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Abstract
Automated formal verification is often based on the Counterexample-Guided Abstraction
Refinement (CEGAR) approach. Many variants of CEGAR have been developed over the
years as different problem domains usually require different strategies for efficient verifica-
tion. This has lead to generic and configurable CEGAR frameworks, which can incorporate
various algorithms. In our paper we propose six novel improvements to different aspects of
the CEGAR approach, including both abstraction and refinement. We implement our new
contributions in the Theta framework allowing us to compare them with state-of-the-art
algorithms. We conduct an experiment on a diverse set of models to address research ques-
tions related to the effectiveness and efficiency of our new strategies. Results show that
our new contributions perform well in general. Moreover, we highlight certain cases where
performance could not be increased or where a remarkable improvement is achieved.

Keywords Formal verification · Abstraction · CEGAR · Experimental evaluation

1 Introduction

Counterexample-Guided Abstraction Refinement (CEGAR) [31] is a widely used technique
for the automated formal verification of different systems, including both software [15,39,
53,54,56] and hardware [31,34]. CEGAR works by iteratively constructing and refining
abstractions until a proper precision is reached. It starts with computing an abstraction of the
system with respect to some abstract domain and a given initial—usually coarse—precision.
The abstraction over-approximates [32] the possible behaviors (i.e., the state space) of the
original system. Thus, if no erroneous behavior can be found in the abstract state space
then the original system is also safe. However, abstract counterexamples corresponding to
erroneous behaviors must be checked whether they are reproducible (feasible) in the original
system.A feasible counterexample indicates that the original system is unsafe. Otherwise, the
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counterexample is spurious and it is excluded in the next iteration by adjusting the precision
to build a finer abstraction. The algorithm iterates between abstraction and refinement until
the abstract system is proved safe, or a feasible counterexample is found.

CEGAR is a generic approach with many variants developed over the past two decades,
improving both applicability and performance. There are different abstract domains, includ-
ing predicates [41] and explicit values [15] and various refinement strategies, including ones
based on interpolation [55,63]. However, there is usually no single best variant: different
algorithms are suitable for different verification tasks [43]. Therefore, generic frameworks
are also emerging, which provide configurability [14], combinations of different strategies
for abstraction and refinement [2,45], and support for various kind of models [49,60].

Contributions In our paper, we make the following novel contributions. (1) We propose
six new strategies improving various aspects of the CEGAR algorithm, including abstraction
and refinement as well. (2) We conduct an experimental evaluation on models from diverse
domains, including both software and hardware.

Algorithmic improvements We propose various novel improvements and variations of
existing strategies to different aspects of the CEGAR approach.

– We generalize explicit-value abstraction to be able to enumerate a predefined, config-
urable number of successor states, improving its precision while still avoiding state space
explosion.

– We adapted a search strategy to the context of CEGAR that estimates the distance from
the erroneous state in the abstract state space based on the structure of the original system.

– We study different splitting techniques applied to complex predicates in order to gener-
alize the result of refinement.

– We introduce an interpolation strategy based on backward reachability, which traces back
the reason of infeasibility to the earliest point.

– We describe an approach for refinement based on multiple counterexamples, which pro-
vides better quality refinement since more information is available.

– We present combinations of different interpolation strategies that enable selection from
different refinements.

We implement our new contributions in Theta [60], an open source, generic and config-
urable framework. In this paper, we illustrate our new approaches on programs (control flow
automata), but most of them can be generalized to other formalisms supported in Theta,
such as hardware (transition systems). Theta already includes many of the state-of-the-art
algorithms, which allows us to use them as a baseline to evaluate our new contributions.

Experimental evaluation We conduct an experimental evaluation on roughly 800 input
models from diverse sources, including the Competition on Software Verification [9], the
Hardware Model Checking Competition [25] and industrial PLC software from CERN [40].
The advantage of using a diverse set of models is that we can identify the most suitable
application areas. Furthermore, we compare lower lever parameters of CEGAR as opposed
to most experiments in the literature [11,19,36,37], where different algorithms or tools are
compared. We formulate and address a research question related to the effectiveness and
efficiency of each of our contributions.

The results show that our new improvements perform well in general compared to the
state of the art. In some cases the differences are subtle, but there are certain subcategories
of the models for which a new algorithm yields a remarkable improvement. We also show
negative results, i.e., models where a new algorithm is less effective—we believe that such
results are also important: in a different domain these algorithms can still be successful.
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Outline of the paper The rest of the paper is organized as follows. We first introduce the
preliminaries of our work in Sect. 2. Then we describe our new contributions in Sect. 3 and
evaluate them in Sect. 4. Finally, we present related work in Sect. 5 and conclude our paper
in Sect. 6.

2 Background

This section introduces the preliminaries of our paper. First, we present control flow automata
as the modeling formalism used in our work (Sect. 2.1). Then we describe the abstraction and
CEGAR-based framework (Sect. 2.2), in which we formalize our new algorithms (Sect. 3).

We use the following notations from first-order logic (FOL) throughout our paper. Given
a set of variables V = {v1, v2, . . .} let V ′ = {v′

1, v
′
2, . . .} and V 〈i〉 = {v〈i〉

1 , v
〈i〉
2 . . .} represent

the primed and indexed version of the variables. We use V ′ to refer to successor states and
V 〈i〉 for paths. Given an expression ϕ over V ∪ V ′, let ϕ〈i〉 denote the indexed expression
obtained by replacing V and V ′ with V 〈i〉 and V 〈i+1〉 respectively in ϕ. For example, (x <

y)〈2〉 ≡ x 〈2〉 < y〈2〉 and (x ′ = x + 1)〈2〉 ≡ x 〈3〉 = x 〈2〉 + 1. Given an expression ϕ let var(ϕ)

denote the set of variables appearing in ϕ, e.g., var(x < y + 2) = {x, y}.

2.1 Control Flow Automata

In our work we describe programs using control flow automata (CFA) [13], a formalism
based on FOL variables and expressions.

Definition 1 (Control flow automata) A control flow automaton is a tuple CFA =
(V , L, l0, E) where

– V = {v1, v2, . . . , vn} is a set of variables with domains Dv1 , Dv2 , . . . , Dvn ,
– L is a set of program locations modeling the program counter,
– l0 ∈ L is the initial program location,
– E ⊆ L ×Ops× L is a set of directed edges representing the operations that are executed

when control flows from the source location to the target.

Operations op ∈ Ops are either assignments or assumptions over the variables of the
CFA. Assignments have the form v:=ϕ, where v ∈ V , ϕ is an expression of type Dv and
var(ϕ) ⊆ V . Assumptions have the form [ψ], where ψ is a predicate with var(ψ) ⊆ V . An
operation op ∈ Ops can also be regarded as a transition formula tran(op) over V ∪V ′ defining
its semantics. For an assignment operation, the transition formula is defined as tran(v:=ϕ) ≡
v′ = ϕ ∧∧

vi∈V \{v} v′
i = vi and for an assume operation it is tran([ψ]) ≡ ψ ∧∧

v∈V v′ = v.

In other words, assignments change a single variable and assumptions check a condition.1

By abusing the notation, we allow operations op ∈ Ops to appear as FOL expressions by
automatically replacing them with their semantics, i.e., tran(op).

A concrete data state c ∈ Dv1 × . . . × Dvn is a (many sorted) interpretation that assigns
a value c(v) = d ∈ Dv to each variable v ∈ V of its domain Dv . States with a prime (c′)
or an index (c〈i〉) assign values to V ′ or V 〈i〉 respectively. A concrete state (l, c) is a pair
of a location l ∈ L and a concrete data state. The set of initial states is {(l, c) | l = l0}
1 Equality constraints do not appear in the implementation, but a single static assignment form is used where
a new symbol is only introduced when a variable is assigned to.
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1 int x = 0;
2 int i = 0;
3 while (i < 100) {
4 if (x == 0) x = 1;
5 else x = 0;
6 i++;
7 }
8 assert(x <= 1);

(a) Example program with various el-
ements of structured programming.

l0

l1

l2

l3

l4 l5

l6

l7

lF lE

x := 0

i := 0

[i < 100]

[i ≥ 100]

[x = 0] [x = 0]

x := 1 x := 0

i := i + 1

[x ≤ 1] [x > 1]

(b) CFA representation of the program. The
distinguished location lE corresponds to an as-
sertion failure.

Fig. 1 A simple program and its corresponding CFA, illustrating the correspondence between elements of
structured programming (sequence, selection, repetition) and the structure of the CFA

and a transition exists between states (l, c) and (l ′, c′) if an edge (l, op, l ′) ∈ E exists with
(c, c′) |
 op.

A concrete path is a finite, alternating sequence of concrete states and operations
σ = ((l1, c1), op1, . . . , opn−1, (ln, cn)) if (li , opi , li+1) ∈ E for every 1 ≤ i < n and

(c〈1〉
1 , c〈2〉

2 , . . . , c〈n〉
n ) |
 ∧

1≤i<n op
〈i〉
i , i.e., there is a sequence of edges starting from the ini-

tial location and the interpretations satisfy the semantics of the operations. A concrete state
(l, c) is reachable if a path σ = ((l1, c1), op1, . . . , opn−1, (ln, cn)) exists with l = ln and
c = cn for some n.

A verification task is a pair (CFA, lE ) of a CFA and a distinguished error location lE ∈ L .
A verification task is safe if (lE , c) is not reachable for any c, otherwise it is unsafe.

Example A simple program and its corresponding CFA can be seen in Fig. 1. Basic elements
of structured programming (sequence, selection, repetition) are represented by the structure
of the automaton. The assertion in line 8 is mapped as a selection at location l7. If the assertion
holds, the program ends normally in the final location lF .2 Otherwise, failure is indicated
with the error location lE .

2.2 Counterexample-Guided Abstraction Refinement (CEGAR)

Counterexample-Guided Abstraction Refinement (CEGAR) [31] is a verification algorithm
that automatically constructs and refines abstractions for a given model (Fig. 2). First,
an abstraction algorithm computes an abstract reachability graph (ARG) [12] over some
abstract domain with respect to a given initial precision. The ARG is an over-approximation
of the original state space, therefore if no abstract state with the error location is reachable
then the original model is also safe [32]. However, if an abstract counterexample (a path to
an abstract state with the error location) is found, the refinement algorithm checks whether it

2 Note, that currently we are not considering termination, i.e., the final location lF does not carry any special
meaning.
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Fig. 2 Overview of a generic
Counterexample-Guided
Abstraction Refinement
(CEGAR) algorithm

Abstraction RefinementARG

Safe Unsafe

Initial precision

Expand Prune

Abstract counterexample

Refined precision

is feasible in the original model. A feasible counterexample indicates that the original model
is unsafe. Otherwise, the counterexample is spurious, the precision is adjusted and the ARG
is pruned so that the same counterexample is not encountered in the next iteration of the
abstraction.

2.2.1 Abstraction

We define abstraction based on an abstract domain D, a set of precisions Π and a transfer
function T [13].

Definition 2 (Abstract domain) An abstract domain is a tuple D = (S,�,⊥, � , expr)
where

– S is a (possibly infinite) lattice of abstract states,
– � ∈ S is the top element,
– ⊥ ∈ S is the bottom element,
– � ⊆ S × S is a partial order conforming to the lattice and
– expr : S �→ FOL is the expression function that maps an abstract state to its meaning

(the concrete data states it represents) using a FOL formula.

By abusing the notation we will allow abstract states s ∈ S to appear as FOL expressions
by automatically replacing them with their meaning, i.e., expr(s).

Elements π ∈ Π in the set of precisions define the current precision of the abstraction.
The transfer function T : S × Ops × Π �→ 2S calculates the successors of an abstract state
with respect to an operation and a target precision.

In the following, we introduce two domains, namely predicate abstraction and explicit-
value abstraction, and their extension with the locations of the CFA.

Predicate abstraction In Boolean predicate abstraction [5,41] an abstract state s ∈ S is
a Boolean combination of FOL predicates. The top and bottom elements are � ≡ true and
⊥ ≡ false respectively. The partial order corresponds to implication, i.e., s1 � s2 if s1 ⇒ s2
for s1, s2 ∈ S. The expression function is the identity function as abstract states are formulas
themselves, i.e., expr(s) = s.

