondeterministic ones. In particular
this should be possible for standard translations between modal logic and first-order logic,
cf. [19,20].
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