A precision π ∈ Π is a set of FOL predicates that are currently tracked by the algorithm.
The result of the transfer function T (s, op, π) is the strongest Boolean combination of pred-
icates in the precision that is entailed by the source state s and the operation op. This can be
calculated by assigning a fresh propositional variable vi to each predicate pi ∈ π and enumer-
ating all satisfying assignments of the variables vi in the formula s ∧ op∧ ∧

pi∈π (vi ↔ p′
i ).

For each assignment, a conjunction of predicates is formed by taking predicates with positive
variables and the negations of predicates with negative variables. The disjunction of all such
conjunctions is the successor state s′.
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InCartesian predicate abstraction [5] an abstract state s ∈ S is a conjunction of FOL pred-
icates. Only the transfer function is defined differently than in Boolean predicate abstraction.
The transfer function yields the strongest conjunction of predicates from the precision π that
is entailed by the source state s and the operation op, i.e., T (s, op, π) = ∧

pi∈π {pi |s∧op ⇒
p′
i } ∧ ∧

pi∈π {¬pi | s ∧ op ⇒ ¬p′
i }.

Note, that when the precision is empty (π = ∅) the transfer function reduces to a feasibility
checking of the formula s∧op, resulting in true or false (for Boolean and Cartesian predicate
abstraction as well).

We represent abstract states (in both kind of abstractions) as SMT formulas. However, a
possible optimization would be to use binary decision diagrams (BDDs) for compact repre-
sentation of states and cheaper coverage checks [28].

Explicit-value abstraction In explicit-value abstraction [15] an abstract state s ∈ S is an
abstract variable assignment, mapping each variable v ∈ V to an element from its domain
extended with top and bottom values, i.e., Dv ∪{�dv ,⊥dv }. The top element � with �(v) =
�vd holds no specific value for any v ∈ V (i.e., it represents an unknown value). The bottom
element⊥with⊥(v) = ⊥vd means that no assignment is possible for any v ∈ V . The partial
order � is defined as s1 � s2 if s1(v) = s2(v) or s1(v) = ⊥dv or s2(v) = �vd for each
v ∈ V . The expression function is expr(s) ≡ true if s = �, expr(s) ≡ false if s(v) = ⊥dv

for any v ∈ V , otherwise expr(s) ≡ ∧
v∈V ,s(v)�=�dv

v = s(v).
A precision π ∈ Π is a subset of the variables π ⊆ V that is currently tracked by the

analysis. The transfer function is given based on the strongest post-operator sp : S×Ops �→
S, defining the semantics of operations under abstract variable assignments. Given an abstract
variable assignment s ∈ S and an operation op ∈ Ops, let the abstract variable assignment
ŝ = sp(s, op) denote the result of executing op from s.

If op is an assumption [ψ] then for all v ∈ V

ŝ(v) =
{⊥dv if s(u) = ⊥du for any u ∈ V or ψ/s evaluates to false,
s(v) otherwise,

(1)

whereψ/s denotes the expression obtained by substituting all variables inψ with values from
s, except top and bottom values.

Note, that if [ψ] is only satisfiable with a single value for a variable v then the successor
could be made more precise by setting ŝ(v) to this value [15]. This could be implemented
with heuristics3 for a few simple cases (e.g., [v = 1]), but a general solution requires a solver.
In our current paper we use a simple heuristic that can detect if an equality constraint has a
variable on one side and a constant on the other (e.g., [v = 1]) and later we also present a
general, configurable solution using a solver in Sect. 3.1.1.

If op is an assignment w:=ϕ then for all v ∈ V

ŝ(v) =

⎧
⎪⎪⎨

⎪⎪⎩

⊥dv if s(u) = ⊥du for any u ∈ V ,

s(v) if v �= w,

c if v = w and ϕ/s evaluates to a literal c,
�dv otherwise.

(2)

The transfer function T (s, op, π) = s′ is defined based on the strongest post-operator sp
as follows. Let ŝ = sp(s, op), then s′(v) = ŝ(v) if v ∈ π and s′(v) = �dv otherwise, for
each v ∈ V , i.e., variables not included in the precision are omitted.

Locations Locations of the CFA are usually tracked explicitly regardless of the abstract
domain used [13]. Given an abstract domain D = (S,�,⊥,� , expr) (e.g., predicate or

3 The original paper [15] does not exactly mention such heuristics.
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explicit-value abstraction), let DL = (SL ,⊥L ,� L , exprL) denote its extension with loca-
tions.4 Abstract states SL = L × S are pairs of a location l ∈ L and a state s ∈ S. The bottom
element becomes a set ⊥L = {(l,⊥) | l ∈ L} with each location and the bottom element ⊥
of D. The partial order is defined as (l1, s1) � (l2, s2) if l1 = l2 and s1 � s2. The expression
function is exprL ≡ expr, i.e., the location is not required in the expression as it is encoded
in the structure of the CFA.

The precisionsΠ are also extendedwith a location, becoming a functionΠL : L �→ Π that
maps each location to its precision. Algorithms can be configured to use a global precision,
whichmaps each location to the same precision, or a local precision, which canmap different
locations to different precisions.5

The extended transfer function TL : SL × ΠL �→ 2SL is defined as TL((l, s), πL ) =
{(l ′, s′) | (l, op, l ′) ∈ E, s′ ∈ T (s, op, πL(l ′))}, i.e., (l ′, s′) is a successor of (l, s) if there is
an edge between l and l ′ with op and s′ is a successor of s with respect to the inner transfer
function T and the precision assigned to l ′.
Abstract ReachabilityGraph We represent the abstract state space using an abstract reach-
ability graph (ARG) [12].

Definition 3 (Abstract Reachability Graph) An abstract reachability graph is a tuple ARG =
(N , E,C) where

– N is the set of nodes, each corresponding to an abstract state in some domain with
locations DL .

– E ⊆ N × Ops × N is a set of directed edges labeled with operations. An edge
(l1, s1, op, l2, s2) ∈ E is present if (l2, s2) is a successor of (l1, s1) with op.

– C ⊆ S × S is the set of covered-by edges. A covered-by edge (l1, s1, l2, s2) ∈ C is
present if (l1, s1) � (l2, s2).

A node (l, s) ∈ N is expanded if all of its successors are included in the ARGwith respect
to the transfer function; covered if it has an outgoing covered-by edge (l, s, l ′, s′) ∈ C for
some (l ′, s′) ∈ N ; and unsafe if l = lE . A node that is not expanded, covered or unsafe is
called unmarked. An ARG is unsafe if there is at least one unsafe node and complete if no
nodes are unmarked.

An abstract path σ = ((l1, s1), op1, (l2, s2), op2, . . . , opn−1, (ln, sn)) is an alternating
sequence of abstract states and operations. An abstract path is feasible if a corresponding con-
crete path ((l1, c1), op1, (l2, c2), op2, . . . , opn−1, (ln, cn)) exists, where each ci is mapped
to si , i.e., ci |
 expr(si ). In practice, this can be decided by querying an SMT solver [20]
with the formula6 s〈1〉

1 ∧ op〈1〉
1 ∧ s〈2〉

2 ∧ op〈2〉
2 ∧ . . . ∧ op〈n−1〉

n−1 ∧ s〈n〉
n . A satisfying assignment

to this formula corresponds to a concrete path.

Abstraction algorithm Based on the concepts defined above, Algorithm 1 presents a basic
procedure for abstraction (based on the CPA concept [13]). The input of the abstraction is a
partially constructed ARG (with possibly unmarked states), an error location lE , an abstract
domain DL with locations, a current precision πL and a transfer function TL . In the first

4 Note, that technically DL is not a domain as for example it has no top element. While it is possible to define
a generic product domain with locations [13], we rather use locations as a “wrapper” to make our presentation
simpler.
5 In lazy abstraction [47] the precision can be different even for different instances of the same location in the
ARG.
6 In software model checking s1 is usually the top element because the program starts with all variables
uninitialized. However, in a more general setting, transition systems can have an arbitrary formula describing
the initial states [43].
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iteration, the ARG only contains the initial state S0 = {(l0,�)} and the precision πL is
usually empty, i.e., no predicates or variables are tracked.

Algorithm 1: Abstraction algorithm.
Input : ARG = (N , E,C): partially constructed abstract reachability graph

lE : error location
DL = (SL , ⊥L , � L , exprL ): abstract domain with locations
πL : current precision
TL : transfer function with locations

Output : (safe or unsafe, ARG)
1 reached ← N
2 waitlist ← unmarked nodes from N
3 while waitlist �= ∅ do
4 (l, s) ← remove from waitlist
5 if l = lE then
6 // (l, s) is unsafe
7 return (unsafe, ARG)
8 end
9 if (l, s) � (l ′, s′) for some (l ′, s′) ∈ reached then

10 // (l, s) is covered
11 C ← C ∪ {(l, s, l ′, s′)} // Add covered-by edge
12 else
13 // (l, s) is expanded
14 foreach (l ′, s′) ∈ TL ((l, s), πL )\⊥L do
15 reached ← reached ∪ {(l ′, s′)}
16 waitlist ← waitlist ∪ {(l ′, s′)}
17 N ← N ∪ {(l ′, s′)} // Add new node
18 E ← E ∪ {(l, s, l ′, s′)} // Add successor edge
19 end
20 end
21 end
22 return (safe, ARG)

The algorithm initializes the reached set with all states from the ARG and the waitlist with
all unmarked states. The algorithm removes and processes states from the waitlist based on
some search strategy (e.g., BFS or DFS). If the current state corresponds to the error location,
the abstraction terminates with an unsafe result and an unsafe ARG. Otherwise, we check
if some already reached state covers the current with respect to the partial order. If not, we
calculate successors with the transfer function making the node expanded.

If there are no more nodes to explore and the error location was not found, the abstraction
concludes with a safe result and a complete ARG. Note that due to its construction, the ARG
without covered-by edges is actually a tree.

Example Figure 3a shows the ARG for the program in Fig. 1 using predicate abstraction
with a single predicate πL(l) = {i < 100} for each location l ∈ L . Nodes are annotated with
the location and the predicate (or its negation). Edges are marked with the operations from
the CFA. Dashed arrows represent covered-by edges. It can be seen that an abstract state with
the error location lE is reachable, thus abstraction concludes with an unsafe result. However,
using a different set of predicates, e.g., π ′

L(l) = {x ≤ 1} would be able to prove the safety
of the program.

Figure 3b shows the ARG for the same program using explicit-value abstraction with only
tracking the variable x , i.e., πL(l) = {x} for all l ∈ L . Nodes are annotated with the location
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l0

l1

l2, i < 100

l3, i < 100

l4, i < 100 l5, i < 100

l6, i < 100 l6, i < 100

l2

l3, i < 100 l7, ¬(i < 100)

lF , ¬(i < 100) lE , ¬(i < 100)

x := 0

i := 0

[i < 100]

[x = 0] [x = 0]

x := 1 x := 0

i := i + 1

[i < 100]
[i ≥ 100]

[x ≤ 1] [x > 1]

sion πL(l) = {i < 100} for each l ∈ L. Using
this precision the ARG is unsafe because a state
with lE is reachable.

l0, x =

l1, x = 0

l2, x = 0 l7, x = 0

lF , x = 0l3, x = 0

l4, x = 0

l6, x = 1

l2, x = 1 l7, x = 1

lF , x = 1l3, x = 1

l5, x = 1

l6, x = 0

l2, x = 0

x := 0

i := 0 [i ≥ 100]

[x ≤ 1][i < 100]

[x = 0]

x := 1

i := i + 1 [i ≥ 100]

[x ≤ 1][i < 100]

[x = 0]

x := 0

i := i + 1

(a) ARG for predicate abstraction with preci- (b) ARG for explicit-value abstraction
with precision πL(l) = {x} for each l ∈ L.
Using this precision, the ARG is safe as no
state with lE is reachable.

Fig. 3 Example ARGs for the program in Fig. 1. Nodes are represented by rectangles, successors by solid
arrows and coverage by dashed arrows

and the value of x . It can be seen that no abstract state is reachable in the ARG with the error
location lE , therefore the original program is safe. Also note that tracking the loop variable
i is not necessary, hence reducing the size of the ARG.

2.2.2 Refinement

Feasibility check Algorithm 2 presents the refinement procedure. The input is an
unsafe ARG and the current precision πL . Refinement starts with extracting a path σ =
((l1, s1), op1, (l2, s2), op2, . . . , opn−1, (ln, sn)) to the unsafe state (i.e., ln = lE ) for feasibil-
ity checking. A feasible path corresponds to a concrete path (in the original program) leading
to the error location, which terminates refinement with an unsafe result. In this case the
precision and the ARG is returned unmodified. Otherwise, an interpolant [55] is calculated
from the infeasible path σ that holds information for the further steps of refinement.

Definition 4 (Binary interpolant) For a pair of inconsistent formulas A and B, an interpolant
I is a formula such that

– A implies I ,
– I ∧ B is unsatisfiable,
– var(I ) ⊆ var(A) ∩ var(B).
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A binary interpolant for an infeasible path σ can be calculated by defining A ≡ s〈1〉
1 ∧op〈1〉

1 ∧
. . . ∧ op〈i−1〉

i−1 ∧ s〈i〉
i and B ≡ op〈i〉

i ∧ s〈i+1〉
i+1 , where i corresponds to the longest prefix of σ

that is still feasible.
Binary interpolants can be generalized to sequence interpolants [63] in the following way.

Definition 5 (Sequence interpolant) For a sequence of inconsistent formulas A1, . . . , An , a
sequence interpolant I0, . . . , In is a sequence of formulas such that

– I0 = true, In = false,
– Ii ∧ Ai+1 implies Ii+1 for 0 ≤ i < n,
– var(Ii ) ⊆ (var(A1) ∪ . . . ∪ var(Ai )) ∩ (var(Ai+1 ∪ . . . ∪ var(An))) for 1 ≤ i < n.

A sequence interpolant for a path σ can be calculated by defining A1 ≡ s〈1〉
1 and Ai ≡

op〈i〉
i ∧ s〈i+1〉

i+1 for 1 ≤ i < n. A binary interpolant Ik corresponding to a feasible prefix with
length k can also be written as a sequence interpolant where Ii ≡ true for i < k, Ii ≡ Ik for
i = k and Ii ≡ false for i > k. Note that each element Ii of the sequence corresponds to a
single state (li , si ) in the counterexample σ , except I0. Therefore, I0 is dropped and variables
V 〈i〉 are replaced with V before using the formulas for refinement.

Algorithm 2: Refinement algorithm.
Input : ARG = (N , E,C): unsafe abstract reachability graph

lE : error location
πL : current precision

Output : (unsafe or spurious, π ′
L , ARG)

1 σ = ((l1, s1), op1, . . . , opn−1, (ln , sn)) ← path to unsafe node (with lE ) from ARG

2 if s〈1〉1 ∧ op〈1〉
1 ∧ . . . ∧ op〈n−1〉

n−1 ∧ s〈n〉
n is feasible then return (unsafe, πL , ARG);

3 else
4 (I1, . . . , In) ← get interpolant for σ

5 (π1, . . . , πn) ← map interpolant (I1, . . . , In) to precisions
6 if πL is local then
7 π ′

L (li ) = πL (li ) ∪ πi if li is in σ and π ′
L (li ) = πL (li ) otherwise

8 else
9 π ′

L (l) = πL (l) ∪ ⋃
1≤i≤n πi for each l ∈ L

10 end
11 i ← lowest index for which Ii /∈ {true, false}
12 Ni ← all nodes in the subtree rooted at (li , si )
13 remove nodes in Ni from N
14 remove edges connected to any node in Ni from E and from C
15 return (spurious, π ′

L , ARG)
16 end

Precision adjustment The precision is adjusted by first mapping the formulas of the inter-
polant I1, I2, . . . , In to a sequence of new precisions π1, π2, . . . , πn (in line 5). In predicate
abstraction the formulas in the interpolant can simply be used as new predicates, i.e., πi = Ii ,
whereas in the explicit domain variables of these formulas are extracted,7 i.e., πi = var(Ii ).
Then, the new precisionπ ′

L is updated in the followingway (in lines 6–10). IfπL is local, then
π ′
L(li ) is calculated by joining the new precision for each location li in the counterexample

7 Explicit-value analysis [15] originally performs interpolation with the strongest post operator and constraint
sequences. We use an SMT-based approach to generalize our algorithms for transition systems [43], where
the transition relation is not limited to assignments and assumptions.
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to its previous precision. Otherwise if πL is global, then π ′
L(l) is a union of the old and new

precisions for each location l ∈ L .

Pruning The final step of the refinement is to prune the ARG back until the earliest state
where actual refinement occurred, i.e., where the precision changed (lazy abstraction [47]).
Formally, this is the node (li , si ) with lowest index 1 ≤ i < n, for which Ii /∈ {true, false}.
Pruning is done by removing the subtree rooted at (li , si ), including all the successor and
covered-by edges associated with the nodes of the subtree. Note, that during this process
the parent of (li , si ) becomes unmarked (not expanded anymore) and nodes might also get
unmarked due to the removal of covered-by edges. Thus, the abstraction algorithm can
continue constructing the ARG in the next iteration.

2.2.3 CEGAR Loop

Algorithm 3 connects the abstraction (Algorithm 1) and refinement (Algorithm 2) methods
into a CEGAR loop (Fig. 2). The input of the algorithm is an initial location l0, an error
location lE , an abstract domain DL with locations, an initial (usually empty) precision πL0

and a transfer function TL .

Algorithm 3: CEGAR loop.
Input : l0: initial location

lE : error location
DL = (SL , ⊥L , � L , exprL ): abstract domain with locations
πL0 : initial precision
TL : transfer function with locations

Output : safe or unsafe
1 ARG ← (N ← (l0, �), E ← ∅,C ← ∅)

2 πL ← πL0
3 while true do
4 result,ARG ← Abstraction(ARG, lE , DL , πL , TL )
5 if result = safe then return safe;
6 else
7 result, πL ,ARG ← Refinement(ARG, lE , πL )

8 if result = unsafe then return unsafe
9 end

10 end

First, an ARG is initialized with a single node corresponding to the initial location l0 and
the top element of the domain. The current precision πL is also set to the initial precision πL0 .
Then the algorithm iterates between performing abstraction and refinement until abstraction
concludes with a safe result, or refinement confirms a real counterexample.

3 Algorithmic Improvements

In this section we introduce several improvements both related to the abstraction (Sect. 3.1)
and the refinement phase of the algorithm (Sect. 3.2). For abstraction, we define a modified
version of the explicit domain where a configurable number of successors can be enumerated
(Sect. 3.1.1).We also propose a new search strategy based on the syntactical distance from the
error location (Sect. 3.1.2). Furthermore, we describe different ways of splitting predicates
to control the granularity of predicate abstraction (Sect. 3.1.3).
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For refinement, we present a novel interpolation strategy based on backward reachability
(Sect. 3.2.1). We also introduce a method to use multiple counterexamples for refinement
(Sect. 3.2.2). Finally, we define an approach to select from multiple refinements for a single
counterexample (Sect. 3.2.3).

3.1 Abstraction

3.1.1 Configurable Explicit Domain

Motivation If an expression cannot be evaluated during successor computation in explicit-
value abstraction [15] (e.g., due to top elements in abstract states), it is treated and propagated
as the top element (i.e., an arbitrary value). In many cases, this is a desirable behavior, which
can for example, avoid explicitly enumerating all possibilities for input variables that can
indeed take any value from their domain. However, it is also possible that this behavior
prevents successful verification.

Example Consider the program on the left side of Fig. 4. The program is safe, because
0 < x ∧ x < 5 and x = 0 cannot hold at the same time. However, explicit-value abstraction
fails to prove safety of this program. Even if x is tracked by the analysis, its value is unknown
(x = �) due to the nondeterministic assignment in line 1. The assumption in line 2 is
satisfiable, but with multiple values for x . Therefore, the algorithm continues to line 3 with
x = �, where the assumption is again satisfiable (with x = 0), reaching the assertion
violation. At this point, refinement returns the same precision (there are no more variables
to be tracked), thus the same abstraction is built again and the algorithm fails to prove the
safety of the program.

The problem is that this kind of abstraction can only learn the fact (0 < x ∧ x < 5)
by enumerating all possibilities for x . This is actually feasible in this case since there are
only 4 different values (successors) for x and from each of them, the assumption x = 0
is unsatisfiable, proving the safety of the program. Similar examples include variables with
finite domains (e.g., Booleans) or modulo operations (e.g., x :=y % 3).

However, explicitly enumerating all values for a variable is often impractical or even
impossible due to the large (or infinite) number of possible values. As an example, consider
now the program on the right side of Fig. 4. This program is also safe, because x �= 0 and
x = 0 cannot hold at the same time. In this case however, enumerating all values for x such
that x �= 0 is clearly impractical.

Proposed approach Motivated by the examples above, we propose an extension of the
explicit-value domain [15],where in case of a non-deterministic expressionwe allow a limited
number of successors to be enumerated explicitly. If the limit is exceeded, the algorithm
works as previously (treating the result as unknown). This way we can still avoid state space

1 int x = nondet ();
2 if (0 < x && x < 5) {
3 if (x == 0) {
4 assert(false);
5 }
6 }

1 int x = nondet ();
2 if (x != 0) {
3 if (x == 0) {
4 assert(false);
5 }
6 }

Fig. 4 Example programs where safety cannot be proven with explicit-value abstraction due to unknown (top)
values
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explosion, but can also solve certain problems that could not be handled previously with
traditional explicit-value analysis.

First, we define a modified version of the strongest post-operator (denoted by sp′), which
distinguishes unknown evaluation results from top elements (introduced deliberately by the
abstraction). Given an abstract variable assignment s ∈ S and an operation op ∈ Ops, let
the resulting abstract variable assignment ŝ = sp′(s, op) be defined as follows. If op is an
assumption [ψ] then for all v ∈ V

ŝ(v) =

⎧
⎪⎪⎨

⎪⎪⎩

⊥dv if s(u) = ⊥du for any u ∈ V ,

⊥dv if ψ/s evaluates to false,
s(v) if ψ/s evaluates to true,
unknown otherwise.

(3)

If op is an assignment w:=ϕ then for all v ∈ V

ŝ(v) =

⎧
⎪⎪⎨

⎪⎪⎩

⊥dv if s(u) = ⊥du for any u ∈ V ,

s(v) if v �= w,

c if v = w and ϕ/s evaluates to a literal c,
unknown otherwise.

(4)

Thedifferencebetween sp and sp′ is that if sp′ cannot evaluate an assumptionor an assignment
to a literal then it is treated as a special unknown value.

Our extended, configurable transfer function Tk(s, op, π)works as follows (Algorithm 4).
It first uses sp′ to compute the successor abstract variable assignment of s with respect to op.
If an unknown value is encountered, we use an SMT solver to query satisfying assignments
of the primed version of variables in π for the expression s ∧ op with the given limit k. This
is done with a feedback loop in the following way. We first query a satisfying assignment
for the formula s ∧ op and project it to only include variables in π ′. Then we add the
negation of the assignment as a formula to the solver and repeat this process until the formula
becomes unsatisfiable or we exceed k. Note, that if there are multiple variables in π ′, the
limit k corresponds to all possible combinations and not to each individual variable separately
(which would allow |π ′|k total assignments). For example, {(x = 1, y = 5), (x = 1, y =
6), (x = 2, y = 6)} counts as 3 assignments, even though both x and y can only take 2
different values.

If there are no more than k possible assignments, we treat all of them as a new successor
state as if it was returned by sp′. Otherwise, if there are more than k assignments, we stop
enumerating them and fall back to using sp instead.

Finally, we perform abstraction by setting the non-tracked variables v /∈ π to top elements
in the successors (as it is done in plain explicit-value abstraction). Note that as a special case
k = 1 is similar to traditional explicit-value analysis because each state has at most one
successor. However, if an expression cannot be evaluated (even using heuristics), we use an
SMT solver which makes the analysis more expensive, but also more precise.

Discussion The advantage of this method is that k can be tuned to reduce the number of
unknown values while still avoiding state space explosion. For the example on the left side
of Fig. 4, any k with k ≥ 4 would work. Currently we experimented with different values
for k from a fixed set of values (Sect. 4.2.1). However, it would also be possible to use
heuristics for automatically selecting or even dynamically adjusting k during the analysis.
Such heuristics could be based on the domain of variables (e.g., Booleans, bounded integers)
or the operations (e.g., modulo arithmetic). Furthermore, different k values could be assigned
to different locations l ∈ L in the CFA similarly to a local precision.
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Algorithm 4: Configurable transfer function Tk(s, op, π).
Input : k: bound for explicitly enumerating successors

s: source state
op: operation
π : target precision

Output : S′ ⊆ 2S : set of successor states
1 ŝ ← sp′(s, op)
2 if ŝ contains any unknown value then
3 S′ ← query at most k assignments of variables in π ′ for the formula s ∧ op
4 if more than k assignments are possible then S′ ← {sp(s, op)}
5 else
6 S′ ← {ŝ}
7 end
8 foreach s′ ∈ S′ do
9 s′(v) = �Dv for each v ∈ V \π

10 end
11 return S′

Note, that since we are enumerating k successors in each step, after n steps there could
be kn states in the worst case. However, this can only happen if there is a non-deterministic
assignment for the variables in each step. Otherwise, we know the exact values of each
variable after the first step and we can evaluate every expression in the following steps in
exactly one way.

Operations in the CFA have their corresponding FOL expressions, therefore an SMT
solver can be used out-of-the box to enumerate successors. However, our algorithm can work
with other strategies (known e.g., from explicit model checkers [49]) as long as they can
enumerate successors for a source state and an operation. Furthermore, since we only need
the actual successors if there are no more than k of them, as an optimization, heuristics could
be developed that can tell if an expression has more than k satisfying assignments without
actually enumerating them.

3.1.2 Error Location-Based Search

Motivation Recall that the abstract state space can be explored using different search strate-
gies, depending on how theARGnodes in thewaitlist are ordered (Algorithm1). For example,
breadth and depth-first search (BFS and DFS) orders nodes based on their depth ascending
and descending respectively. These basic strategies however, use no information from the
input verification task.

Proposed approach To focus the search more effectively, we propose a strategy based
on the syntactical distance from the error location in the control flow automaton. Given a
verification task (CFA, lE ) we define the distance dE : L �→ N of each location l ∈ L to the
error location lE as the length of the shortest directed path from l to lE without considering
the operations. Note that dE (l) is an under-approximation of the actual distance between l and
lE in the ARG since shorter paths are not possible, but some operations might be infeasible,
making the actual (feasible) distance longer. The distances can be calculated (and stored for
later queries) at the beginning of the analysis using a backward breadth-first search from the
error location.8 Then from each node (l, s) on the waitlist, we simply remove one where

8 Locations that are not reachable backward from the error location have a distance of infinity. However, using
backward slicing [59] as a preprocessing step removes such locations.
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l0 6

l15 l2 5

l3 4

l43 l5 3

l6 2

l71 l8 1

lE 0

ponential number of steps to reach lE .

l0 3

l12

l23

l3 4

l4 3

l5 2

l6 1

lE 0

(a)Example where BFS would need an ex- (b) Example where DFS may unfold the
loop l1, l2 many times.

Fig. 5 Examples for error location-based search. Numbers next to the locations denote their distance form lE

dE (l) is minimal. However, some examples highlight that loops might trick this approach as
well. Therefore, we also experiment with metrics based on a weighted sum of the distance
to the error location and the depth of the current node in the ARG.

Example Consider the CFA in Fig. 5a. The distance to the error location lE is written next
to each location. For simplicity, operations are omitted from the edges. Furthermore, suppose
that most of the paths are actually feasible at the current level of abstraction, as otherwise all
search strategies perform similarly. It can be seen that the number of paths to the error location
scales exponentiallywith the number of branches (if this diamond-shaped pattern is repeated).
Therefore, a traditionalBFS approachwould cause an exponential execution time.DFSwould
however, find the first path to lE quickly for example by exploring l0, l1, l3, l4, l6, l7, lE in
this order. The error location-based approach would act similarly, as it first starts with l0,
discovering its successors l1 and l2 both with a distance of 5. Then, by picking for example
l1, its only successor is l3 with a distance of 4. Therefore, the algorithm will pick l3 (with
dE (l3) = 4) next instead of l2 (with dE (l2) = 5), similarly to DFS.

Consider now the CFA in Fig. 5b. DFS can easily fail for this case if it is feasible to unfold
the loop l0, l1, l2, l1, l2, l1, l2 . . . many times. However, the error location-based search may
also fail if the edge from l1 to l6 is not feasible. In this case, the algorithm would also iterate
between l1 and l2 (as long as possible), since l3 on the other path has a greater distance. A
possible way to overcome this problem is to use a combined metric based on the depth of the
current node in the ARG (denoted by dD) and the distance to the error location.

Discussion Simply summing the distance and the depth causes each node corresponding
to Fig. 5a to be equal in the ordering. Hence, it is reasonable to use a weighted metric
wD ·dD(s, l)+wE ·dE (l). Assigning a greater weight to dE can guide the search effectively
based on the CFA, while a nonzero weight for wD can help to avoid unfolding loops too
many times. Currently, we experimented with the following five different configurations for
the weights (Sect. 4.2.2).

– (wE = 0, wD = 1) is a traditional breadth-first search.
– (wE = 0, wD = −1) is a traditional depth-first search.
– (wE = 1, wD = 0) considers only the distance from the error location.
– (wE = 2, wD = 1) combines the distance from the error with the depth (BFS), but with

less weight.
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– (wE = 1, wD = 2) also uses depth and the distance from the error but is biased towards
depth.

Thefirst three configurations serve as a baseline,while the last twodemonstrate combinations.
A possible future work could be to experiment with further values for the weights or with
iteration strategies known from abstract interpretation [21].

Remark One might wonder about the usefulness of this approach on safe verification tasks
(where no concrete state with lE is reachable). Even for such tasks, the intermediate iterations
of CEGAR still encounter (spurious) counterexamples. In this case the error location-based
search can help to find these counterexamples and converge faster.

3.1.3 Splitting Predicates

Motivation Predicates are the atomic units of predicate abstraction, i.e., each abstract state
is labeled with some Boolean combination of predicates pi ∈ π from the current precision π .
Cartesian predicate abstraction yields a conjunction (e.g., p1 ∧¬p2 ∧ p3), whereas Boolean
predicate abstraction can give any combination (using a disjunction over conjunctions, e.g.,
p1 ∧ ¬p2 ∨ p2 ∧ p3). However, predicates themselves can also correspond to an arbitrary
formula over some atoms, e.g., p ≡ (0 < x)∧ (y < 5)∨ (x < 5). In such cases we can treat
a complex predicate both as a whole [19] or we can also split it into smaller parts such as its
atoms [46]. This can influence both the precision of abstraction and the performance of the
algorithm. For example, suppose that we want to represent a state a ∧ ¬b∨ ¬a ∧ b, where a
and b are some atoms. If we only consider the atoms {a, b} as the precision, their strongest
conjunction implied by the state is true, i.e., Cartesian abstraction might not be precise
enough. While Boolean predicate abstraction is able to faithfully reconstruct the original
state, the number of possibly enumerated models grow exponentially with the number of
atomic predicates. In contrast, keeping predicates as a whole may yield a slower convergence
as subformulas cannot be reused.

Proposed approach New predicates are introduced during abstraction refinement using
interpolation. However, interpolation procedures may return complex formulas, which are
specific to a single counterexample. A possible way to generalize such formulas is to split
complex predicates into smaller parts before adding them to the refined precision. Formally,
we define different splitting functions split : FOL �→ 2FOL that map a FOL formula to a set
of formulas.

We experimented with the following configurations, which give different granularities for
the precision (Sect. 4.2.3).

– atoms(ϕ) splits predicates to their atoms, which is the finest granularity that can be
achieved syntactically.9 For example, atoms(p1 ∧ (p2 ∨ ¬p3)) = {p1, p2, p3}.

– conjuncts(ϕ) is a middle ground that splits predicates to their conjuncts. For example,
conjuncts(p1 ∧ (p2 ∨ ¬p3)) = {p1, (p2 ∨ ¬p3)}.

– whole(ϕ) ≡ ϕ, i.e., the identity function keeps predicates as awhole, which is the coarsest
granularity. It is motivated by Boolean variables, where the atoms are the variables
themselves and the valuable information learned by the interpolation procedure lies in
the logical connections.

9 Even finer granularity can be achieved by deriving equivalent predicates, e.g., splitting x = 0 to x ≤ 0 and
x ≥ 0.
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(a) Spurious counterexample. (b) After one step of forward (c) Final result.

Fig. 6 Spurious counterexample and its refinement

A similar idea can be applied to generalize Boolean predicate abstraction, where the
Boolean combination of predicates is represented by a single state as a disjunction over
conjunctions of predicates. We define a modified version of Boolean predicate abstraction
called splitting abstraction where this disjunction is split into its elements, which are then
treated as separate abstract states (separate nodes in the ARG). This allows us to represent
successor and coverage relations in a finer way. For example, the abstract state s = (p1 ∧
¬p2) ∨ (p2 ∧ p3) is split into s1 = (p1 ∧ ¬p2) and s2 = (p2 ∧ p3). Then it can be possible
that although s cannot be covered, but s1 can be and we only have to continue with s2.

3.2 Refinement

3.2.1 Backward Binary Interpolation

Motivation The binary interpolation algorithm presented in Sect. 2.2.2 defines the two
formulas A and B based on the longest feasible prefix. This yields an interpolant that refines
the last abstract state on the counterexample that can still be reached in the concrete program
(starting from the initial state). Therefore, from this point on we will refer to this strategy
as forward binary interpolation. We observed that this strategy gives poor performance in
many cases (Sect. 4.2.4).

Example Consider the abstract counterexample in Fig. 6a. Rectangles are abstract states, with
dots representing concrete statesmapped to them. The initial state is s1 and the erroneous state
is s5. Edges denote transitions in the concrete and abstract state space. Due to the existential
property of abstraction, an abstract transition exists between two abstract states if at least one
concrete transition exists between concrete states mapped to them [32].

It can be seen that the longest feasible prefix is (s1, op1, s2, op2, s3, op3, s4). Forward
binary interpolation would therefore set A ≡ s〈1〉

1 ∧ op〈1〉
1 ∧ . . . ∧ op〈3〉

3 ∧ s〈4〉
4 and B ≡

op〈4〉
4 ∧ s〈5〉

5 . This gives an interpolant corresponding to s4, pruning the ARG back until
s3. Continuing from s3 with the new precision yields s41, s42, s51 and s52 (instead of s4
and s5), as seen in Fig. 6b. However, s51 is still reachable in the abstract state space (via
s1, s2, s3, s41, s51), but the counterexample is only feasible until s3 now. The algorithm needs
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to perform two additional refinements until s3 and s2 is refined, and the ARG is pruned back
until s1 (Fig. 6c). All spurious behavior is now eliminated as neither s51 nor s52 is reachable.
However, this requires many iterations for the same counterexample, and a potentially larger
abstract state space in each round due to the increasing precision.

We observed such situations when a variable is assigned at a certain point of the path (e.g,
op1 ≡ x :=0), but only contradicts a guard later (e.g. op4 ≡ [x > 5]). Although the path is
feasible until the guard, in these cases the root cause of the counterexample being spurious
traces back to the assignment of the variable.

Proposed approach To alleviate the previous problems we define a novel refinement
strategy that is based on the longest feasible suffix of the counterexample. We call this
strategy backward binary interpolation as it starts with the erroneous state and progresses
backward as long as the suffix is feasible. Formally, let σ = (s1, op1, . . . , opn−1, sn) be
an abstract counterexample and let 1 < i ≤ n be the lowest index for which the suf-
fix (si , opi , . . . , opn−1, sn) is feasible. Then we define a backward binary interpolant as

A ≡ s〈i〉
i ∧ op〈i〉

i ∧ . . . ∧ op〈n−1〉
n−1 ∧ s〈n〉

n and B ≡ s〈i−1〉
i−1 ∧ op〈i−1〉

i−1 . In other words, A encodes
the feasible suffix and B encodes the preceding transition thatmakes it infeasible. The formula
A ∧ B is unsatisfiable, otherwise a longer feasible suffix would exist. Similarly to forward
binary interpolation, the only common variables in A and B correspond to si . Therefore,
indexes can be removed from the interpolant I .

As an example, consider Fig. 6a again. The longest feasible suffix is (s2, op2, s3,

op3, s4, op4, s5). Thus, the interpolation formulas are A ≡ s〈2〉
2 ∧ op〈2〉

2 ∧ . . . ∧ op〈4〉
4 ∧ s〈5〉

5

and B ≡ s〈1〉
1 ∧ op〈1〉

1 . The resulting interpolant I corresponds to s2 and the ARG is pruned
back until s1 (Fig. 6c) in a single step (assuming a global precision).
Discussion We motivated backward binary interpolation by comparing it to forward inter-
polation and showing that it can trace back the root cause in fewer steps. In software model
checking however, sequence interpolation is the standard technique. Hence we also com-
pare our backward interpolation approach to sequence interpolation (Sect. 4.2.4). A potential
advantage of backward interpolation is that it can be more compact than sequence inter-
polation (which could yield a formula for each location along the counterexample, making
the algorithm prune a larger portion of the state space). Backward search-based strategies
also proved themselves efficient in the context of other algorithms, such as Impact [3] or
Newton [38].

3.2.2 Multiple Counterexamples for Refinement

Motivation Most approaches in the literature stop exploring the abstract state space and
apply refinement as soon as the first counterexample is encountered. Although collecting
more counterexamples adds an overhead to abstraction, better refinements may be possible
as more information is available. Altogether, this could reduce the number of iterations and
increase the efficiency of the algorithm.

Proposed approach We modified the abstraction algorithm (Algorithm 1) so that it does
not return the first counterexample (by removing line 7), but keeps exploring the state space.
The algorithm can be configured (by adding a condition to the loop header in line 3) to stop
after a given number of erroneous states or to explore all of them.

If at least one of the counterexamples is feasible, then the algorithm can terminate with an
unsafe result. However, if all of them are infeasible, there are many possible ways to use the
information for refinement. We propose a technique where we first calculate a refinement for
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each counterexample and derive a minimal set required to eliminate all spurious behavior.
Then, we update the precision and apply pruning based on this minimal set.

Our approach is formalized in Algorithm 5. First, we extract paths Σ leading to states
with the error location lE from the ARG. If any path σi ∈ Σ is feasible, then the algorithm
terminates with an unsafe result. Otherwise, we calculate an interpolant Itpi for each path
σi . Given a path σi and its corresponding interpolant Itpi , we can determine the first state
sri ∈ σi of the path that actually needs refinement (i.e., the first state where the interpolant is
not true or false). These states correspond to pruning points in the ARG.

Algorithm 5: Refinement algorithm for multiple counterexamples.
Input : ARG: abstract reachability graph with multiple counterexamples

πL : current precision
Output : unsafe or (spurious, π ′

L )
1 Σ = (σ1, . . . , σn) ← extract paths to states with lE from ARG
2 if any path σi ∈ Σ is feasible then return unsafe;
3 else
4 π ′

L = πL
5 Itps = (Itp1, . . . , Itpn) ← get interpolant for each σi ∈ Σ

6 Sr = (sr1 , . . . , srn ) ← calculate first refined state for each σi ∈ Σ

7 foreach σi ∈ Σ do
8 if no state in Sr is a proper ancestor of sri in the ARG then
9 (πi1 , . . . , πik ) ← map interpolant Itpi = (Ii1 , . . . , Iik ) to precisions

10 if πL is local then
11 π ′

L (li j ) = π ′
L (li j ) ∪ πi j for each location li j in σi

12 else
13 π ′

L (l) = π ′
L (l) ∪ ⋃

1≤ j≤k πi j for each l ∈ L

14 end
15 prune ARG back to sri
16 end
17 end
18 return (spurious, π ′

L )
19 end

Then, we determine theminimal set of counterexamples to be refined in the followingway.
For each path σi with its first state to be refined sri , we check if any other state in Sr is a proper
ancestor10 of sri in the ARG.

11 If such state exists, it means that the other path shares its prefix
with the currently examined path, and will need refinement earlier. That refinement will add
new predicates and prune the ARG earlier, possibly eliminating the current counterexample
as well. Therefore, the current path is skipped for now (lazy refinement).

For each path that is not skipped, we map the interpolant to a new precision and join it to
the old one, taking into account whether the precision is local or global. Finally, we return a
spurious result and the new precision π ′

L .

Example Consider the ARG (without covered-by edges) in Fig. 7. There are four coun-
terexamples σ1, . . . , σ4 in the ARG leading to the abstract states (s1, lE ), . . . , (s4, lE ). The
first states to be refined are denoted with a gray background. In this example the minimal
set of counterexamples is {σ2, σ3}, because sr2 and sr3 are proper ancestors of sr1 and sr4
respectively. Refining σ2 and σ3 will therefore, eliminate all spurious behavior from the cur-
rent ARG. Note, that in the next iteration (s1, lE ) and (s4, lE ) might still be reached again

10 Proper ancestors of a node are its ancestors excluding the node itself.
11 Recall that without the covered-by edges, the ARG is a tree.
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Fig. 7 Example of refining
multiple counterexamples

sr2 sr3

sr1

(s2, lE)

sr4

(s1, lE) (s4, lE)

(s3, lE)

if the predicates for σ2 and σ3 were not sufficient. In this case these counterexamples are
eliminated in the next iteration.

Discussion Our approach for multiple counterexamples can work with any refinement strat-
egy. In our current experiment (Sect. 4.2.5) we use sequence interpolation. However, it would
even be possible to use different strategies for the different counterexamples as opposed to
existing approaches that use multiple counterexamples (e.g., DAG interpolation [1] or global
refinement [54]).

Currently we have a single error location in the CFA so each counterexample leads to the
same location on a different path. However, our approach does not rely on this, and would
work the same way even if the collected counterexamples lead to different locations.

The presented algorithm handles all counterexamples in the solver separately by reusing
existing interpolation modules. A possible optimization would be to use the incremental API
of SMT solvers by pushing the first counterexample, performing the check and interpolation
and then popping only back to the common prefix of the current and next counterexample,
and so on.

3.2.3 Multiple Refinements for a Counterexample

Motivation In Sect. 3.2.1 we presented a novel interpolation approach based on backward
search, which performs better than the traditional forward search method according to our
experiments (Sect. 4.2.4). Using a portfolio of refinements can combine the advantages of
different methods [16,45]. Therefore, in this section we suggest strategies that calculate both
forward and backward interpolants and pick the “better” one based on certain heuristics.

Proposed approach The heuristics that we currently introduce are based on the index
of pruning. Recall that given an interpolant in its general form I0, . . . , In , the ARG is
pruned back until actual refinement occurred, i.e., until the lowest index 1 ≤ i < n with
Ii /∈ {true, false}. This corresponds to the longest feasible prefix and suffix for forward and
backward binary interpolants respectively.

Two basic heuristics that we experiment with (Sect. 4.2.6) are to select the interpolant with
the minimal or maximal prune index. These heuristics prune the ARG as close as possible to
the initial state or the error state respectively.

Example Consider Fig. 8 with two possible abstract counterexamples. In case of Fig. 8a
forward and backward interpolation would prune until s4 and s2 respectively. For the coun-
terexample in Fig. 8b pruning would be the other way around. However, the minimal and
maximal prune index strategies would prune until s2 and s4 respectively in both cases.
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s1 s2 s3 s4 s5

interpolation would prune at s4 and s2 re-
spectively.

s1 s2 s3 s4 s5

(a) Example where forward and backward (b) Example where forward and backward
interpolation would prune at s2 and s4 re-
spectively.

Fig. 8 Examples for minimal and maximal prune indexes

4 Evaluation

In this section, we evaluate the effectiveness and efficiency of our algorithmic contributions
presented before (Sect. 3) by conducting an experiment. First, we introduce our experiment
plans along with the research questions to be addressed (Sect. 4.1). Then, we present and
discuss our results and analyses for each research question in a separate subsection (Sect. 4.2).
Finally, we compare our implementation to other tools in order to provide a baseline for the
research questions (Sect. 4.3). The design and terminology of the experiment are based on
the book of Wohlin et al. [64]. The raw data, a detailed report and instructions to reproduce
our experiment are available in a supplementary material [42].

4.1 Experiment Planning

The goal of our experiment is to evaluate our new contributions on a broad set of verification
tasks from diverse sources. In our experiment we execute various configurations of the
CEGAR algorithm on several input models.

4.1.1 Research Questions

We formulate a research question for the performance of each algorithmic contribution pre-
sented in Sect. 3. We are mainly interested in two performance aspects: the number of
verification tasks solved within a given time limit per task (effectiveness) and the total execu-
tion time required (efficiency). Other measured aspects include a more refined categorization
of unsolved tasks (timeout, out-of-memory, exception) and the peak memory consumption.

RQ1 Howdoes the configurable explicit domain perform for increasing values of k compared
to traditional explicit-value analysis?

RQ2 How does the error location-based search perform for different weights (wD , wE )
compared to breadth and depth-first search?

RQ3 How do splitting predicates (into conjuncts or atoms) and splitting states perform
compared to predicate abstraction without splitting?

RQ4 How does backward binary interpolation perform compared to forward binary and
sequence interpolation?

RQ5 How does refinement based on multiple counterexamples perform compared to using
only a single one?

RQ6 How do the combined refinement strategies (based on the minimal/maximal prune
index) perform compared to backward and forward binary interpolation?
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Table 1 Overview of the input verification tasks with the number of variables, locations, edges and the
cyclomatic complexity (CC)

Source Category Models Tasks Vars Locs Edges CC

SV-COMP Locks 13 143 4–32 9–40 10–57 3–23

Loops 59 105 1–11 4–26 3–33 2–19

ECA 3 180 9–30 302–1301 375–1516 73–231

ssh-simpl. 12 17 64–81 187–267 262–375 87–121

CERN PLC 6 90 1–596 8–4614 7–4782 4–188

HWMCC HWMCC 300 300 0–245278 inputs, 0–460501 latches, 0–4806245 gates

Total 393 835

Ranges denote minimal and maximal numbers

4.1.2 Subjects and Objects

We implemented both the existing algorithms presented in the background (Sect. 2) and our
new contributions (Sect. 3) in the open sourceTheta tool12 [60].Theta is a generic, modular
and configurable framework, supporting the development and evaluation of abstraction-based
algorithms in a common environment.

One of the distinguishing features of Theta is that it supports different kind of models
(e.g., control flow automata, transition systems, timed automata). An interpreter hides the
differences between these formalisms so the algorithms presented in this paper work for
verification tasks from different domains (e.g., software, hardware). There are some excep-
tions though: the configurable explicit domain (Sect. 3.1.1) requires statements and the error
location-based search (Sect. 3.1.2) requires locations. Therefore, these algorithms do not
work for hardware models since those are encoded as transition systems.

For the objects of the experiment, we use C programs from the Competition on Software
Verification (SV-COMP) [9], hardware models from the Hardware Model Checking Compe-
tition (HWMCC) [25] and industrial Programmable Logic Controller (PLC) software models
from CERN [40].

Table 1 gives an overview of the number of input models and verification tasks along with
size and complexity metrics. We selected models from four categories of the 2018 edition13

of SV-COMP that are currently supported by the limited14 C front-end of Theta [59]. By
applying backward slicing [59]we generate a separate verification task for each assertion. The
category locks consists of small (94-234 LoC) locking mechanisms with several assertions
per model. The collection loops includes small (9-70 LoC) programs focusing on loops. The
ECA (event-condition-action) task set contains larger (591-1669 LoC) event-driven reactive
systems. The tasks in ssh-simplified describe larger (557-713 LoC) client-server systems.

We also experimented with industrial PLC software modules from CERN. These modules
operate in an infinite loop, where a formula (the requirement) is always checked at the end
of the loop. It can be seen that the size of these models is greatly varying from a few dozens
of locations to a couple of thousands.

12 http://github.com/FTSRG/theta (commit f32d3f9).
13 https://sv-comp.sosy-lab.org/2018/.
14 Currently Theta does not support arrays, pointers, structs, and function inlining is limited to simple cases.
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Table 2 Variables of the experiment

Category Name Type Description

Model (indep.) Model String Unique name of the model (i.e., verification task)

Category Enum. Category of the model. Possible values: eca, hwmcc,
locks, loops, plc, ssh

Config. (indep.) Domain Enum. Domain of the abstraction. Possible values: EXPL,
PRED_BOOL, PRED_CART, PRED_SPLIT

MaxEnum Integer Maximal number of successors to enumerate in the
explicit domain (k). Only applicable if Domain is
EXPL

PrecGranularity Enum. Granularity of the precision. Possible values: GLOBAL,
LOCAL

PredSplit Enum. Predicate splitting method. Possible values: ATOMS,
CONJUNCTS, WHOLE. Only valid if Domain is
PRED_*

Refinement Enum. Refinement strategy. Possible values: BW_BIN_ITP,
FW_BIN_ITP, MAX_PRUNE, MIN_PRUNE,
MULTI_SEQ, SEQ_ITP

Search Enum. Search strategy. Possible values: BFS, DFS, ERR,
DFS_ERR, ERR_DFS

Metrics (dep.) Succ Boolean Indicates whether the algorithm successfully provided a
correct result within the given resource limits

Termination Enum. Indicates the termination reason. Possible values:
success, time, memory, exception

Result Boolean Result of the algorithm, indicates whether the model is
safe according to the algorithm

TimeMs Integer CPU time used by the algorithm (in milliseconds)

Memory Integer Peak memory consumption of the algorithm (in bytes)

Furthermore, we picked all 300 models from the 2017 edition15 of HWMCC. These tasks
are encoded as transition systems, describing circuits with inputs, logical gates and latches.
The metrics reported in the table for the hardware models are after applying cone of influence
(COI) reduction [33].

The majority of the CFA tasks (442) is expected to be safe, while the rest is unsafe (93).
To the best of our knowledge, the (300) hardware models do not have an expected result.

Due to slicing [59] it is possible that different tasks corresponding to the same program
will have different models (i.e., CFA). Hence, we encode each task in a separate file including
the model (CFA) and the property and treat them as if they were different models. Therefore,
from now on we use the terms “model” and “verification task” interchangeably.

4.1.3 Variables

Variables of our experiment are listed in Table 2, grouped into three main categories. Prop-
erties of the model and parameters of the algorithm configuration are independent variables,
whereas output metrics of the algorithm are dependent.

Properties of the model

15 http://fmv.jku.at/hwmcc17/.
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– The variable Model represents the unique name of each model (verification task).
– Furthermore, models have a Category based on their origin.

Parameters of the algorithm

– The variable Domain represents the abstract domain used. The values PRED_BOOL and
PRED_CART stand for Boolean and Cartesian predicate abstraction, while EXPL stands
for explicit-value analysis. Furthermore, our Boolean predicate abstraction with state
splitting (Sect. 3.1.3) is encoded by PRED_SPLIT.

– The integer variable MaxEnum corresponds to the maximal number of successors allowed
to be enumerated (denoted by k) in our configurable explicit domain (Sect. 3.1.1). The
value 0 represents k = ∞, i.e., there is no limit on the number of successors. Fur-
thermore, the value 1∗ enumerates at most one successor without using an SMT solver
(corresponding to traditional explicit-value analysis [15]).

– The variable PrecGranularity represents the granularity of the precision. When the granu-
larity is LOCAL, a different precision can be assigned to each location, whereas GLOBAL

granularity means that the precision is the same for each location.
– The variable PredSplit defines the way complex predicates are split into smaller parts

before introducing them in the refined precision (Sect. 3.1.3). Possible values are ATOMS,
CONJUNCTS and WHOLE (no splitting).

– The variable Refinement corresponds to the refinement strategy used. The val-
ues FW_BIN_ITP and SEQ_ITP represent traditional binary and sequence interpolation
(Sect. 2.2.2). The value BW_BIN_ITP is our novel backward search-based binary inter-
polation strategy (Sect. 3.2.1), whereas MAX_PRUNE and MIN_PRUNE refer to combined
refinements with maximal and minimal prune index (Sect. 3.2.3). The value MULTI_SEQ

uses sequence interpolation and our approach of multiple counterexamples (Sect. 3.2.2).
– The variable Search represents the search strategy in the abstract state space. Values BFS

and DFS denote breadth and depth first search. Other values correspond to our error
location-based strategy (Sect. 3.1.2) with different weightswD andwE . The strategy ERR

only takes into account the error location, i.e., wD = 0 and wE = 1. The values ERR_DFS

and DFS_ERR use both weights but are biased towards one or the other (wD = 2, wE = 1
and wD = 1, wE = 2 respectively).

Metrics

– The dependent variable Succ indicates whether the algorithm terminated and provided
a correct result (no false negative/positive) successfully within the given CPU time and
memory limits (effectiveness).

– The variable Termination indicates the reason for termination (success, timeout, out-of-
memory, exception) in a finer way than Succ. It is only used in the detailed plots of the
supplementary report [42].

– The variable Result denoteswhether themodel is safe or unsafe according to the algorithm.
We check that the result matches the expected (if available) and that all configurations
agree.

– The variable TimeMs holds the execution time (CPU time) of the algorithm inmilliseconds
(efficiency).

– The variable Memory measures the peak (maximal) memory consumption during the
execution of the algorithm in bytes (efficiency).
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Table 3 Overview of the experiment

Parameter RQ1 RQ2 RQ3 RQ4 RQ5 RQ6

Domain EXPL EXPL
PRED CART
PRED BOOL

PRED CART
PRED BOOL
PRED SPLIT

EXPL
PRED CART
PRED BOOL

EXPL
PRED CART
PRED BOOL

EXPL
PRED CART
PRED BOOL

MaxEnum 0
1
1∗
5
10
50

plc: 0
sv-comp: 1
hwmcc: NA

NA plc: 0
sv-comp: 1
hwmcc: NA

plc: 0
sv-comp: 1
hwmcc: NA

plc: 0
sv-comp: 1
hwmcc: NA

PredSplit WHOLE ATOMS
CONJUNCTS
WHOLE

WHOLE WHOLE WHOLE

Refinement SEQ ITP SEQ ITP SEQ ITP BW BIN ITP
FW BIN ITP
SEQ ITP

MULTI SEQ
SEQ ITP

BW BIN ITP
FW BIN ITP
MAX PRUNE
MIN PRUNE

Search BFS
DFS

BFS
DFS
ERR
DFS ERR
ERR DFS

BFS BFS BFS BFS

PrecGran. plc: LOCAL, sv-comp: GLOBAL, hwmcc: NA

Factors and blocking factors are marked with darker and lighter gray background respectively

4.1.4 Experiment Design

The experiment design is summarized in Table 3. It would be possible to execute each
configuration on every model (crossover design) and then select the relevant subsets of data
for each research question. However, due to the high number of parameters and their possible
values, it would yield hundreds of configurations. Instead, for each research question we
identify and manipulate one or two parameters that correspond to our new contributions.
These parameters are called factors, for which each value (level) is executed on every model
and the output is observed.

Based on our previous experience and the literature, the domain of the abstraction is
a prominent parameter of CEGAR. Therefore, we also include it in the experiments as a
blocking factor to systematically eliminate its undesired effect. RQ1 forms an exception,
where only the explicit domain is applicable, thereforewe use the search strategy for blocking.

The rest of the independent variables are kept at a fixed level that usually performed well
in our previous experiments. These fixed levels however, can be different based on the type
of the model, e.g., a local precision granularity is used for PLC models, while SV-COMP
models perform better with global precision. Furthermore, certain parameters might not be
applicable ( NA) to hardware models since they are represented as transition systems instead
of CFA.

To illustrate our design with an example, in RQ1 we evaluate 6 levels for MaxEnum and 2
levels for Search, while keeping other parameters at a fixed level. This yields a total number
of 12 configurations.
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4.1.5 Measurement Procedure

Measurements were executed on physical machines with 4 core (2.50 GHz) Intel Xeon
L5420 CPUs and 32 GB of RAM, running Ubuntu 18.04.1 LTS and Oracle JDK 1.8.0_191
(Theta is implemented in Java). We used Z3 version 4.5.0 [57] for SMT solving.16 To
ensure reliable and accurate measurements, we used theRunExec tool from theBenchExec
suite [18], which is a state-of-the-art benchmarking framework (also used at SV-COMP).
Each measurement was executed with CPU time limit of 300 s17 and a memory limit of
4 GB. The results were collected into CSV files for further analysis. Each measurement was
repeated 2 times. Instructions to reproduce our experiment can be found in the supplementary
material [42].

4.1.6 Threats to Validity

In this subsection we discuss threats to construct, internal and external validity [64] of
our experiment. We are not concerned with conclusion validity, as we do not use statistical
tests [64].

Construct validity can be ensured by using proper metrics to describe the “goodness” of
algorithms. We use the number of solved instances for effectiveness, and the total execu-
tion time and peak memory consumption for efficiency. These metrics are widely used to
characterize model checking algorithms [9,25,50].

Internal validity is concerned with identifying the proper relationship between the treat-
ments and the outcome. We use dedicated hardware machines and repeated executions to
reduce noise from the environment. Accuracy of the results is ensured by BenchExec [18],
a state-of-the-art benchmarking tool. We also apply blocking factors to eliminate unde-
sired effects from known factors systematically. Nevertheless, internal validity could still be
improved using a full, crossover design (executing all configurations on all models).

External validity is increased by using models from different and diverse sources, includ-
ing standard benchmark suites (SV-COMP [9] andHWMCC [25]) and industrialmodels [40].
We compared our new contributions with various state-of-the-art algorithms implemented
within the same framework. Furthermore, we also compare our implementation to other tools
to provide a baseline (Sect. 4.3). However, external validity would benefit from using addi-
tional models (for example from other categories of SV-COMP) and from comparing related
algorithms as well. Describing models with additional variables (e.g., size or complexity)
besides their category would also further generalize our results.

4.2 Results and Analysis

We present the results and analyses for each research question in a separate subsection.
Analyses were performed using the R software environment [58] version 3.4.3. We only
present the most important results in the paper, but the raw data, the R script and a detailed
report can be found in the supplementary material [42].

In each analysis, we first merge the repeated executions of the same measurement (same
configuration on the same model) into a single data point in the following way. We consider

16 Z3 dropped support for interpolation since version 4.8.1, but still works with version 4.5.0 that we used for
the measurements. However, in order to use more recent versions, we are considering to use a separate SMT
solver for interpolation, e.g., SMTInterpol [29].
17 RunExec also puts a limit on the wall time, which is CPU time limit plus 30 s by default.
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a measurement successful if at least one of the repeated executions is successful. This is
a reasonable choice as in most cases either all executions are successful or none of them
are. Then, we calculate the execution time of a measurement by taking the mean time of
its successful repetitions. The relative standard deviation18 between the repeated executions
was usually around 1% to 2%, allowing us to represent them with their mean. In a few
cases, the repeated executions terminated due to a different reason (e.g., timeout first, then
out-of-memory). In these cases we counted the first reason during aggregation.

4.2.1 RQ1: Configurable Explicit Domain

Results In this questionwe analyze 6 different levels for MaxEnumwith respect to 2 levels for
the blocking factor Search. This algorithm is applicable only to the 535 CFA models, giving
a total number of (6 ·2) ·535 = 6420 measurements, from which 3928 (61%) are successful.

The heatmap in Fig. 9 presents an overview of the results. Configurations are described
by the levels of Search and MaxEnum. Categories are given by their name and the number
of models, and the rightmost column is a summary of all categories. Each cell represents
the number of successful measurements in a given category, along with the total execution
time and peak memory consumption for successful measurements (rounded to 3 significant
digits [18]). The background color of the cell indicates the success rate of the configurations,
i.e., the percentage of successful measurements. The last row is the virtual best configuration,
i.e., taking the result of the best configuration for each model individually.

Discussion It can be seen that traditional explicit-value analysis, i.e., configurations BFS_01*

and DFS_01* perform well for the SV-COMP categories ( locks, eca, ssh), but give poor
performance on PLC models.

On the other end of the spectrum, configurations BFS_0 and DFS_0 enumerate all possible
successors (k = ∞). This gives a poor success rate on certain SV-COMP categories, having
integer variables with a theoretically infinite19 domain. Note, that these configurations can
still solve certain problems as they represent non-deterministic variables with the top value
initially and only start enumerating possible values as soon as they appear in some expression
(and are tracked explicitly). These configurations are more suitable for PLC models than tra-
ditional explicit-value analysis, because PLCs usually contain many Boolean input variables
and it is often feasible to enumerate all possibilities to increase precision.

The advantage of our configurable approach is demonstrated by the configurations hav-
ing 5, 10 or 50 for MaxEnum. These configurations give a good performance overall and a
remarkably better success rate on category plc compared to traditional explicit-value analysis.
Moreover, with k >= 10, configurations can solve a few more plc instances than with enu-
merating all possibilities. It can also be observed, that using an SMT solver for expressions
that cannot be evaluated with simple heuristics ( 01) can improve success rate compared to
not using a solver ( 01*) with 13 and 17 models for DFS and BFS respectively. Furthermore, it
can be seen that BFS is consistently more effective than DFS for the same MaxEnum value. The
overall best configuration in this analysis is BFS_50, but BFS_05 and BFS_10 closely follows.

An interesting further research direction would be to determine the optimal value for
MaxEnum in advance, based on static properties of the input model or to adjust it dynamically
during analysis.

18 The relative standard deviation (also called the coefficient of variation) is the ratio of the standard deviation
to the mean.
19 SV-COMP contains C programs where integers have a fixed bit-width. However, in our current implemen-
tation we use SMT integers having an infinite domain. From a practical point of view, enumerating 232 or 264

states can be considered as infinite.
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Fig. 9 Overview of the success rates, total execution time and peak memory consumption for RQ1

Summary. Our configurable explicit domain can combine the advantages of traditional
explicit-value analysis and explicit enumeration of successor states, giving a good perfor-
mance overall in each category. Furthermore, although using an SMT solver requires more
time, it increases precision and achieves a slightly higher success rate.

4.2.2 RQ2: Error Location-Based Search

Results In this question we analyze 5 different levels for Search with respect to 3 levels for
the blocking factor Domain. This algorithm is applicable only to the 535 CFA models, giving
a total number of (5 ·3) ·535 = 8025 measurements, from which 6242 (78%) are successful.
The heatmap in Fig. 10 presents an overview of the results. Configurations are described by
the levels of Domain and Search.

Discussion The overall performance of configurations is similar, ranging from 416 to 447
successful measurements for PRED_* and 357 to 389 for EXPL. However, there are some
interesting patterns in certain categories. The blocking factor ( Domain) is dominant for the
loops, ssh and plc categories: configurations with EXPL perform better for ssh and PRED_* is
more effective for loops and plc.

The success rates for different search strategies within the same domain is quite similar
with a few notable examples. Our purely error location-based strategy ( ERR) yields a higher
success rate in general compared to others. In contrast, our ERR_DFS combined strategy has
a poor performance for eca models in the predicate domain. The supplementary report [42]
includes separate plots for safe and unsafe benchmarks. This confirms that the advantage of
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Fig. 10 Overview of the success rates, total execution time and peak memory consumption for RQ2

ERR strategies is more prominent for unsafe models and they are similar to others for safe
instances.

A possible future research direction is to experiment with different combinations and
weights for the strategies, possibly based on domain knowledge about the input models.

Summary.Our error location-based search can yield improvement for certain models. How-
ever, our combined strategies that are efficient for artificial examples (Fig. 5) provide no
remarkable improvement for real-world models.

4.2.3 RQ3: Splitting Predicates

Results In this question we analyze 3 different levels for PredSplit and 3 levels for Domain.
The levels of PredSplit determine how complex predicates obtained during refinement are
treated, whereas the levels of Domain correspond to the way abstract states are formed from
these predicates. These algorithms are applicable to all 835 models, giving a total number
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Fig. 11 Overview of the success rates, total execution time and peak memory consumption for RQ3

of (3 · 3) · 835 = 7515 measurements, from which 4345 (58%) are successful. The heatmap
in Fig. 11 presents an overview of the results. Configurations are described by the levels of
Domain and PredSplit.
Discussion It can be seen that the overall performance of the configurations mainly
ranges from 468 to 500 successful measurements. An exception is the configuration
PRED_CART_ATOMS having a remarkably poor performance (due to plc models). This can
be attributed to the fact that if we split complex formulas to their atoms and use Cartesian
abstraction, we will only be able to represent conjunctions of atoms, but no disjunctions.
Similarly for hardware models, splitting to atoms only works well with Boolean abstraction.

On the other hand, splitting into conjuncts is especially favorable with Cartesian abstrac-
tion, making PRED_CART_CONJUNCTS the most successful configuration. Although it can only
solve 3 more models than the second best, the total execution time is much lower (7420 s
compared to 11,800 s).

It can also be observed that our PRED_SPLIT domain has a slightly worse performance than
PRED_BOOL. Hence, it is not worth splitting disjuncts of Boolean predicate abstraction into
separate states. A possible reason is that a large disjunction might be simplified to a simpler
formula, e.g., (A ∧ B) ∨ (A ∧ ¬B) is only A. When the disjunction is kept as a whole,
modern SMT solvers might be able to perform such reductions. However, disjuncts alone
usually cannot be simplified.

The differences between configurations could be of greatermagnitude ifmore disjunctions
occurred (e.g., due to pointer-aliasing encoding or large-block encoding [10]). In our case
we observed that disjunctions mostly come from the encoding itself in hardware models and
PLC programs or from the interpolants in SV-COMP programs.

Currently, we do not normalize the formulas to CNF before splitting. An equivalent for-
mula in CNF can have an exponential size compared to the original [22], but an interesting
further direction would be to experiment with equisatisfiable encodings [62].
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Fig. 12 Overview of the success rates, total execution time and peak memory consumption for RQ4

Summary. For the best performance, complex predicates should be treated as a whole, or
split to conjuncts, but not split to atoms. Furthermore, states in Boolean predicate abstraction
should also be kept as a single state.

4.2.4 RQ4: Backward Binary Interpolation

Results In this question we analyze 3 different levels for Refinement with respect to 3 levels
for the blocking factor Domain. These algorithms are applicable to all 835 models, giving a
total number of (3 · 3) · 835 = 7515 measurements, from which 2933 (39%) are successful.
The heatmap in Fig. 12 presents an overview of the results. Configurations are described by
the levels of Domain and Refinement.

Discussion It can be seen clearly that forward binary interpolation ( FW_BIN_ITP) fails for
almost every CFA model, except for a few (mainly unsafe) instances in categories locks and
loops. For hardware models, it is slightly more effective in the EXPL domain.

Sequence interpolation ( SEQ_ITP) and our backward binary interpolation approach (
BW_BIN_ITP) have similar success rates. The former one is more successful in the PRED_BOOL

and EXPL domains, while the latter is effective in the PRED_CART domain (making it the best
overall configuration). The differences are however, only remarkable in the EXPL domain,
where BW_BIN_ITP has a low success rate on eca models. Furthermore, BW_BIN_ITP in the
PRED_CART domain has around half the peak memory consumption than SEQ_ITP in any
domain.

An interesting further direction would be to involve the granularity of the precision
(local/global) as a blocking factor, as for BW_BIN_ITP a local precision could involve more
refinement steps.
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Fig. 13 Overview of the success rates, total execution time and peak memory consumption for RQ5

Summary. Our backward binary interpolation strategy clearly outperforms forward inter-
polation and has similar performance to sequence interpolation, in some cases even
outperforming it.

4.2.5 RQ5: Multiple Counterexamples for Refinement

Results In this question we analyze 2 different levels for Refinement with respect to 3 levels
for the blocking factor Domain. We are interested whether collecting and refining multiple
counterexamples at once ( MULTI_SEQ) can yield better performance than using a single path
( SEQ_ITP). These algorithms are applicable to all 835 models, giving a total number of
(2 · 3) · 835 = 5010 measurements, from which 2858 (57%) are successful. The heatmap
in Fig. 13 presents an overview of the results. Configurations are described by the levels of
Domain and Refinement.

Discussion It can be seen that the blocking factor ( Domain) is dominant for the eca, loops,
ssh and plc categories. Configurations with PRED_* domain are more successful for loops and
plc models, whereas EXPL is more effective for categories eca and ssh.

The difference between using a single or multiple counterexamples within the PRED_*

domains is not remarkable, ranging from 490 to 497 verifiedmodels. However, usingmultiple
counterexamples is clearlymore effective in the EXPL domain due to the eca category. This can
be attributed to the fact that these models have the largest cyclomatic complexity, enabling to
utilize the full power of our strategy that uses multiple counterexamples. Furthermore, there
are 39 models that only EXPL_MULTI_SEQ could verify.

As a possible future direction, it would be interesting to experiment with different
refinements strategies (e.g., backward binary). Moreover, information from multiple coun-
terexamples could be utilized in more detail than just simply selecting a minimal set required
to eliminate all spurious behavior.

Summary. Our strategy for using multiple counterexamples can yield a remarkably better
performance in the explicit domain for complex models.
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Fig. 14 Overview of the success rates, total execution time and peak memory consumption for RQ6

4.2.6 RQ6: Multiple Refinements for a Counterexample

Results In this question we analyze 4 different levels for Refinement with respect to 3 levels
for the blocking factor Domain. We are interested whether combinations of BW_BIN_ITP and
FW_BIN_ITP can yield better performance. These algorithms are applicable to all 835 models,
giving a total number of (4 · 3) · 835 = 10020 measurements, from which 2658 (27%) are
successful. The heatmap in Fig. 14 presents an overview of the results. Configurations are
described by the levels of Domain and Refinement.

Discussion It can be seen that BW_BIN_ITP is successful overall, while FW_BIN_ITP gives rather
poor performance. Interestingly, our combined strategy MAX_PRUNE is close to FW_BIN_ITP,
whereas MIN_PRUNE is more successful, but still less effective than BW_BIN_ITP.

A possible further research direction would be to combine BW_BIN_ITP with the effective
SEQ_ITP approach. In this case however, combining based on the prune index may not work
since sequence interpolation usually refines more states along the counterexample.

Summary. Combining an effective refinement approach (BW_BIN_ITP) with a rather unsuc-
cessful one (FW_BIN_ITP) based on the prune index could not improve performance.
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Table 4 Configurations of Theta compared against other tools

Configuration name Domain MaxEnum PredSplit Refinement Search PrecGran.

theta-pred-seq PRED_CART ATOMS SEQ_ITP BFS GLOBAL

theta-expl-seq EXPL 1∗ SEQ_ITP BFS GLOBAL

theta-pred-bw PRED_CART WHOLE BW_BIN_ITP ERR GLOBAL

theta-expl-multiseq EXPL 1 MULTI_SEQ ERR GLOBAL

4.3 Comparison to Other Tools

In order to provide a baseline for the research questions in the previous section, we compare
Theta to other tools. Unfortunately, we did not have the computing resources to run all
measurements in a common environment. Therefore, we took the raw data20 from SV-COMP
2018 and filtered to the models that Theta can handle. Furthermore, we executed four
configurations of Theta in a similar environment to SV-COMP, using 900 s time limit and
15 GB memory limit. Note, that these are larger limits compared to the research questions.
The hardware machines we used for Theta had weaker CPUs than the ones at SV-COMP,
giving us a slight disadvantage.However, our purposewas not to give an exact comparison, but
rather just to show that Theta is competitive with respect to the state of the art. Therefore, we
omit time and memory measurements and only indicate the number of successful executions.

Currently, the frontend of Theta produces a different verification task for each assertion
in a C program due to slicing. Therefore, we selected those models from loops that contain a
single assertion. In category locks, there is also a single assertion, reachable bymultiple labels
that we used as slicing criteria for the research questions. For the current measurements we
create a single task to be able to compare to other tools. The other categories ( eca and ssh)
contain one assertion per file.

Configurations of Theta are summarized in Table 4. The first two configurations ( theta-
pred-seq and theta-expl-seq) implement already existing strategies, while the latter two include
someof our newapproaches that performedwell in the research questions. For example, theta-
pred-bw performs backward binary interpolation (RQ4, RQ6) and keeps predicates as a whole
(RQ3), while theta-expl-multiseq uses an SMT solver to evaluate unknown expressions (up to
a limit of one) (RQ1) and performs refinement based on multiple counterexamples (RQ5).
Furthermore, the latter two configurations use the error location-based search strategy (RQ2).

Results can be seen in Fig. 15, where each cell indicates the success rate of a tool (or
configuration) in a given category. The last column is a summary of all categories. Empty
spaces indicate that a tool did not compete in a certain category.

Based on the competition reports [8,9] the toolsCPA- BAM- BnB,CPA- BAM- Slicing,
CPA- Seq, InterpChecker and Skink are the most closely related to Theta as they also
workwithCEGARandARG-based analysis. The toolsUAutomizer,UKojak andUTaipan
also employCEGAR, but their analysis is based on automata [9]. Other tools aremainly based
on bounded model checking, k-induction or symbolic execution.

Themodels represent a small subset of SV-COMPbenchmarks andmany of thembelong to
the simpler instances. However, the success rates already have a great variance, ranging from
70 to 248 (out of 259) for those tools that competed in all of the categories. Configurations for
Theta perform well in this comparison, verifying 176 to 215 tasks. The takeaway message
of this comparison is that although the C frontend of Theta is limited, our implementation is

20 https://sv-comp.sosy-lab.org/2018/results/results-verified/All-Raw.zip.
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Fig. 15 Overview of the success rates for various Theta configurations and other tools from SV-COMP 2018

still competitivewith respect to state-of-the-art tools and can serve as a baseline for evaluating
new algorithms.

5 RelatedWork

In this section, we present related work to our framework in general, to our algorithmic
contributions and to our experimental evaluation.

General Abstraction and CEGAR-based methods are widely used for model checking
software [9], implemented by several tools, e.g., Slam [6], Blast [12], SatAbs [35],
Impact [56], Wolverine [51]. The most closely related are the frameworks CPAchecker
[14] and UFO [2] that support configurability based on abstract domains and refinement
strategies. These tools however, only target software models in contrast to Theta, which
also supports transition systems and timed automata [60,61]. The LTSmin [49] tool and
the Ultimate framework21 also support different kind of models and algorithms, but their
primary focus is on symbolic methods and automata respectively instead of abstraction.

Configurable explicit domain The transfer function of our configurable explicit domain
(Sect. 3.1.1) can be considered as a generalization of explicit-value analysis [15], which
always enumerates at most one successor state. The visible/invisible variables approach [34]
is similar to the other end of the spectrum, enumerating all possible successors (k = ∞) for
transition systems defined by partitioned transition relations.

Error location-based search Our error location-based search (Sect. 3.1.2) is basically an
A∗ search [44], for which we adjusted the cost function to the domain of software model
checking. We use the depth as the cost of the current path, and the distance from the error

21 https://ultimate.informatik.uni-freiburg.de/.
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location as the estimated remaining cost. State space traversal strategies have also been
discussed in the context of explicit model checking and abstract interpretation [21]. The
main focus of these approaches is to reach a fixpoint by identifying widening points and
iterations strategies (e.g., based on loops). In contrast, the goal of our method is to guide
the search towards an abstract state with a specific location. However, some ideas of the
existing approaches could also be combined with our method, e.g., process loops first and
then head towards the error location. Considering the syntactical distance in the CFA has also
been proven effective for achieving higher coverage in dynamic test generation tools such as
Crest [24] and Klee [27].

Splitting predicates Different variants of the predicate domain (including Cartesian and
Boolean) have been studied before [5]. Beyer and Wendler conclude, that while Boolean
abstraction is more precise than Cartesian, it is also more expensive (especially with single-
block encoding) [19]. There were also works on the compact representation of predicates
in Boolean predicate abstraction using SMT techniques [52] and BDDs [28]. Our splitting
domain (Sect. 3.1.3) works similarly to the approach of Brückner et al. [23]. However, we
do not only split states during refinement but during construction of the abstract state space.
The first approach that uses interpolation in the context of predicate abstraction extracts
atomic formulas from the interpolant [46], which might lead to a loss of precision when
combined with Cartesian abstraction [19]. The lazy abstraction with interpolants (Impact)
algorithm [56] keeps interpolants as a whole [19], but it is a different approach than the
predicate abstraction presented in our paper. To the best of our knowledge, splitting complex
interpolants into smaller subsets (Sect. 3.1.3) has not yet been studied systematically in the
context of predicate abstraction.

Backward binary interpolation The most closely related to our backward binary inter-
polation (Sect. 3.2.1) is the approach of Brückner et al. [23]. They first calculate a minimal
subpath of the counterexample that is spurious, i.e., it is feasible, but extending it in any
direction makes it infeasible. Then, they use a binary interpolant to refine the last state of
this subpath. In contrast, our approach can be considered as refining the state before the first
state of the subpath. Henzinger et al. [46] also use binary interpolation, but they calculate an
interpolant for each location in the counterexample from the same proof. The counterexample
minimization approach of Alberti et al. [3] is also similar to ours as they consider the shortest
infeasible suffix of the counterexample. However, their approach is defined in the context of
lazy abstraction with interpolants (Impact [56]) and they compute an interpolant for each
location. Moreover they perform a backward unwinding whereas we do a forward search and
then proceed backwards only in the counterexample. This also highlights the possibility to
experiment with different combinations of forward/backward search and interpolation.

TheNewton approach [7] performs a forward search, but uses the strongest postcondition
operator instead of interpolants. However, counterexamples are generalized with symbolic
variables, which could be combined with the forward or backward interpolation strategies.
A different variant [38] of the Newton approach performs a backward search during refine-
ment, but uses the weakest precondition operator combinedwith unsatisfiability cores instead
of Craig interpolants. The approach of Slam [4] also performs backward check on a coun-
terexample but only up to a bounded depth. Then, they use Craig interpolation at each step
to weaken the predicates coming from the weakest preconditions.

Cabodi et al. [26] compare the iterative application of traditional forward interpolation to
sequence interpolation. They come to a similar conclusion as us, namely that while sequence
interpolation performs refinement at once, traditional interpolation can sometimes have a
better performance (due to convergence at shorter depths in their case).
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Multiple counterexamples for refinement Most algorithms in the literature use a single
counterexample for refinement. The UFO tool [2] includes DAG interpolants [1] that refine
all counterexamples at once. Our approach for multiple counterexamples (Sect. 3.2.2) cal-
culates a separate interpolant for each path and minimizes and merges the results. While
computing a DAG interpolant seems more efficient that a series of independent interpo-
lations, our approach could also have various advantages. First, different paths could use
different refinement procedures (e.g., backward vs. sequence). Second, it would also be pos-
sible to do multiple refinements for each path (e.g., by different interpolation approaches or
by multiple prefixes [17]), take the “best” one and merge it with interpolants from the other
counterexamples.

The global refinement algorithm from the thesis of Löwe [54] computes a tree of inter-
polants using a series of interpolations (by reusing common prefixes). Our approach could
also gain performance from reusing common prefixes (with the incremental API of solvers).
However, our approach has the advantage that each counterexample can use any kind of
refinement procedure (e.g., backward interpolation). We believe that this is beneficial in the
context of a global precision, where the predicates or variables from the interpolants are
merged and used globally.

Multiple refinements for a counterexample Beyer et al. [17] calculate multiple prefixes
for the samecounterexample to enable selection fromdifferent refinements. Furthermore, they
also define some basic strategies for selecting the possibly best refinement [16]. Our approach
(Sect. 3.2.3) also uses a single counterexample and the heuristic using the prune index is
essentially the same as their “depth of pivot location” strategy.However, instead of calculating
prefixes, our approach selects from different interpolants for the same counterexample. The
two approaches therefore, can be considered orthogonal: it would also be possible to calculate
different interpolants for multiple prefixes.

Ultimate Automizer [45] also works with a portfolio of refiners, including Craig inter-
polation, unsatisfiable cores, various SMT solvers and different ways to abstract a trace. They
use a single measure for the quality of an interpolation, namely checking if the interpolant
constitutes a Floyd-Hoare annotation. In principle, our approaches could be added as new
strategies to the portfolio of Ultimate Automizer, and their methods could also extend
the portfolio of Theta.

Combining multiple refinements has also been studied in the context of the IC3/PDR
approach. Cimatti and Griggio [30] propose a hybrid IC3 algorithm, that first calculates a
proof-based interpolant (similar to sequence interpolants in our work). If this interpolant
contains too many clauses, they switch to the interpolation strategy of the original IC3 algo-
rithm, which is more expensive, but yields fewer clauses typically. Hoder and Bjørner [48]
also calculate a proof-based interpolant and use it as conflict clauses in order to support linear
real arithmetic in IC3.

Experimental evaluation There are many works in the literature that focus on experimen-
tal evaluation and comparison of model checking algorithms [11,19,36,37]. However, they
usually focus on a certain domain (e.g., SV-COMP). Our framework allows us to experiment
with models from different domains, including SV-COMP, HWMCC and PLC codes as well.
Furthermore, our experiments compare parameters and configurations of a single algorithm
(CEGAR), yielding a finer granularity as opposed tomost experiments in the literature, where
different tools or different algorithms are compared. This allows us to assess the effectiveness
and efficiency of our lower level strategies.
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6 Conclusions

In our paper, we presented six new heuristics and variations of existing strategies to improve
various aspects of the CEGAR algorithm, including both abstraction and refinement. For
abstraction, we introduced a configurable explicit domain, an error location-based search
strategy and the splitting of complex predicates. On the side of refinement, we proposed
a novel backward reachability-based interpolation strategy, an approach for using multiple
counterexamples for refinement, and a selection method from multiple refinements for the
same counterexample.

We implemented our new contributions in the open source, configurable model checking
framework Theta along with state-of-the-art algorithms. This allowed us to conduct an
experiment on various input models from diverse sources, including SV-COMP, HWMCC
and CERN.

Our results show that the configurable explicit domain can combine the advantages of tra-
ditional explicit-value analysis and the enumeration of states. The error location-based search
can yield better results for certain models, but combining it with DFS gives no remarkable
improvement. Splitting predicates reveals that complex formulas should be treated as awhole,
or split to their conjuncts.

Our backward binary interpolation clearly outperforms forward interpolation and has a
similar performance to sequence interpolation. Our strategy for using multiple counterexam-
ples during refinement can yield a remarkable improvement in the explicit domain for the
most complex models. Finally, combining the effective backward refinement with forward
interpolation based on pruning index cannot improve performance. However, other refine-
ment strategies combined differently could still be successful, which is a topic of further
research.

We can conclude that our new contributions perform well in general compared to existing
approaches. Furthermore, we highlighted certain domains and categories of models where
effectiveness and efficiency of the CEGAR approach remarkably increased.
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